
On Anonymity with Identity Escrow

Aybek Mukhamedov and Mark D. Ryan

School of Computer Science
University of Birmingham

{A.Mukhamedov,M.D.Ryan}@cs.bham.ac.uk

Abstract. Anonymity with identity escrow attempts to allow users of
a service to remain anonymous, while providing the possibility that the
service owner can break the anonymity in exceptional circumstances,
such as to assist in a criminal investigation. A protocol for achieving
anonymity with identity escrow has been presented by Marshall and
Molina-Jiminez. In this paper, we show that that protocol suffers from
some serious flaws. We also identify some other less significant weaknesses
of the protocol, and we present an improved protocol which fixes these
flaws. Our improved protocol guarantees anonymity even if all but one
of the escrow holders are corrupt.

1 Introduction

Users of services such as opinion surveys or media downloads may wish to remain
anonymous to the service provider. However, it may be important for service
providers to be able to break anonymity in special circumstances – for example,
to assist a criminal investigation. Identity escrow is designed to permit these
two aims. The notion was first introduced by Kilian and Petrank in [2], which
was motivated by the ideas from key escrow encryption systems (e.g. [3], [5]). It
allows an agent A to use services provided by S without revealing her identity
to S, while allowing S to obtain it in pre-agreed special circumstances (e.g. in a
misuse), thus offering a balance between privacy and monitoring/accountability.
To achieve this, A places her identity in an escrowed certificate generated with
a trusted issuer, which she presents to S when requesting its services. The cer-
tificate is verifiable, viz. S is given a guarantee that the escrowed certificate is
valid and that the identity is recoverable (with a help of escrow agent, which is
the same as issuer in our exposition).

Clearly, this identity escrow system breaks down if issuer is dishonest, and
to address this problem Marshall and Molina-Jiminez [4] proposed a protocol
for anonymity with identity escrow, where escrowed certificate is generated by a
set of issuers (named identity token providers in their paper). Neither S nor any
identity token provider are supposed to know the identity behind an escrowed
certificate, but if it is proved necessary, all token providers can cooperate in
order to reveal it.

In this paper, however, we show that their protocol suffers from serious flaws:

– Service misuse. Any token provider Ti can misuse services of S (or let
someone else do that), and can implicate any entity (such as A) in such
misuse.

– Identity compromise. For each escrowed certificate Φ that S receives,
there exists a token provider Ti who in coalition with S can recover the
identity escrowed in Φ.
Additionally, if S has successfully requested for a certain escrowed certificate
to be uncovered, then it can discover the identity of any subsequent user of
its services.

We also identify some other less significant weaknesses of the protocol in [4], and
present an improved protocol which fixes these flaws. We beleive our protocol
guarantees anonymity even if all but one of the token providers are corrupt.

The paper is organised as follows. In the next section, we present prelimi-
naries, including the original protocol. Our analysis follows in section 3, and in
section 4 we present our improved version of the protocol. Section 5 contains our
conclusions.

2 Preliminaries

2.1 Notation

The following labeling conventions are used throughout the paper:

– S denotes an anonymous service provider.
– T = {T1, T2, . . . Tq} is a set of identity token providers.
– Φi is an identity token issued by Tai

. We also write ΦA for the identity token
obtained by A by using the protocol.

– E = {E1, . . . , Ek} is a set of adjudicators.

– A is a service user. Â denotes the receiver A of a message, when the identity
of A is not known to the message sender.

– KA is A’s public key. {m}K is the message m deterministically encrypted
with the public key K.

– [m]K− is the message m signed with the private key corresponding to the
public K. We assume that [{m}K]K− , {[m]K−}K and m are all distinct
(thus, in particular, the PKI algorithm is not simple use of RSA).

2.2 The original protocol

Marshall and Molina-Jiminez’s protocol [4] consists of two parts:

– A sign-up protocol, which is the main protocol that is executed by A to
receive a token from the members of T . The token permits A to use the
service from S;

– and a complaint resolution protocol, which is executed by S upon a misuse
of its service, in order to reveal the identity of the offending anonymous user.

Signup protocol. In order for A to use the services of S, she must place her
identity in escrow with the elements of T and obtain a token. She uses this token
to prove to S that she has placed her identity in escrow, and S then provides
the service.

The protocol works as follows. A chooses a sequence Ta1
, Ta2

, . . . , Tap
of ele-

ments of T (possibly with duplications).

1) A −→ Ta1
: { [ITKReq]K−

A
}KTa1

2) Ta1
−→ A : { Φ1 }KA

, where Φ1 = [{KA}KTa1
]K−

Ta1

ITKReq means “identity token request”. Next, A anonymises the token by
getting Ta2

, . . . , Tap
to encrypt and sign it:

∗





1a) A 99K Tai+1
: { ITKSig, Φi }KTai+1

where Φi = [{ Φi−1}KTai
]K−

Tai

2a) Tai+1
−→ Â : { [{ Φi}KTai+1

]K−
Tai+1

}K
Â

Before signing the token, Ta+1 verifies that it has been signed by another token
provider. ITKSig indicates a signature request. ∗ indicates repeated application.
The dashed arrow indicates that a message is sent anonymously, i.e. the receiver
can not trace back the identity of the sender.

3) A 99K S : { ServReq,K
Â
, ΦA }KS

4) S −→ Â : { n,E }K
Â

5) A 99K S : { H }KS
, where H ⊆ E of cardinality n

6) S −→ Â : { an id }K
Â

K
Â
is a new public key created by A for use with the service. Obviously,

only A has the corresponding private key. In step 4, S invites A to choose a
set H ⊆ E of n adjudicators, who will vote on whether A’s identity should be
revealed in the case of a complaint. In step 6, S sends an anonymous identifier
for A to use when using the services S offers. In their paper [4], the authors
stipulate that S will divide the identity token into several parts and distribute
them to adjudicators, using Rabin’s information dispersal [7].

The authors assume that the identity token is uniquely tied to an entity, and
adjudicators are trusted to provide a fair adjudication for complaints.

Complaint resolution protocol. When S receives a complaint Ψ , the follow-
ing protocol is executed, without A:

1) S −→ Ei : { AdjReq, Ψ }KEi

Message 1 is sent to each Ei ∈ H.

2) Ei −→ S : { [Vi]K−
Ei

}KS

The vote Vi consists of a ballot (a decision by the adjudicator on the com-
plaint Ψ , e.g yes/no) together with the complaint Ψ . If the votes are positive
in the majority, S presents the tuple of signed votes V to Tap

, the last token
provider in the sequence chosen by A:

3) S −→ Tai
: { Reveal, Φi, Ψ,H, V }KTai

4) Tai
−→ S : { Φi−1 }KS

The last two steps are repeated several times, tracing backwards through the
sequence Ta1

, . . . , Tap
chosen by A, before finally obtaining KA.

3 Analysis

The protocol is subject to the following serious vulnerabilities:

Service Misuse. Any of the identity token providers can misuse services of S
(or let someone else to do that) and, furthermore, it can implicate any entity of
its choice in such a misuse:

Suppose Tai
is a dishonest token provider. He can present any intermediate

token which he receives during the sign-up protocol to S, and obtain an identifier
to use the service. He can misuse the service and in doing so implicate the user
who initiated the creation of the intermediate token.

Moreover, since the identity token takes the form

[{ . . . [{KA}KTa1
]K−

Ta1

. . . }KTap
]K−

Tap

and Ta1
has access to A’s public key KA, he can create [{KA}KTa1

]K−
Ta1

and

anonymously request the signature services from Ta2
, . . . , Tap

in order to create
the full token for A.

It is evident that such vulnerabilities are possible due to putting full trust
on token providers and generating identity token ΦA that is not tied to an
anonymous key K

Â
, i.e. whoever gets hold of the token can use it with a key of

his own.
In addition, the authors of the protocol do not spell out assumptions they

make on the anonymous channels. Thus, one could also claim that because a
message anonymously sent by A at step 1a does not include “reply instructions”,
e.g. a temporary public key K

Â
, any dishonest party C that can eavesdrop on

A’s outgoing messages of the protocol can acquire a valid identity token ΦA: C
intercepts/copies messages, which are to be sent anonymously by A, and, then,
replays them anonymously to all Tai

s in order to receive ΦA which can be used
to request services from S. Clearly, similar, but a weaker statement can be said
of a dishonest entity that can eavesdrop on any of Tai

s’ connections.
Note that in any case, a dishonest Tai

or whoever misused the services of S
with ΦA, can not be shown to have cheated.

Identity Compromise (1). Suppose A has identified the sequence of token
providers Ta1

, Ta2
, . . . , Tap

, and Ta1
is dishonest. Then the service provider S in

a coalition with Ta1
can identify the identity token that A has submitted to S,

viz. ΦA:

Suppose Ta1
is dishonest, i.e. it reveals to S identity tickets it issues. Then

it takes at most nk−1 number of operations (ITKSig requests and encryptions),
where n is the total number of identity token providers and k is the length of A’s
requests chain, for the coalition to find out ΦA - a straightforward brute-force
search.

However, if we allow the coalition to eavesdrop on messages of other token
providers Tai

, then the number of operations they need to perform goes down
to at most n(k − 1). This is done as follows:

– The coalition starts noting in a set M all the messages that other token
providers as well as S receive from the moment Ta1

sends Φ1.
– Upon reception of Φis check if any is in M , else wait until one of them is.
– Repeat the above steps until ΦA is found.

So, it is now possible to find the corresponding token for the chosen identity
within polynomial time in k modulo the costs of eavesdropping.

Identity Compromise (2). Suppose S has successfully processed a complaint
about a particular user. Then S can reveal the identity of any subsequent user
of the service.

Once S has successfully processed a complaint, he is in possession of the
information Ψ,H, V corresponding to the complaint. He can use this to make
Reveal requests to any sequence of Ti’s corresponding to some other protocol
session, and thereby break its anonymity.

Other Weaknesses. The protocol also has the following undesirable proper-
ties/glitches:

– Any third party can find out who misused the services of an anonymous
service provider S.

– A dishonest service provider S can adjust the set H to include “convenient”
adjudicators, when requesting to reveal the identity of an anonymous user
in the complaint resolution protocol.

– Obviously, the last message in the complaint resolution protocol needs to be
authenticated.

4 Improved Protocol

In order to present the protocol concisely, we omit details about A’s choice of
the adjudicators H ⊆ E. We use just one adjudicator, which we note E.

4.1 The Protocol

It also consists of two parts - signup and complaint resolution - that have the
same purpose as the previous ones, but with a different structure.

Signup.

A chooses a sequence Ta1
, Ta2

, . . . , Tan
of elements of T (possibly with dupli-

cations). In contrast with the previous protocol, we distinguish two temporary
keys for A. A creates a temporary service public key K[A] which she will use to
identify herself to S. Additionally, she creates a public key K

Â
which she will use

in anonymous communication with token providers, to indicate who the reply
needs to be sent to. The notation A |−→ B means that A anonymously sends a
message to B. In this case, B does not know A’s identity. Similarly, A −→| B
means that B receives a message anonymously, from A; A does not know B’s
identity.

1) A |−→ Ta1
: { InitITKReq,K[A], KÂ

}KTa1

2) Ta1
−→| A : { Φ1 }K

Â
,

where Φ1 = [{ InitITKReq,K[A] }KTa1
]K−

Ta1

By including the service key K[A] in the message of step 1, we will later have
this key associated with A’s identity token in order avoid the Service Misuse
attack, whereby anyone who acquires her token can use it to obtain a service on
behalf of A from S. Note that, in contrast with the previous protocol, A has not
revealed her identity to Ta1

.

For i = 1 to n− 2:

∗





1a) A |−→ Tai+1
: { ITKReq, Φi, NTai+1

,K
Â
}KTai+1

where for i > 1 Φi = [{ Φi−1, NTai
,K

Â
}KTai

]K−
Tai

2a) Tai+1
−→| A : { [{ Φi, NTai+1

,K
Â
}KTai+1

]K−
Tai+1

}K
Â

Each time A sends a message to Tai
containing Φi−1, NTai

,K
Â
and receives back

from it a message with Φi = [X]K−
Tai

, she checks thatX = { Φi−1, NTai
,K

Â
}KTai

,

by reconstructing the encryption. By the end of the sequence of messages (1a,
2a) (n− 2 times), A has obtained the token Φn−1:

[{ [{ . . .
[{ [{InitITKReq,K[A]}KTa1

]K−
Ta1

, NTa2
,K

Â
}KTa2

]K−
Ta2

. . . }KTan−2
]K−

Tan−2

, NTan−1
}KTan−1

]K−
Tan−1

which serves as a disguise of her key K[A]. Note the nonces NTai
in the above

steps, generated by A. They are necessary in order to preclude the Identity
Compromise (1) attack (see Analysis section).

We assume that all agents receiving a signed message verify the signature.
Thus, on receiving message (1a), Ta+1 verifies that the token has been signed by
another token provider before he signs it and sends it on.

Next, A reveals her identity to Tan
, by signing the token Φn−1. Steps 3, 4,

3a, 4a reverse this sequence of encryptions, and at the same time they build up
the identity token Φ̃n−1.

3) A |−→ Tan
: { [ITKSig, Φn−1, A]K−

A
}KTan

4) Tan
−→| A : { Φ̃1 }KA

,

where Φ̃1 = [{ [ITKSig, Φn−1, A]K−
A
}KTan

, Φn−1]K−
Tan

After step 3a, before sending out a response, token provider Tan−i
checks

that the key K
Â
supplied in the ITKReq request matches the one embedded in

Φn−i (cf. step 2a above). The same rule applies to Ta1
at step 5. (Both token

providers also check that Φ̃ contained in the ITKReq request was signed by some
token provider.)

For i = 1 to n− 2:

∗





3a) A |−→ Tan−i
: { ITKSig, Φ̃i, NT

′

an−i
, K

Â
}KTan−i

where for i > 1 Φ̃i = [{ Φ̃i−1, NT
′

an−i+1
}KTan+1−i

, Φn−i]K−
Tan+1−i

4a) Tan−i
−→| A : { [{ Φ̃i, NT

′

an−i
}KTan−i

, Φn−i−1]K−
Tan−i

}K
Â

5) A |−→ Ta1
: { ITKSig, Φ̃n−1, NT

′

a1
,K

Â
}KTa1

6) Ta1
−→| A : { [{ Φ̃n−1, NT

′

a1
}KTa1

,K[A]]K−
Ta1

}K
Â

Upon reaching Ta1
we have the identity token for A:

Φ̃A = [{ . . . [{Φ̃1, NT
′

an−1
}KTan−1

, Φn−2]K−
Tan−1

. . . NT′a1
}KTa1

,K[A]]K−
Ta1

The token Φ̃A associates the K[A] with A, and therefore can only be used by an
entity which knows the private key corresponding to K[A].

7) A |−→ S : { Φ̃A, K[A] }KS

A presents the token to S and initiates the service. S checks that the key
K[A] that A provided is contained inside the token which is signed by one of the
providers.

Complaint Resolution

We assume that a complaint ΨK[A]
is uniquely associated with A’s service

key K[A]. It must be verifiable by an adjudicator E and not forgeable by S. If
the adjudicator agrees with the complaint he signs it and then sends it back to S.

1) S −→ E : { AdjReq, ΨK[A]
, S }KE

2) E −→ S : { [ΨK[A]
]K−

E
}KS

3) S −→ Ta1
: { Reveal, Φ̃A, Ψ̃ , S }KTa1

where Ψ̃ = [ΨK[A]
]K−

E

4) Ta1
−→ S : { Φ̃n−1, NT

′

a1
, Ψ̃ }KS

For i = 1 to n− 2:

∗





3a) S −→ Tai+1
: { Reveal, ((Φ̃n−i, NTai

, NT′ai
), . . . ,

(Φ̃n−1, NT
′

a1
), Φ̃n), Ψ̃ , S }KTai+1

4a) Tai+1
−→ S : { Φ̃n−i−1, NTai+1

, NT′ai+1
, Ψ̃ }KS

5) S −→ Tan
: { Reveal, ((Φ̃1, NTan−1

, NT′an−1
), . . . , Φ̃n), Ψ̃ }KTan

6) Tan
−→ S : { [ITKSig, Φn−1, A]K−

A
, Ψ̃}KS

In message 3a, the tuple of Φ̃is serves to prevent complaint resolution mes-
sages in one session being used in another. Each Tai

checks that the sequence
he receives is correct, using the nonces NT′ai

, and that the last element of the
sequence is the token that the complaint ΨK[A]

is uniquely associated with.
At the nth iteration S reveals the identity of the user when it receives

[ITKSig, Φn−1, A]K−
A

from Tan
. Importantly, in the sequence of unfoldings

of Φ̃ai
s, S also keeps track of Φai

s inside them, using the nonces NTai
, in order to

make sure that Φn−1 is formed from the key she was given in the service request
step, viz. it is K

Â
. If there is a mismatch, she finds out which Tai

cheated, and,
furthermore, has evidence to prove that to any other party.

4.2 Properties of the protocol

If the token providers try to generate tokens by themselves, they can be shown
to have cheated. Also the token created for A is unusable by any other entity
that acquires it.

If at least one of the token providers in the sequence Ta1
, Ta2

, . . . , Tan
is

honest, then A’s identity is not revealed without valid complaint. Thus, the
protocol avoids the identity compromise attacks of section 3.

5 Conclusions

The protocol for anonymity with identity escrow in [4] is shown to have some
serious flaws. We have presented an improved protocol to achieve the same aim,
and in the future work we will verify the protocol using appropriate tools, such
as Proverif [1] or Isabelle [6].

References

1. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
S. Schneider, editor, 14th IEEE Computer Security Foundations Workshop, pages
82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society
Press.

2. J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology (CRYPTO’98),
number 1462 in LNCS, pages 169–187. Springer Verlag, 1998.

3. F. Leighton. Failsafe key escrow systems. Technical Memo 483, MIT Laboratory
for Computer Science, 1994.

4. L. Marshall and C. Molina-Jiminez. Anonymity with identity escrow. In T. Dim-
itrakos and F. Martinelli, editors, Proceedings of the 1st International Workshop
on Formal Aspects in Security and Trust, pages 121–129, Istituto di Informatica e
Telematica, Pisa, 2003.

5. S. Micali. Fair public-key cryptosystems. In Advances in Cryptology (CRYPTO’92),
number 740 in LNCS. Springer Verlag, 1993.

6. L. C. Paulson. The inductive approach to verifying cryptographic protocols. J.
Computer Security, 6:85–128, 1998.

7. M. O. Rabin. Efficient dispersal of information for security, load balancing and fault
tolerance. Journal of the ACM, 36(2):335–348, 1989.

