Synthesising Verified Access Control Systems in XACML

Nan Zhang
School of Computer Science
University of Birmingham
Birmingham, UK, B15 2TT

Mark Ryan
School of Computer Science
University of Birmingham
Birmingham, UK, B15 2TT

Dimitar P. Guelev
School of Computer Science
University of Birmingham
Birmingham, UK, B15 2TT

n.zhang@cs.bham.ac.uk m.d.ryan@cs.bham.ac.uk d.p.guelev@cs.bham.ac.uk

ABSTRACT

The eXtensible Access Control Markup Language (XACML)
was proposed by the OASIS committee to be used as a
standard language in e-business [6]. However, policy files
written in XACML are hard to read and analyse directly.
In this paper, we present a tool which generates verified
XACML scripts from access control system descriptions in
simple but expressive language proposed in [3], which admits
algorithmic verification of access control systems against ap-
propriately formalised policies. This allows the generation
of XACML scripts for systems that can be formally verified
to be implementing the relevant policies.

Categories and Subject Descriptors

F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages—formal languages

General Terms

Security, Verification

Keywords

Access control model, XACML, Access control policy lan-
guage

1. INTRODUCTION

Access control is of increasing importance in a world in
which computers are ever-more interconnected through net-
works. In order to protect resources and information from
illegal access, access control systems are built to provide the
ability of protection. Access control systems usually imple-
ment access control policies. Several formalisations of such
policies have been proposed. For instance, role-based ac-
cess control (RBAC) [7], prescribes assigning access rights
to agents on the grounds of their having certain roles.

This paper is about a formalism for describing access con-
trol systems introduced in [3], which allows access permis-
sions to be defined using arbitrary conditions on the current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FMSE’04, October 29, 2004, Washington, DC, USA.

Copyright 2004 ACM 1-58113-971-3/04/0010 ...$5.00.

state of the system in question. Since the basic actions which
are subject of permissions in that formalism are reading and
overuriting data, including permission records themselves,
we denote the formalism from [3] by RW . RW descriptions
admit algorithmic verification of their adherence to access
control policies written in the RW language. In this paper
we propose a machine-readable syntax for the language of
RW and show how systems described in it can be trans-
lated into the eXtensible Access Control Markup Language
(XACML), which was proposed by the OASIS committee
to be used as a standard language in e-business [6]. Ac-
cess control systems described in XACML can be bolted
onto existing applications. One of the major implementa-
tions of XACML was made by Sun Microsystems [8]. This
implementation includes a program which runs as a sim-
ple Policy Decision Point (PDP), which is the entity in the
XACML framework whose responsibility is to make deci-
sions on granting access requests. This program can be
used to test the tool we have implemented for translating
RW descriptions of access control systems into XACML.
The benefit from translating RW into XACML is twofold:
First, this allows the relatively concise descriptions of access
control systems in RW to be automatically translated into
the machine-oriented XACML. Second, since the properties
of systems described in RW can be verified algorithmically,
the translation can be guaranteed to produce systems which
correctly implement the required policies (See Figure 1).

‘ RW H Prolog verifier ‘
!

Figure 1: Two working threads

Structure of the paper

After preliminaries on the RW framework and XACML, we
explain our translation of RW into XACML and draw some
conclusions. We present the machine-readable syntax of
RW in terms of examples in the main text of the paper.
The complete syntax of the RW language and some prac-
tical instructions on the use of our implementation are in
appendices.

2. THE rw ACCESS CONTROL FORMAL-
ISM

2.1 Definition

Given a set of propositional variables P, we denote the set
of the propositional logic formulas built using these variables
by L(P). An access control system S is a tuple (A, P,r,w),
where A is a set of agents, P is a set of propositional variables
and r and w are mappings of type P x A — L(P). States of
S are valuations of the variables from P. Given a state s of
S, agent a € A is allowed to read and overwrite variable p iff
s = r(p,a) and s = w(p, a), respectively. Thus the formulas
r(p,a) and w(p,a) define the conditions for agents to access
S as functions on its state.

2.2 Example

The example access control system below is taken from [3].
We use it as a running example in this paper. It is about
a conference paper reviewing system. The system includes
fixed sets of agents and papers to review. Some of the agents
are authors of the papers and/or participate in the confer-
ence Programme Committee (PC). The Programme Chair
is a fixed agent too. Access control policies which apply in
this system include!:

1. PC members and authors of papers are known to ev-
erybody. Authors of papers cannot be changed.

2. The PC chair appoints the PC members. A PC mem-
ber can resign his membership.

3. The PC chair can assign a paper to a PC member for
reviewing, except if he is one of its authors.

4. All PC members, except the author(s) of a paper can
know who are the reviewers for this paper.

5. The reviewer of a paper can assign the paper to be
sub-reviewed by an agent who is not an author of the
paper and has not been assigned the same paper by
another reviewer.

6. A reviewer of a paper p can resign, unless he has al-
ready appointed a sub-reviewer for the paper.

7. Subreviewers are known to all PC members who are
not authors of the respective papers.

8. A sub-reviewer can resign, unless he has already sub-
mitted his review.

Following the RBAC approach [7], we can identify three
roles in this system — PC member, chair and anybody. Gen-
erally speaking, rules 1, 4, and 7 deal with reading privileges
as described in the current state of the system. The other
rules are about assigning privileges, which means overwrit-
ing this state. The purpose of having these rules is to avoid
conflicts of interest in the review process.

LA full list can be found in [3].

To put this example in the RW formalism, let Papers be
the set of papers, Agents be the set of agents and P include
the propositional variables for all a,b € Agents and p €
Papers:

a is an author of p

a is a PC member

a is the chair of PC

p is assigned to PC member a for
review

p is assigned by PC member a to b
as a sub-reviewer
submittedreview(p,a) a review on p has been submitted by
(sub-)reviewer a

the review on p from a itself

author(p,a)
pcmember(a)
chair(a)
reviewer(p, a)

subreviewer(p, a,b)

review(p, a)

The permission mappings r and w can be defined as follows
(“=" denotes “is defined as”, A denotes the set of agents, sub
stands for subreviewer, submit stands for submittedreview):

r(author(p,a), z) = true, r(pcmember(a),z) = true rulel
w(pcmember(a), z) = chair(z) V (pcmember(a) Az = a) rule 2

r(reviewer(p,a),z) = pcmember(z) A ~author(p, z) rule 4

(chair(z)
Apcmember(a))
A
(—author(p, a)
A-reviewer(p,a))
pcmember(a)
ANr=a
V| Areviewer(p,a)
A=(3 b€ b)
sub(p, a, b)
(pcmember(z)

w(reviewer(p,a),z) =

r(sub(p,a,b),z) =
Ve =b
(reviewer(p,a)
A-author(p, b))
Ar =a
A=(3 d € b)
w(sub(p,a,b),r) = sub(p, a,d)
Vsub(p, d, b)
(sub(p, a,b)
V| Az =0)
A-submit(p, b)

Note that the quantifier prefixes (3 d € Agents) occurring

above can beread as /A , because Agents is a fixed finite
a€Agents

set. Every action which is not explicitly allowed is denied in
this example.

2.3 A machine-readable syntax for R

Figure 2 shows a description of the above example in the
machine-readable syntax we propose for RW, in order to
illustrate it. This syntax is described in full in Appendix A.

The description starts with the key word AccessControl-
System, followed by an identifier to name the particular sys-
tem. Identifiers begin with a letter and can include letters,
digits, “” and “”. They are case-sensitive. The keyword
AccessControlSystem and the name after form the title of
this description.

rules 3,6

A-author(p, z)) rule 7

rules 5,8

AccessControlSystem Conference
Class Paper;

Predicate

author(p, a){

read : true;
}
pcmember(a){

read : true;

write : chair(user)|pcmember(a);

}

reviewer(p, a){

subreviewer(p, a, b){

End

author(paper: Paper, agent: Agent), pcmember(agent: Agent), chair(agent: Agent),
reviewer(paper: Paper, agent: Agent),

subreviewer(paper: Paper, appointer:Agent, appointee:Agent),
submittedreview(paper: Paper, agent: Agent),

review(paper: Paper, agent: Agent);

read : pcmember(user)&~author(p, user);
write : (chair(user)&pcmember(a)&~author(p,a)&~reviewer(p,a))

or ((pcmember(a)&user=a&reviewer(p,a))&~(E b: Agent [subreviewer(p,a,b)]));
read : (pcmember(user)&~author(p,user)) or user=b;

write : (reviewer(p,a)&~author(p,b)&user=a&~(E d: Agent [subreviewer(p,a,d)|subreviewer(p,d,b)]))
| (subreviewer(p,a,b)&~submittedreview(p,b)&user=a);

Figure 2: Access control policies of the conference paper reviewing system described in RW language

Next is the body of a description, which consists of a
declaration part and a policy-definition part. The decla-
ration part defines components of the system, including the
set of agents, sets of other objects and the logical relations
on agents and objects, which are represented by appropri-
ately parameterised sets of propositional variables in the
RW model. The policy definition part defines the access
rights of each agent on each variable of the system state.

The declaration part consists of class declarations which
define the sets of agents and objects and predicate decla-
rations which define the logical relations. Class declaration
start with the keyword Class followed by any number of
identifiers, which are interpreted as the names of sets of ob-
jects and must start with a capital letter. The class of agents
is predefined and has the standard name Agent. That is why
the example description has only one class definition, which
is of the set of papers.

The predicate declaration starts with the keyword Predicate
followed by any number of predicates. Each predicate de-
fines a logical relation. A predicate consists of a name of
the predicate and parameters, whose types must be de-
fined classes. Parameter names must be distinct. Parameter
names must start with lowercase letters.

The policy definition part consists of policy definitions.
Each definition begins with the name of a predicate, followed
by a list of formal parameters, and contains a pair of logical
formulas labelled by the keywords read or write. These for-
mulas define the rights of an agent denoted by the keyword
user to read and overwrite the truth value of the predicate
for the parameters, whose names are listed in the beginning

of the definition and whose types are derived from the defini-
tion of the respective predicate. Parameters defined in this
way can be used freely only within the block enclosed by
the curly brackets after the parameterised predicate. Thus
each block defines a local name space. Variables defined in
quantified formulas can only be used inside the quantified
formulas. They are invisible from outside.

The logical connectives have their usual meanings. The
operator = can only be applied to two elements of the same
set and has the usual meaning too.

3. THE EXTENSIBLE ACCESS CONTROL

MARKUP LANGUAGE

The eXtensible Access Control Markup Language (XACML)
is an access control policies description language proposed
by the OASIS committee. It is intended to be used as a stan-
dard language in the field of e-business. We briefly discuss
it in this section.

3.1 The mechanism of XACML framework

In [6], there is a data-flow diagram of XACML, which
illustrates the mechanism of how the framework is supposed
to work. We use the simplified variant of this diagram shown
on Figure 3 to explain this here.

Access control policies are written in XACML, in the
format of XML, and are stored in a Policy Information
Point (PIP). This PIP is known to the Policy Decision Point
(PDP), which is the entity that makes decisions. The Pol-
icy Enforcement Point (PEP) is the entity to enforce access

e

1 policy, 2 access request, 3 request,
4 request notification, 5 attribute queries,
6 attributes, 7 response, 8 response

Context handle
v ’

PIP
XACML policy

Figure 3: Data-flow diagram of XACML

control. When it receives a request, it passes it to the con-
text handler. The request carries information about the
requester and the resource to be accessed. The context han-
dler then converts the request into XML form so that the
PDP understands it. When the PDP receives the notifica-
tion from the context handler, it evaluates the request on
the basis of the policy provided by the PIP. It gets all the
information necessary to make a decision through further
communication with the context handler. The latter will
get all the relevant information from different sources.

3.2 Evaluation of XACML and rw

There are a number of criteria for judging the expressive
power of access control languages [2]. Below we briefly eval-
uate XACML and RW in terms of these criteria.

e Conditional authorisation. Both in XACML and
RW , authorisation can be made to depend on arbi-
trary conditions, not restricted to agents’ roles (see
the above conference example).

e Delegation mechanisms. Delegation is the ability
of delegators to give privileges to delegatees so that
the latter can perform some actions on behalf of the
former. In RW , delegation is achieved by establishing
new relations and assigning privileges to the agents in
that relation. In XACML, delegation can be achieved
by simply adding new rules. Because adding new rela-
tions in RW corresponds to new rules being added to
the XACML description.

o Expressibility of permissions about permissions.

Permissions about permissions are also called admin-
istrative policies or meta-policies. They specify who
may add, delete or modify the permissions in the sys-
tem and in what manner. In RW , the possibility
to modify policies is a consequence of the use of ar-
bitrary conditions to determine permissions. In the
XACML framework, policies are edited by adminis-
trators. However, it is still possible to convert a model
in RW to a description in XACML without losing the
ability to express permissions about permissions. This
is the topic of the next section.

e Avoidance of root bottleneck. The chief adminis-
trator of a system is often called a root. The root can
become a bottleneck of the system if all the admin-
istrative tasks were performed by him. Furthermore,
there would be a potential danger of misusing the priv-
ileges if a root has more privileges than he needs. This
is known as the root bottleneck problem. The including
of the property of separation of duty in RBAC certainly
reflects this consideration, while in RW , the integra-
tion of delegation and permissions about permissions

also shows our solution to this problem. Since RW can
be fully expressed in terms of XACML, we think that
XACML also satisfies this criterion.

Note that RW does not have dedicated means for address-
ing each of the above issues. It rather allows the desired
mechanisms to be implemented using the general means of
the framework. Although RW and XACML have similari-
ties, as discussed above, their motivations are very different.
RW offers a compact, readable syntax for describing access
control systems, and the possibility of model checking their
properties. XACML provides the possibility to implement
access control on an existing system, but its syntax is nei-
ther compact nor readable. We address these problems by
providing a compiler from RW to XACML.

4. COMPILING rw TO XACML

We have written a tool in Java which performs the task
of translating a model in RW to a description in XACML.
In this section we explain how this is done. For instructions
about how to use the compiler, one can read the readme file
in the package [9].

4.1 %‘lhe structure of the converted XACML
e

The compiler reads a RW file and outputs the correspond-
ing XACML file. The XACML file is a single policy unit
which contains a number of rules. Each conditional formula
in the RW file is converted into a rule in XACML plus a
default rule which denies everything. The structure of the
output XACML file is shown in Figure 4.

The title of the policy is composed of the content specified
in the specification of XACML 1.1 [6], but one can make
one’s own modifications to suit one’s own need. We chose
the permit-overrides algorithm. This is one of the algorithms
which are used in XACML to reconcile the decisions from the
possibly several rules which apply to a given request. The
algorithm produces Permit, provided that at least one of the
applicable rules does so. If some rules produce Deny and
all other rules produce NotApplicable, the algorithm returns
Deny. In other words, Permit takes precedence, regardless
of the result of evaluating any of the other rules in the policy.

The target of the policy is made to apply to every situ-
ation. No target applicability constraint is needed at the
policy level, because each rule redefines its applicability in
its own Target tag. Rules are defined following the Target
tag of the policy. The effect of all rules, except the last de-
fault one, is Permit. Using the permit-overrides algorithm
in this arrangement causes the system to deny whatever is
not explicitly permitted.

For the example of the conference paper reviewing system,
the generated XACML policy contains eleven rules, num-

<?xml version="1.0" encoding="UTF-8"?>
<Policy xmlns= ...
Policyld="conference"

<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/> < /Actions>
</Target>

<Target>
<Subjects><AnySubject/></Subjects>
<Resources>...</Resources>
<Actions>...</Actions>

</Target>

<Condition ...>

< \Condition>
<\Rule>

<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/> < /Resources>
<Actions><AnyAction/></Actions>
</Target>
</Rule>
</Policy>

RuleCombiningAlgld="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-overrides">

<Description>add your own comment< /Description>

<Rule Ruleld="urn:oasis:names:tc:xacml:1.0:Rule8" Effect="Permit">

<Rule Ruleld="urn:oasis:names:tc:xacml:1.0:Rulel11" Effect="Deny">

Figure 4: The structure of an output XACML file

bered from zero to ten, plus the default rule. Each rule is
generated according to a conditional formula and the pred-
icate it applies to in the RW file. An example of this corre-
spondence for the case of the predicate pcmember(.) is shown
on Figure 5. The target of a rule is defined so that the ap-
plicable situations are defined for this rule. The requester’s
credentials are evaluated in the Condition tag, therefore no
restriction is demanded on the Subjects tag. This is the case
with all rules generated by the compiler.

The Resources tag has two criteria to be evaluated in this
example (see Figure 5). The first one is whether the name
of the requesting resource is the predicate name pcmember.
At this point, the XACML file instructs the PDP to select
the attribute value from the resource-id field in the request
context, which is shown in Figure 6. If the name of the
requesting resource is not pcmember, this rule is simply eval-
uated as not applicable. The second criterion is whether the
name of the parameter whose type is Agent is agent, accord-
ing to the definition of predicate pcmember (agent : Agent) in
the RW file. This information is retrieved from the field of
agent in the request. The value retrieved, in this case, would
be agent=al, which specifies that the name of the parame-
ter equals its actual value. Here we introduce a dedicated
external function which compares the string selected from
the XACML, which in this case is agent, with the string on
the left side of the equivalent formula which is expected to

be agent too. The two criteria are enclosed in one Resource
tag, which means the conjunction of these criteria. For the
evaluation to be successful, both of these criteria must be
met.

The Actions tag is to evaluate whether the attribute value
of the action-id field in the request matches the applicable
action. Since the condition applies to the privilege of reading
in this example, the applicable action for this rule is read.
Since the condition for reading in the RW file is simply true,
the Condition tag is omitted in the XACML file. However,
if the condition in the RW file is non-trivial, a Condition tag
is added to the generated rule. We explain how such tags
are generated in the next sub-section.

4.2 Generating the conditions

Logical formulas in RW are converted into conditions which
are enclosed within Condition tags. For each rule the Con-
dition tag is called to be evaluated if the target evaluation
is passed.

The compiler converts each logical formula in RW into an
SQL statement and puts it under the Condition tag. Later
this SQL statement is evaluated by calling a dedicated ex-
ternal function, which queries a database we have set up for
supporting this case study. To illustrate the idea, consider
the RW formula and the corresponding condition shown on
Figure 7.

pcmember(a) {read: true; ...}

<Target>
<Subjects><AnySubject/></Subjects>

<Resources><Resource>

</ResourceMatch>

< /ResourceMatch>
</Resource> < /Resources>

<Actions><Action>

</ActionMatch>
</Action> < /Actions>
</Target>
</Rule>

<Rule Ruleld="urn:oasis:names:tc:xacml:1.0:Rule1" Effect "Permlt >

<Description>add your own comment< /Description>

<ResourceMatch Matchld="urn:oasis:names:tc:xacml:1.0: functlon strlngvequal" s ‘a
<AttributeValue DataType="http://www.w3.org/2001 /XMLSchema#strmg">pcmember< /AttributeValue

<ResourceAttrlbuteDe51gnator Attributeld="urn:oasis:names:tc: Xacml 1.0: resource resource-id"

DataType="http://www.w3.org/2001 /XMLSchema#string" />

<ResourceMatch Matchld="self-defined: match parameter-name"> . N
<ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml: 1 O:resource: agent
DataType="http://www.w3.org/2001 /XMLSchema#string" />

<AttributeValue DataType="http://www.w3.org/2001 /XMLSchema#strmg">agent< /AttributeValue>

<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal"> *
<AttributeValue DataType="http://www.w3.org/2001 /XMLSchema#string">read < /AttributeValue>

<ActionAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001 /XMLSchema#string" />

‘\:

Figure 5: A condition in the RW file and its generated rule

The idea is to look up the truth values of the variables
in P in the database. For instance, given a € Agent, the
truth value of pcmember(a) is determined by looking up a in
a table which contains all the agents who possess a role of
PC member, which is supposed to be found in the database.
Truth values of other variables are looked up similarly. Thus
any boolean combination of such variables can be evaluated.
To do this, each logical formula in RW is converted into an
SQL statement. The external function self-defined:evaluate-
sql, which appears as a conditional function in Condition
tags, evaluates SQL statements. The mapping SQL from
RW conditions to SQL statements described below defines
the correspondence implemented by our compiler:

SQL(pcmember(a)) = EXISTS (SELECT * FROM pcmem-
ber WHERE agent=arg_agent) This is an example for
the simplest case, in which the condition contains just
one predicate with one parameter. Then the condition
is equivalent to the non-emptiness of the selection re-
sult. The column name agent is derived from the defi-
nition of the predicate pcmember(agent : Agent). Thus
the table pcmember must contain a column named
agent. The string arg_agent is the formal name of pa-

rameter a. The actual value of this parameter comes
from the request. The external function replaces for-
mal names by their actual values and produces an ex-
ecutable SQL statement.

SQL(R(a1, ..., ar)) = EXISTS (SELECT * FROM R WHERE
Rci=aj AND ... AND R.,=a),) If the predicate has
more than one parameter, the SQL selection condition
is a conjunction. Again, the RW condition is equiva-
lent to the non-emptiness of the selection result. Here
Rei...Ren stand for the column names derived from the
definition of predicate R. a}...,a,, are the formal names
for ai...,an.

SQL(a1 = a2) = (aj=a%) The translation of equality formu-
las in RW is straightforward. a) and a) are the formal
names for a; and as.

SQL(~f) = NOT SQL(f), SQL(f1 A f2) = (SQL(f1)) AND
(SQL(f2)) Logical operators are expressed by their coun-
terparts in SQL. We only give the clauses for negation
and conjunction. Other connectives can be defined us-
ing these.

<?xml version="1.0" encoding="UTF-8"?>

<Request
xmlns="urn:oasis:names:tc:xacml:1.0:context"
xmlns:xsi="http://www.w3.org/2001 /XMLSchema-instance"
xsi:schemalocation="urn:oasis:names:tc:xacml:1.0:context
cs-xacml-schema-context-01.xsd">

<Subject> <AnySubject/></Subject>

<Resource>
<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001 /XMLSchema#string">
<AttributeValue>pcmember < /AttributeValue>
</Attribute>
<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:agent"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>agent=al </AttributeValue>
</Attribute>
</Resource>

<Action>
<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001 /XMLSchema#string">
<AttributeValue>read</AttributeValue>
</Attribute>
</Action>
</Request>

Figure 6: The request context for the rule of Figure 5

reviewer(p,.a{
read\ 3 pcmember(user)&~qythor(p, user);

v

~

<Rule Ruleld="urn:oasis:names:tc:xacml:1. O\\RuleB Effect="Permit"> ™
<Description>add your own comment< /Descnpuon>
<Target> ... <\Target>

<Condition Functionld="self-defined:evaluate- sql"
<AttributeValue DataType="http://www.w3.org /2001 /XMLSChema#strmg">SELECT *
FROM T WHERE (EXISTS (SELECT * FROM pcmember WHERE agent=requester)
AND NOT EXISTS (SELECT * FROM author WHERE paper—m’g_ paper
AND agent=requester));</AttributeValue>

<Apply Functionld:"urn:oasis:names:tc:xacnﬂ 1.0:function: string orie -and-only">
<SubjectAttributeDesignator Attributeld="urn:oasis:names:tc: xacml 1.0: subject requester-id"
DataType="http://www.w3.org/2001 /XMLSchema#string" />
</Apply>

<Apply Functionld="urn:oasis:names:tc: xacml 1.0:function:string-one- afld only">«
<ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1. 0: resource paper"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only"> *
<ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:resource:agent"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
</Apply>
</Condition>
</Rule>

Figure 7: A logical formula in the RW file and its generated condition

SQL(3z € D f) = EXISTS (SELECT id FROM D AS D
WHERE SQL(f)) Elements are selected from the ta-
ble D, which is supposed to list all the elements from
the RW class with the same name, and f is evaluated
for each of them. The RW condition dx € D f holds
iff the resulting selection is non-empty. The string id
is the default name for a column in tables describing
defined classes. The alias D_i is given to D to avoid
clashes between names of bound variables. Universal
formulas are expressed using existential ones by means
of negation.

To obtain a complete translation of an RW condition, the
result of SQL is prefixed SELECT * FROM T WHERE.
Here T is a purpose-set table which is just supposed to con-
tain an appropriate string to be returned by the external
function which evaluates SQL statements. Thus the final
form of the converted SQL statement for a given f is SE-
LECT * FROM T WHERE (SQL(f));.

The above clauses allow any RW condition to be trans-
lated into an SQL statement. Figure 7 shows an example.
The string requester is the formal name for the access re-
quester. It becomes replaced by its actual value by the ex-
ternal function.

4.3 The external function

The external function, self-defined:evaluate-sql, is called
by a PDP program to read an SQL statement and other pa-
rameters, replace formal names in the SQL statement with
their actual values, execute the query and return the re-
sult, either true or false to the PDP program. It takes at
least two parameters, which are the SQL statement and the
the actual value for the requester selected from the request.
The compiler also puts all the parameters of the condition in
question after the SQL statement and the SubjectAttribut-
eDesignator on the requester, which selects the actual value
for the requester from the request, as Figure 7 shows. The
ResourceAttributeDesignator on paper is to select the actual
value for the first parameter of predicate reviewer, p, and
the ResourceAttributeDesignator on agent is to select the ac-
tual value for the second parameter of predicate reviewer,
a. These two values are passed to the external function
too. The external function uses the value selected by the
SubjectAttributeDesignator for requester-id to replace every
occurrence of the string requester in the SQL statement, the
value selected by the ResourceAttributeDesignator on paper
to replace every occurrence of the string arg_paper and the
value selected by the ResourceAttributeDesignator on agent
to replace every occurrence of the string arg_agent. Strings
in the request are written without quotation marks. These
are added by the external function, as required in SQL. The
last formal name to be replaced is 7. It becomes replaced by
the actual name of the table, which is test in our example.

5. CONCLUSIONS

We have shown how the access control language RW of
[3] can be compiled into XACML. Since RW descriptions
may be verified?, this allows us to produce verified XACML.
We illustrated our work with the example of the conference

20On this topic, please see [3]. Basically, we can verify prop-
erties like can an agent (or a coalition of agents) reach a
certain goal, e.g. can an agent reach a state in which he/she
can read who are reviewers of his/her paper.

paper reviewing system. Instructions on how to set up a
database and how to use the compiler are given in an ap-
pendix and in the readme file of our the package, which is
available from [9].

It should be noted that our translation from RW conditions,
which are essentially first order formulas interpreted on a fi-
nite model, and SQL statements, was chosen for its simplic-
ity and is by far not optimal. There is extensive literature
on relational database query optimisation and, in particu-
lar, on the correspondence between relational and first order
queries, see, e.g. [1].

The verification methods for RW from [3] apply to access
control systems with fixed sets of agents and resources only.
However, this limitation does not apply to the translation
to XACML of such access control systems as described in
this paper. RW permission conditions written using quan-
tifiers can meaningfully apply to systems with varying sets
of resources and agents and our implementation can handle
this.

As future work, we intend to provide more formal mech-
anisms for verifying RW, the SMV [5] or Alloy [4].

6. REFERENCES

[1] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational data
bases. In Proceedings of the ninth annual ACM
sympostum on Theory of computing, pages 77 — 90,
1977.

[2] S. D. C. di Vimercati, S. Paraboschi, and P. Samarati.
Access control: principles and solutions. Software
Practice and Ezperience, 33:397-421, 2003.

[3] D. P. Guelev, M. Ryan, and P. Y. Schobbens.
Model-checking access control policies. To appear in
the proceedings of ISC’04, Apr. 2004.

[4] D. Jackson. Micromodels of Software: Lightweight
Modelling and Analysis with Alloy. Software Design
Group, MIT Lab for Computer Science, Feb. 2002.

[6] K. L. McMillan. The SMV language. Cadence Berkeley
Labs, 2001 Addison St. Berkeley, CA 94704 USA, Mar.
1999.

[6] OASIS committee. eXtensible Access Control Markup
Language, 1.1 edition, Aug. 2003. Committee
specification.

[7] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38-47, Feb. 1996.

[8] Sun Microsystems. Sun’s XACML implementation,
Aug. 2003. For information about this implementation
see web site http://sunxacml.sourceforge.net/.

[9] N. Zhang. Java code supporting ” Synthesising verified
access control systems in XACML”, May. 2004.
http://www.cs.bham.ac.uk/ nxz.

APPENDIX
A. THE SYNTAX OF THE rw LANGUAGE

(Program) ::= (Title) (Body) “End”

(Title) ::= “AccessControlSystem” (ModelName)

{ModelName) ::= (Id)

{Body) ::= [{ClassDefSection)] (PredicateDefSection)
(Rules)

(ClassDefSection) ::= “Class” (ClassName)
(¢ (ClassName))* «”
(ClassName) ::= (UpperCaseLetter)

((Letter) | (Digit) | . | “?)*
{PredicateDefSection) ::= “Predicate”
(PredicateDef)

(“Y (PredicateDef))* «”
(PredicateDef) ::= (PredicateName)
“(” (ParameterName)
“” (ClassName)
(%) (ParameterName)
“” (ClassName))* «)”
(PredicateName) ::= (Id)
(ParameterName) ::= (LowerCaseLetter)
(Letter) | (Digit) | 7 | *)*
(Rules) ::= (Rule) ((Rule))*
(Rule) ::= (AccessPattern)
“{” [(ReadStatement)]
[(WriteStatement)] “}”
(AccessPattern) ::= (PredicateName)
“(” (FormalParameter)
(¢ (FormalParameter))* “)”
(FormalParameter) ::= (Id)

(ReadStatement) ::= “read” “” (Formula) “;”
(WriteStatement) ::= “write” “” (Formula) “”
(Formula) ::= “true” | (ConditionalFormula)
{ConditionalFormula) ::= (ImplicationFormula)
(ImplicationFormula) ::= (OrFormula) ({(implies)
{OrFormula))*

(OrFormula) ::= (AndFormula) ({or) (AndFormula})*
(AndFormula) ::= (OtherFormula) ({(and)
(OtherFormula))*
(OtherFormula) ::= (AtomicFormula)
| “(” ((ConditionalFormula))*“)”
(negation) (OtherFormula)

| (ExistentialFormula)
| (UniversalFormula)
(AtomicFormula) ::= (SinglePredicate)
| (EquivalentFormula)
(SinglePredicate) ::= (PredicateName)

“(”(FormalParameter)
(“ (FormalParameter))* «)”
(EquivalentFormula) ::= (Term) (equal) {Term)
(Term) ::= (FormalParameter) | (QuantifiedVariable)
(ExistentialFormula)
(4 [(all)[(exist)]
{QuantifiedVariableDef))*
“[” (ConditionalFormula} “|”
{QuantifiedVariableDef) ::= (Quantified Variable)

(% (Quantified VariableDef))*

“” (ClassName)

{QuantifiedVariable) ::= (Id)

{UniversalFormula) ::= (all)
{QuantifiedVariableDef)
(%7 [{exist)|{all)]
{QuantifiedVariableDef))*
“”{ConditionalFormula}) “]”

(implies) ::= “implies” | “—”

<0r) = L‘Or” «|”

(and) == “and” | “&”

(negation) ::= “~”

(equal) ::= “="

(exist) = “E”

= (exist) (QuantifiedVariableDef)

(all) = “A”

(Id) ::= (Letter) ((Letter) | (Digit) | “7 | “”)*
(Letter) = “a”_“zﬂ | “A”_“Z”

(Digit) := “07-“9”

(UpperCaseLetter) ::= “A”-“Z”
(LowerCaseLetter) ::= “a”-“z”

The precedence is: “=" > “~7 > “&” > 47 > “=”

B. INSTRUCTIONS ON SETTING UP THE
DATABASE

In this section, we will give instructions on how to set up
a database to make the compiler work properly. The figure
below illustrates the idea of how we set up the database
for the conference case study. Table test corresponds to the
virtual table T. Table Agent and Paper correspond to the
defined class Agent and Paper. Table author is the table
derived from the predicate author. Other tables derived
from predicates are not shown in the figure. The elements
in the tables are only for the purpose of illustration.

The instructions are given as follows:

e The database should contain a table for each defined
class and defined predicate, including a table for class
Agent and a table for T, except for the defined predi-
cates that do not appear in any of the logical formula
following the declaration part. Because if a defined
predicate does not appear in any of the logical formula,
it will not be evaluated. Thus we do not need to create
a table for it.

e If a table is for a defined class, it must have a column
named id to store identifiers of the elements that can
uniquely identify each individual element in that class.
The type of the column must be either string or char.
That table must not contain duplicated records for each
individual element in the class. One can store any other
information about the elements in that table, however,
no matter what they are, they will not be evaluated.

e If a table is for a defined predicate, it must contain a
column corresponding to each its parameter, bearing
the same name of that parameter. One can store other
information in the table, but they will not be evaluated.

e The table for T needs only one column and it does
not matter of the type and the name of the column.
It needs also one record which does not matter of the
value. However, if one is to give it a name differing
from test, one should modify the source code of the
external function which evaluates SQL statements. The
modification is very simple. One only needs to change
the definition of the String variable that stores the value
for the name of the table. That variable is named test.

Class Paper; Predicate author(paper: Paper, agent: Agent), ... ;

”””””””””””” A i |
test Agent Paper author
col id id paper | agent
al pl pl al
yes a2 p2 p2 a2

Figure 8: Tables and the structure of the database set up for the conference paper reviewing system

In our example, the name of the database is conference.
This has been hard coded into the external function
to make it work. One needs to modify the variable
url in the source code of the function, which is type of
String, if one’s database has another name. One should
also modify the location of the database stored in that
variable. One also needs to change the driver for the
database in the code, if one uses a database system
other than Postgresql. The driver information is stored
in the String variable driver.

