Model-checking the Preservation of
Temporal Properties upon Feature Integration

Dimitar P. Guelev*, Mark Ryan* and Pierre Yves Schobbens**

*School of Computer Science, University of Birmingham, UK
** Institut d’Informatique, Facultés Universitaires de Namur, Belgium
E-mail: {D.P.Guelev,M.D.Ryan}@bham.ac.uk, pys@info.fundp.ac.be.

1 Introduction

The concept of feature has emerged as a popular way of structuring user-
oriented descriptions of certain kinds of systems. Updating a system by
adding new features to it is a technique which enables designs and code to
be reused. It started to become popular when telephone companies began to
introduce features such as call-forwarding and ring-back-when-free into plain
old systems which did not support that functionality. This process of fea-
ture addition is well-known to be non-monotonic: adding a feature does not
necessarily preserve the temporal properties of the system. Usually these fea-
tures are designed in isolation from one another, and putting several of them
together in a phone system may lead to them interfering with each other in
undesirable ways. This is known as the ‘feature interaction problem’; and
is currently gaining considerable attention from academic and industrial re-
searchers [CM00,AL03].

Model checking has been used with some success to detect the presence of
undesirable feature interactions, or to prove their absence [CM01,PR01,dB99,BZ92].
In a model checking context, feature interaction may be defined as the failure
of certain temporal properties of the system incorporating the features. For
example, a feature Fy breaks a previously introduced feature Fi if the system
incorporating first 7 and then F5 fails to satisfy a temporal property which
characterises the correct operation of Fi. This is Type II feature interaction,
as defined in [PRO1]. To guarantee that subsequently-introduced features do
not break earlier ones, we have to re-check the important properties of earlier
features each time we introduce another one.

Example 1.1 Let POTS stand for the plain old telephone system with no
features and consider the following features:

Call Forward on Busy (CFB): Whenever the subscriber’s line is busy, calls
to the subscriber’s phone are treated as if they are calls to some other spec-

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

ANA VLY, ALY AN VYV AN

ified phone.

Terminating Call Screening (TCS): Calls to the subscriber’s phone are
rejected if the caller’s number appears on a screening list chosen by the
subscriber. The caller will hear an announcement to this effect.

Let ¢cpp be the temporal property of the subscriber’s phone is busy and an-
other user calls him, the incoming call will terminate at the specified forward-
1ng number.

Then POTS 4+ CFBE ¢cpg, but POTS + CFB +TCSH ¢cpp- Details on
this example can be found in [PRO1].

A difficulty with this approach, however, is that model checking is compu-
tationally expensive, and therefore re-checking the same property again and
again each time a new feature is introduced is undesirable. It is worthwhile
to find methods which avoid these re-checks. Often, the new feature Fj is
intuitively quite orthogonal in function to a previously-introduced feature Fj.
Indeed, this should be the case if the features have been well-designed. In
this case we expect that the properties established by F; will continue to hold
after F5 has been introduced.

In this paper we propose an efficient method to check the preservation of
safety properties written in LTL upon the addition of features as modelled in
terms of finite transition systems. Of course, checking arbitrary LTL proper-
ties on such systems can be done using the techiques which apply in general.
Our aim is to take advantage of the special form of of safety properties and
the assumption that the considered basic system has the property in question
and develop a more efficient technique. We propose an algorithm which allows
to first establish whether the given LTL property holds for some given base
system. This step of our algorithm produces data which can then be used to
establish whether the given property countinues to hold for the combination
of the base system with a concrete feature from this class without fully re-
examining the transition relation of the base system. We show that a similar
method can be applied to certain forms of liveness properties too.

2 Preliminaries

2.1 Descriptions of systems

We assume that observable states of a system S are described as valuations
of its set of variables Pg, which we assume to be all boolean for the sake of
simplicity. The possible states of S are the valuations of Ps. We denote the
set (Ps — {0,1}) of these states by Ws. Behaviours of S are infinite sequences

of states b; € Ws. We define the relation Rg C W2 by putting Rs(s, ') if S
can move from s directly to s'. We denote the set of the initial states of S

2

ANA VLY, ALY AN VYV AN

by Is. A sequence of the form (1) is a behaviour of S if and only if by € I
and Rg(b;, b;y1) for all i < w. To guarantee the infiniteness of behaviours,
we require Rg to be serial, that is, to satisfy (Vs € Wg)(3s' € Ws)Rs(s, s').
A system S is described completely by the triple (Wg, Is, Rs). We identify
systems with their descriptions of this form.

A state is accessible, if it occurs in some behaviour of the respective system.

Obviously only accessible states are relevant to the properties of the behaviours
of S.

2.2 Linear temporal logic

We assume that the requirements on systems with features are written in
propositional Linear Temporal Logic (LTL) (cf. e.g. [HRO00]) with the past
operators included. We need the past operators, in order to use some normal
forms for LTL requirements which involve them. Past operators are not es-
sential in LTL requirements, but avoiding their use can lead to unreasonably
long formulations of requirements [LPZ85,LMS02].

Given a vocabulary of propositional variables P, the LTL language L(P)
consists of the formulas ¢ which have the syntax

eu=T[ple=>90|Op|O¢| Ve | eSp
where p stands for a variable P. We consider languages which correspond to
systems S and have their respective sets of variables Ps as the vocabulary.
The satisfaction relation S,b,n = ¢ is defined between systems S, behaviours
b of S of the form (1), positions n < w in these behaviours and formulas ¢
from L(Ps). We omit S and b from S, b,n = ¢ when they are clear from the
context. Given S and b, = can be defined by the clauses:

npE L

n = piff bu(p) = 1

n =@ =1 iff either n = orn ¢

nEQeiffn+1Ee

nEQeifn#0andn—1F ¢

n | @U iff there is a k < w such that n+i = foralli <k and n+k E 9
n = oSy iff there is a k <nsuch that n —i =g foralli < kand n—k =19

The symbols T, =, V, A, = and & are used in LTL formulas as abbreviations

in the usual way. The modalities ¢, O, © and B are defined by the clauses:
Cp=TUyp, Op ==, @ = TSp, Bp = =< .

We denote the formula =& T by |. | marks the beginning of time:
S,b,n=1iff n=0.

ANA VLY, ALY AN VYV AN

LTL formulas which have no occurrences of ©, or S, are called future formulas.
Formulas with no occurrences of (), or U, are called past formulas. Given b
and n as above, b,n = 7 depends only on by,...,b,. That is why, given a
past formula 7 we put

by...bp =miffby...b,-c,nET

for all the (infinite) behaviours of S of the form b, ...b, - c.

Formulas with no occurrences of temporal operators are called proposi-
tional. S,b,n = a depends only on b, and «, and therefore S,b,n = « can be
abbreviated to b, = « for propositional o. Given S and «, we denote the set
{s € Ws : s = a} by [a]ps;. The subscript .p, indicates that [a]p, depends
on the vocabulary of S. We omit it when clear from the context. [a]p, does
not depend on other components of S.

S is said to have the LTL property ¢ if S,b,0 = ¢ for all behaviours b of
S.

2.8 Abbreviations for restrictions of relations and projections of states, etc.

Given a system S, s € W and P C Ps, s|p stands for the restriction of s to
the variables from P. Given a relation R C Wg x Ws, R|,, and R|V denote
the restrictions RN (U x Ws) and RN (Ws x V') of the binary relation R on Wy
to the domain U and the range V', respectively. We denote the complement
Ws \ X of a subset X of Wy relative to Wg by X. Similarly, we denote the
complement Ps \ P of a subset P of Ps relative to Ps by P.

3 Features

Informally, a feature is an addition to a system of limited calibre meant to
improve the functionality of the system. The result of integrating a feature
F into a system S, which is an (enhanced) system, is denoted by S + F. F
can bring in its own variables upon integration into a S. The behaviours of
S and S + F can also differ as observed in terms of the variables of S. A
system can undergo the successive integration of several features. A feature
F which both adds variables and changes behaviour can be seen as a pair of
features F; and F; to be integrated successively, F} being just an addition of
variables, and F3 carrying both the description of the behaviour of the new
variables and the changes to the behaviour of the base system, but no more
new variables. Clearly, properties of S + F} + F5 written in the vocabulary
Pg can only be affected upon adding F5. In this paper we restrict ourselves to
features like F5, which only change behaviour without contributing variables.
If F has this form, then Ps,p = Ps and Ws, p = Ws. We assume Ig,p = Ig
for the sake of simplicity too. Then the integration of F' amounts to replacing
Rs by a new transition relation Rgp.

A feature F' affects the working of its base system S only at transitions at
which it becomes triggered. Let the current state of S + F be s and Rg(s, s')

4

ANA VLY, ALY AN VYV AN

for some s’ € Ws,p. Then, unless F' is triggered, S + F' can simply make
the transition (s,s’). F can be triggered by a condition on s, on s, or on
both s and s'. In this paper we focus on F' which have triggering conditions
of the first two kinds and call them precomposed and postcomposed features,
respectively. The triggering condition of such an F'is a propositional formula.
We denote it by cr and call it the guard of F'.

In general it would be too crude to assume that the triggering of a feature
F can affect all the variables of S + F. That is why we assume that the
description of F' includes the set of the variables Pr which F' can update
differently from S when triggered. The effect of a feature F' on a pending
transition (si, s2) € Rg is as follows:

A precomposed F evaluates its guard cp at state s;. If s; = cp, then F
cancels the transition to se and first takes S + F' to some other state s} such
that an appropriate relation Ry holds between s; and the restriction s} |p, of
s} to the variables from Pp which F is allowed to change when triggered. The
values of the variables outside Py remain the same upon the transition from
s1 to s|. Then F allows a transition from s} to be made by S. The externally
observed transition resulting from this is from s; to the state s} to which S
takes S + F' from si.

A postcomposed F' evaluates its guard cp at the destination state sy of
the pending transition (s, ss). If sy = cp, then F' prevents the transition
to sg from being observed. Instead it uses sy to choose a state s, such that
Rp (s, sh|p,) and the values of the variables from Pr at s) are the same as at
Sy. The externally observed transition is from s; to s, again.

A feature F can be described as the triple {(cz, Pr, Rp), where Rp C
Wsir x (Pr — {0,1}) is the relation describing the F-specific updates of
the variables from Pp in transitions which trigger F'. It can be assumed that
domRp is exactly [cp]. Given (cp, Pr, Rp) and S, we can define Rg,p by the
equalities

Rs.r = Rs|pyU Ry o Rs for precomposed F, (2)
and

Rsip = Rs\mu Rs o R for postcomposed F, (3)
where R}, is defined by the equivalence

R (s,s') <> Rp(s,5'|pp) N S'| 5 = s|p, (4)

Note that both the class of precomposed features and that of postcomposed
features contain a neutral feature, which can be represented using the relation

Id., p.(s,8') > s €[er] Ns' = s|p, (5)

as Rp. Note that extending Idp, to a relation from Ws to Wy gives the
identity relation on Wy.

ANA VLY, ALY AN VYV AN

3.1 Canonical safety formulas

A set of behaviours B is a safety property iff the possibility to extend every
finite prefix by ... b, of a behaviour b to an infinite behaviour by . .. b, - ¢ which
is in B implies that b itself is in B. In the rest of the paper we assume that the
safety properties in question are written as canonical safety formulas which
were introduced in [MP89] and have the form

O (6)

where 7 is a past formula. Every LTL formula which expresses a satefy prop-
erty is equivalent to a canonical safety formula [MP89].

3.2 Projection in LTL

In Section 5 below we argue that it is convenient to make the invisible states
which are involved in the working of precomposed and postcomposed fea-
tures visible, that is, to have these intermediate states occur explicitly in
the behaviours of systems with features. The derived operator of projection
in LTL that we introduce below formalises the transformation of properties
written with the assumption that the intermediate states are not visible into
their equivalent properties of behaviours which include the intermediate states.
This operator is analogous to a projection operator introduced to interval tem-
poral logic in [HMMS83] where it was denoted by II. The language FORSPEC
[AFFT02] has a similar construct. We present it here in detail for the sake of
self-containedness.

Given two LTL formulas ¢ and v, we denote the projection of ¢ onto ¥ by
olly. Roughly speaking, a behaviour b satisfies @Il if removing from b the
states which are at positions 7 in b such that b,7 & ¢ produces a behaviour
which satisfies ¢. This makes sense only if b contains infinitely many positions
which satisfy 1, which is equivalent to b,0 = OOw. Here follows the precise
definition:

Definition 3.1 Let ¢, 9 € L(Ps) and b be a behaviour of S and k£ < w. Let
b,0 = OO, Let the infinite ascending sequence g, i1, - - - , %y, ... consist of
the natural numbers 7 such that b, = 1. Then

bk = olly iff b, ... k' = o,
where V' = b;,, b; ,b;, and k' = min{i, : i, > k,n < w}.

209 Y119

The operator II is definable in LTL. Indeed, the following equivalences are
sufficient to eliminate projection from any LTL formula:

LITy & 1L

plly & (—)Up A OOy

(1 =)l & (111 = olly) A OOY
6

ANA VLY, ALY AN VYV AN

Op)lly & (=h)U (¥ A O(plly))
Oy & (—¢)S(Y AO(pIlY))
P1Upa)IIY & (o1 11Y)U(o11e))
P15¢2) 1Y & (p111)S(ipo11e))

These equivalences suggest an extension of Definition 3.1 which applies to all
¥ and defines ¢lIly to be false in case OO is false.

Note that if ¢ represents a safety property, then so does @lIli, regardless
of ¥. This can be easily seen using that ¢ can be written as a canonical safety
formula.

()
()
(
(

4 Checking safety property satisfaction by base systems

In this section we describe the first part of our model-checking algorithm,
which includes checking that the property whose preservation is in question
holds for the considered base system.

Let the system S = (Wg, Is, Rs) be fixed for the rest of the section and Pg
stand for its vocabulary. Consider a safety property in L(Ps) written as the
canonical safety formula Or. Obviously S satisfies O if and only if every finite
path in it satisfies 7. Note that this condition cannot be straightforwardly
simplified to a condition on the individual states of S, because a state can
be reachable by many paths, each satisfying different past formulas. However
some simplification is still possible due to the following observation:

Let @ be the set of the subformulas of 7 which have either S or © as their
main connective, possibly including 7 itself. Then the relation by . .. b,—1b, =
@ for ¢ € ® depends only on b,_1, b, and the set of the formulas ¢y € &

such that by...b,—1 = 1.

Given a subset = of ® and a pair of states s,s’ € Wy, in the sequel we use
®(s, s',E) to denote the set of the formulas from & which would be satisfied
by any behaviour by . ..b,s's such that {p € ® : by...b,s' = ¢} =E.
Consider a mapping lg : Ws — 22° Let = € ls(s) if and only if there is a
finite behaviour by . .. b, of S such that s =b,andE={p € ®: by...b, = ¢}.
Obviously I can be obtained as the least fixed point of the system of equations:
lo(s)={{p € ® ki 1 = 0}y U{®(s,5,2) : s € R5'(s),Z € la(s))}
for s € Is;
lo(s) = {®(s,5,2) : s € R5'(s),E € lp(s')} for s € Ws \ Is. (7)
Note that ls(s) # 0 iff s is a reachable state. Using ls, we can formulate the
following obvious criterion for the satisfaction of O7n by S:
Proposition 4.1 S = (W, I, R) satisfies O if for all s € Wy either ls(s) = 0
or T is a propositional consequemce of each E € lg(s).

7

ANA VLY, ALY AN VYV AN

Since 7 is a boolean combination of formulas from ®, whether it follows
from some = C @ in propositional logic can be decided immediately.

Our algorithm for checking the preservation of safety properties is based on
the way feature-contributed transitions affect the mapping le defined above.
A feature preserves the safety property On only if it does not contribute
transitions which violate the criterion from Proposition 4.1. In the rest of the
paper we work out the technical details to develop this idea.

5 Separating system- and feature-contributed transi-
tions

The definition (2) of Rg;p for precomposed F' shows that the states s of S
can be partitioned into three subsets with respect to the possible outgoing
transitions of S + F:

s W cpy
s = cp and s triggers I
s = cp, but s does not trigger F, because F' made the transition to s.

In general, states from the second and the third kinds cannot be told apart
out of the context of particular behaviours. States from the third set do not
occur in observable behaviours, according to our definition of the working
of precomposed features. However, (2) suggests that being aware of these
states can simplify the separation between the contributions of F' and S to
the behaviour of S + F. We transform the S and F so that these states
become observable. This facilitates the considered separation at the cost of
one additional variable, which we call h (for hidden). The components of the
transformed descriptions S’ and F’ of S and F, respectively, are defined as
follows:

PSI ZPsLJ{h} and PFI ZPFU{h},

Ig ={se€ Wy :s|p, € I,s = h};

cpr = cp N\ —h;

Rgi(s,8") <> Rs(s|ps, '|ps) A (8" & [h]);

Rpi (s, s") < Rp(slps, s'lpe) A (s & [R]) A (s" € [])-
In words, Rg takes S’ + F' from any state to a visible state, F' becomes
triggered only at visible states and Ry takes S’ + F' to hidden states. In
all other aspects Rgr and Ry are like Rg and Rp, respectively. Obviously
a sequence of states syS;...S, ... is a behaviour or S + F' iff a behaviour of
S’ + F' can be obtained from it by appropriately inserting states which satisfy

h and setting the value of h at the original states to 0. S+ F' satisfies an LTL
property ¢ iff S’ + F' satisfies pII-h.

8

ANA VLY, ALY AN VYV AN

Symmetrically, S” and F’ can be defined for postcomposed F' as follows:
I ={se€ Wg :s|p; € I,s = h};
cpr = cp N\ h;
Rgi(s,s") <> Rs(s|ps, s'|ps) A (s € [R]);
Rpi(s,s') < Re(s|ps, s'lpp) A (s € [R]) A (s & [h]).

P and Pp: are as for precomposed F. S + F satisfies an LTL property ¢ iff
S’ + F' satisfies @Il=(h A cp) for postcomposed F.

Moving to S’ and F” and the assumption of the visibility of all states leads
to the simple form

R = Ry |m U R},u (8)
of both (2) and (3), where R, is as in (4).

6 Checking preservation of safety properties upon the
integration of a feature

In this section we use Proposition 4.1 to derive criteria for the preservation
of given safety property upon the addition of a feature of the form described
above. Like in the previous sections, let S = (W, Is, Rs) be a fixed system
with vocabulary Ps and F' = (cp, Pr, Rr) be a fixed feature to be integrated
into S. Let On € L(Ps) be a canonical safety formula for the property in
question. Consider the system S’ obtained from S by introducing the variable
h and defining I and Rg as in Section 5. Our basic idea is to use the
labelling I where ® consists of the subformulas of 7 which have a temporal
operator as their main connective, as defined in Section 3.1. Since S’ satisfies
the considered safety property O, the labelling for S’ alone should satisfy the
conditions of Proposition 4.1. To check whether S’ + F”’ satisfies O, one can
to use the corresponding labelling for S’ + F'. However, this would amount to
constructing S’ + F' and doing the model-checking from scratch. A sufficient
condition for F’ not to break O7 can be established easier as follows:

1. Assume that no S’-contributed transitions get cancelled upon the addi-
tion of F’ and start from a precalculated lg for S’.

2. Add the transitions contributed by F"’, that is form Rg U R}, instead
of the exact transition relation Rg \m U Ry of S" + F' given in (8).

3. Check whether the added transitions cause the labelling to be changed
by applying the equations (7) with the now extended sets of predecessor states
occurring on the right of = in them.

If the labelling is not changed, then it can be concluded that the addition
of the considered feature preserves the property in question immediately.

Depending on the desired precision, step 3 can be carried out either only
on the states which are reachable by a single feature contributed transition, or

9

ANA VLY, ALY AN VYV AN

can be iterated with revising the labelling of each state which is the destination
of a transition starting from a state whose labelling has been changed at the
previous step, thus obtaining a labelling for an over-approximation of S’ + F’
with transition relation Rgr U R7,. Because this is an over-approximation, it
may be the case that S’ + F' satisfies On but this fact cannot be proved by
our method. This will arise, for example, if the system choses a path which is
a mixture of a path of the original system and a path of the featured system,
by executing part but not all of the feature. This can happen if the feature
shares states with the system other than the feature’s triggering or final state.
In practice, such cases are likely to be rare.

The conclusion that if no labels become changed, then the feature preserves
the property, follows from the assumption that the basic system satisfies the
property, which means that the initial labelling satisfies the conditions of
Proposition 4.1. In case some labels get changed, one needs to iterate step 3,
in order to reach a conclusion. If the obtained labelling turns out to satisfy
Proposition 4.1, then again it can be concluded that S’ + F’ satisfies (the
suitably projected counterpart of) Or. However, even if a labelling which does
not satisfy Proposition 4.1 is obtained, it cannot be implied that F' breaks Or.
The reason for this is that when calculating the extension of the labelling it
is not taken in account whether all the considered states are still reachable.
States can be rendered unreachable upon adding F”, because F’ cancels some
of the transitions of the base system S’.

As far as properties which can be written without the use of h are con-
cerned, S’ is equivalent to S. However, unlike S, S’ has plenty of states which
can only be reached by adding a feature which, e.g. in the case of precomposed
features, adds transitions to states which satisfy h. Since unreachable states
are always labelled by (), this may cause an avalanche of otherwise benign
changes to the labelling function for S’ and thus make it impossible to obtain
the new labelling within a reasonable number of steps. That is why, instead
of starting from a labelling for S’ it is more efficient to start from a labelling
for S" + Fj, where Fy = (cp, Pr, Id., p,.) is the neutral feature with Id., p,.
defined as in (5). Adding Fy would cause all the states which differ from the
visible states by just being invisible, that is, by satisfying A, to be labelled in
a way that is similar to that for their corresponding visible states, which gives
a better initial approximation for the target labelling.

7 Checking the preservation of some kinds of liveness
properties

Despite that the above technique cannot be immediately applied to liveness
properties, appropriate labelling can help to check the preservation in certain
special cases. In this section we describe a variant of the labelling which works

10

ANA VLY, ALY AN VYV AN

for properties of the form
ol 9)

where 7 is propositional or, more generally, a past formula.

Consider a base system S = (Ws, Rg, Is) like before and assume that 7 is
propositional for the sake of simplicity. Let I, : Ws — N U {00} be defined
by the clauses:

1. If every infinite sequence of transitions starting from s visits a state
which satisfies 7, then [, (s) is the length of the longest finite such sequence
which does not visit a state which satisfies .

2. If there is an infinite sequence of transitions starting from s and going
through states none of which satisfies 7, then I,(s) = oco.

Since every sequence of transitions of S with length greater than |I¥| con-
tains a loop, ranl, C {0,...,|W|—1} U {oco}.

The labelling I, can be easily calculated using the following rule:

If s =7, then I, (s) = 0, otherwise I, (s) = 14+max{l,(s") : s € Rs(s)}(10)

Obviously a system S satisfies (9) iff 1,(s) < oo for all s € W.

Now assume that a feature F' is given and that S’ = (Wg, Rs, Is/) has
been obtained from S as described in Section 5. The property of S’ which
corresponds to (9) would be OOC7’, where, depending on whether the features
in question are precomposed or postcomposed, 7’ is either @ A —=h or ™ A
(=h A cr), cr being the triggering condition of the considered feature. Let
F' = (cpr, Ppr, Rpr) be obtained from F as in Section 5. We have the following
sufficient condition the preservation of (9):

Proposition 7.1 Let I;/(s) < oo for all s € We. Then, if Rp/(s,s'|p,,) and
slp, = §'|p,, imply lx(s") +1 < lw(s) for every s € Wer, S' + F' satisfies
O&n!, and, consequently, S + F' satisfies (9).

The more general case of m being a past formula can be reduced to the
propositional case, because past formulas can be modelled by using additional
propositional variables and making the transitions update them appropriately.
Let us describe this in detail below for the sake of self-containedness.

Let ® be the set of all the subformulas of 7 with a temporal operator as
the main connective, as in Section 4 and p, be a fresh propositional variable
for each ¢ € ®. Let S be a system with Pp = PU {p, : ¢ € ®} as its
vocabulary. Let

Is, ={s € Ws, :s|lp €Is,s(py,) =1iff Fpr, = ¢ for p € O}
and
Rsy(s,5") <> Rs(s|p,s'|p) N s'(p,) = 1iff ¢ € ®(s[p, s'|p, {¢' € D : s(py) =1})

11

ANA VLY, ALY AN VYV AN

for all ¢ € ® where ®(.,.,.) is as in Section 4. A direct check shows that
S and Ss have the same behaviours as far as properties definable in L(Ps)
are concerned. Furthermore, a finite behaviour by ... b, of Se satisfies a past
formula ¢ € @ iff its last state b, satisfies p,. This means that 7 has a
propositional equivalent in S¢ which can be built using some of the variables
from .

8 Concluding remarks

We presented a method for checking whether a system with a feature continues
to satisfy a property which held of the base system. This allows us to verify
feature interaction of the four types described in [PRO1] more efficiently.

The method is sound, meaning that if it concludes that the property is
satisfied in the featured system then it really is satisfied there. However, in
general it is not complete; that is, it may not be able to conclude that a
property holds of a featured system even if it does hold. In the case of safety
properties, we gave an intuitive explanation of why it is likely to be complete
in practice, though the method is certainly less often complete in the case of
liveness properties.

As future work, we intend to improve the reasoning in the case of liveness
properties, and to analyse the examples given in our earlier work using this
method.

References

[AFF102] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S Mador-Haim, Eli Singerman, A. Tiemeyer, M. Y. Vardi,
and Y. Zbar. The forspec temporal logic: A new temporal property-
specification language. In Proceedings of TACAS’02, volume 2280 of
LNCS, pages 296-311. Springer, 2002.

[ALO3] D. Amyot and L. Logrippo, editors. Feature Interactions in
Telecommunications and Software Systems VII. 10S Press, 2003.

[BZ92] L.G. Bouma and J. Zuidweg. Formal analysis of feature interactions by
model checking. In Proceedings First International Workshop on Feature
Interactions in Telecommunications Systems, St. Petersburg, FL, U.S.A.,
December 1992.

[CM00] M. Calder and E. Magill, editors. Feature Interactions in
Telecommunications and Software Systems VI. I0S Press, 2000.

[CMO1] M. Calder and A. Miller. Using spin for feature interaction analysis — a
case study. In Proceedings of The 8th International SPIN Workshop on
Model Checking of Software (SPIN’2001), volume 2057 of LNCS, pages
143-162, Toronto, Canada, May 2001.

12

ANA VLY, ALY AN VYV AN

[dB99] L. du Bousquet. Feature interaction detection using testing and model-
checking experience report. In Proceedings of the Wold Congress on
Formal Methods in the Development of Computing Systems, volume 1
of Lecture Notes In Computer Science, pages 622—641, 1999.

[HMMS83] J. Halpern, Z. Manna, and B. Moszkowski. A Hardware Semantics Based
on Temporal Intervals. In Proceedings of ICALP’83, volume 154 of LNCS,
pages 278-291. Springer, 1983.

[HR00] M. R. Huth and M. D. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2000.

[LMSO02] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with
forgettable past. In 17th Annual IEEE Symposium on Logic in Computer
Science (LICS’02), pages 383-392. IEEE Computer Society Press, 2002.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In
Proceedings of the Confenerence on Logic of Programs, volume 193 of
LNCS, pages 196-218. Springer, 1985.

[MP89] Z. Manna and A. Pnueli. The anchored version of the temporal
framework. In J.W. De Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, volume 354 of LNCS, pages 201-284. Springer,
1989.

[PRO1] M. C. Plath and M. D. Ryan. Feature integration using a feature
construct. Science of Computer Programming, 2001.

13

	Introduction
	Preliminaries
	Descriptions of systems
	Linear temporal logic
	Abbreviations for restrictions of relations and projections of states, etc.

	Features
	Canonical safety formulas
	Projection in LTL

	Checking safety property satisfaction by base systems
	Separating system- and feature-contributed transitions
	Checking preservation of safety properties upon the integration of a feature
	Checking the preservation of some kinds of liveness properties
	Concluding remarks
	References

