
A New Algorithm for Strategy Synthesis

in LTL Games

Aidan Harding1, Mark Ryan1, and Pierre-Yves Schobbens2

1 School of Computer Science, The University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

2 Institut d’Informatique, Facultés Universitaires de Namur, Rue Grandgagnage 21,
5000 Namur, Belgium

Abstract. The automatic synthesis of programs from their specifica-
tions has been a dream of many researchers for decades. If we restrict
to open finite-state reactive systems, the specification is often presented
as an ATL or LTL formula interpreted over a finite-state game. The re-
quired program is then a strategy for winning this game. A theoretically
optimal solution to this problem was proposed by Pnueli and Rosner, but
has never given good results in practice. This is due to the 2EXPTIME-
complete complexity of the problem, and the intricate nature of Pnueli
and Rosner’s solution. A key difficulty in their procedure is the deter-
minisation of Büchi automata. In this paper we look at an alternative
approach which avoids determinisation, using instead a procedure that
is amenable to symbolic methods. Using an implementation based on
the BDD package CuDD, we demonstrate its scalability in a number of
examples. Furthermore, we show a class of problems for which our algo-
rithm is singly exponential. Our solution, however, is not complete; we
prove a condition which guarantees completeness and argue by empirical
evidence that examples for which it is not complete are rare enough to
make our solution a useful tool.

1 Introduction

Finite-state reactive systems occur in many critical areas of computing. They can
be found in places such as network communication protocols, digital circuits, and
industrial control systems. Their use in systems which involve concurrency and
their interaction with unpredictable or hostile environments makes reactive sys-
tems notoriously hard to write correctly. By considering such systems as games
we can distinguish between events that we can control (inside the program) and
events that we cannot (the environment). This gives a more realistic framework
for reasoning about them than the conventional approach of “closing” the system
by adding a restricted environment and treating all choices uniformly.

We take the stance that closing an open system for verification or synthesis
is imprecise and that reasoning with game semantics provides a much better
solution. This stance has been advocated by many other researchers [1, 9, 10,
8], but there are some verification and synthesis problems that become much

harder in the game-theoretic world. In particular the problems of synthesis and
verification for games with LTL winning conditions are 2EXPTIME-complete
[12, 13]. This high complexity and the intricacy of the solution offered by Pnueli
and Rosner have meant that despite the wealth of potential applications, there
has been no implementation of synthesis for LTL games. We address this problem
by providing a novel algorithm which avoids a major difficulty of the classical
approach: the determinisation of Büchi automata. The best known method for
this determinisation is due to Safra [14] and this method has been proven to be
optimal [11] but has resisted efforts at efficient symbolic implementation [17].
Instead of trying to determinise a Büchi automaton, our algorithm uses a “shift
automaton” to track the possible states that the Büchi automaton could be in
and retake non-deterministic choices if they turn out to be wrong. The shift
automaton is of roughly equal size to the deterministic automaton produced by
Safra’s algorithm, but it can be constructed symbolically. This has allowed for
the construction of an efficient implementation using BDDs. In this paper we
describe in detail a new algorithm for the synthesis of strategies in LTL games; we
describe some small problems that can be solved by the implementation of this
algorithm; and finally we give some performance data obtained by parameterising
the given examples.

2 ω-Automata and Infinite Games

We quickly review the definitions and establish notations for writing about ω-
automata and infinite games. Detailed information on ω-automata can be found
in [18]; and information on infinite games can be found from [8] and [19].

Given an alphabet Σ, we denote the set of all finite words made from letters
in Σ as Σ∗, and the set of all ω-words (infinte words) as Σω. For a word λ ∈ Σω,
we write λ[i] for the i-th letter, λ[i, j] for the finite section of the word from point
i to j, and λ[i,∞] for the infinte suffix from point i. ω-automata provide a way
of recognising sets of ω-words. An ω-automaton A = 〈QA, iA, δA, Acc〉 is a tuple
where the component parts are as follows: QA is a finite set of states; iA is
an initial state; δA : QA × Σ 7→ 2QA is a transition function (we may define
δA : QA × Σ 7→ QA for deterministic automata); and Acc is an acceptance
condition. A run ρ of an ω-automaton on a word λ is an infinite sequence of
states such that ρ[0] = iA and for all i ≥ 0 ρ[i + 1] ∈ δA(ρ[i], λ[i]). We denote
the set of states that occur infintely often on a run ρ by In(ρ). In this paper
we are concerned with two types of ω-automata: Büchi automata and Rabin
automata. We write DB for a deterministic Büchi automaton and NB for a non-
deterministic Büchi automaton. The acceptance condition in a Büchi automaton
is a set F ⊆ QA and a word λ is accepted if and only if there is a run ρ on λ
such that In(ρ) ∩ F 6= ∅. The acceptance condition on a Rabin automaton is a
set of pairs {(E0, F0), . . . , (En, Fn)} and a word λ is accepted if and only if there
is a run ρ on λ such that there exists i ∈ [0, n] such that In(ρ) ∩ Fi 6= ∅ and
In(ρ) ∩ Ei = ∅.

An infinite game is a tuple G = 〈QG, iG, QP , QA, δG〉 representing a two-
player game between the protagonist P and the antagonist A. QG is a set of
states from which iG is the initial one; QP and QA partition QG into turns
for P and A, respectively; δG : QG 7→ 2QG is a transition function such that
∀q ∈ QP δG(q) ⊆ QA and ∀q ∈ QA δG(q) ⊆ QP i.e. the players alternate turns.
A play of the game is an infinite sequence λ of states from QG such that λ[0] = iG
and for all i ≥ 0 λ[i + 1] ∈ δG(λ[i]). We formalise the capabilites of players in
the game with the notion of strategies. A strategy f : Q+

G 7→ 2QG for P restricts
the choices of P by prescribing how he should play his moves. We require that
for any play λ and all i ≥ 0 f(λ[0, i]) ⊆ δG(λ[i]). The set of outcomes out(f, q0)
of playing a strategy f from a state q0 is defined as

out(f, q0) = {q0, q1, . . . | ∀i ≥ 0 if (qi ∈ QP) qi+1 ∈ f(q0, . . . , qi)

else qi+1 ∈ δG(qi)}

We also use partial strategies which are partial functions with the same type as
a normal strategy. The set of outcomes of a partial strategy is defined as:

out(f, q0) = {q0, q1, . . . | ∀i ≥ 0 if (qi ∈ QP ∧ f(q0, . . . , qi) defined)

qi+1 ∈ f(q0, . . . , qi) else qi+1 ∈ δG(qi)}

When a game is provided with a winning condition W , we say that P can win
the game if and only if there is a strategy (partial or complete) for P such that
all outcomes of the strategy satisfy W .

3 Synthesis for NB Games

The main algorithm in our synthesis procedure takes as input a game G =
〈QG, iG, QP , QA, δG〉 and a winning condition in the form of a Büchi automaton,
B = 〈QB , iB , δB , FB〉. The algorithm identifies a set of states that are winning
for P and produces a partial strategy (partial because it may be undefined from
states which are not winning for P) such that the set of outcomes of the strategy
from any winning state are accepted by B.

To see why the conventional approach uses determinisation, let us consider
an approach which uses an obvious extension of the algorithm used for games
with Büchi winning conditions [19]. A Büchi winning condition (as opposed to a
winning condition specified by a NB) specifies a set FG ⊆ QG such that plays are
winning for P if and only if they visit FG infinitely often. The solution for these
games offered in [19] is a game-theoretic extension of the algorithm proposed
by Emerson and Lei for finding fair strongly connected components [7]. This
algorithm is attractive as it has shown to be quite efficient when compared
against other symbolic fair cycle detection algorithms [16]. It works by finding
the set of states from where P has a strategy to reach FG, then the states where
P has a strategy to reach FG and from there has a strategy to reach FG again
etc. An increasing number of visits to FG are required until a fixed-point is
achieved whereupon we know that P has a strategy to visit FG infinitely often.

The game-theoretic aspect of the algorithm in [19] works by adapting the notion
of predecessor to enforce that a state in QP is winning if there exists a winning
successor, and a state in QA is winning if all successors are winning.

We could try to perform the same computation over G × B, always evalu-
ating the B component existentially. However, there is an assumption in this
algorithm that winning is transitive i.e. the states along a winning path are win-
ning themselves. Whilst this may seem like a natural thing to expect, it is not
actually true. The game and specification in Figure 1 give an example of how
winning can fail to be transitive in this sense. P has only one choice which comes
at state 3; he can win this game by always choosing 3 → 4 if he gets that choice.
Although there is a winning strategy from (1, t0), if we follow that strategy and,
at the same time, try to construct a winning run from the B part, we cannot be
sure to reach a state from where there is another winning strategy. The opponent
can stay in {(1, t?), (2, t?)} as long as he likes and we must choose what to do
with the Büchi component. We cannot allow the Büchi automaton to visit t1 in
case the opponent later chooses 3. So we either have a losing run in the Büchi
component, ((1, t0)(2, t0))

ω or reach {(1, t1), (2, t1)} from where there is no win-
ning strategy (A chooses 3 and B is stuck). On this basis, (1, t0) would not be
identified as winning because P cannot be sure to reach a state in QG×FB from
where he has a winning strategy.

1 32 4

(a) Game

t0

t1

t2

1, 2, 3, 4

1, 2

3, 4

1, 2

3, 4

(b) Winning Condition

Fig. 1. A game where the winning condition “needs” determinisation. Square states
are P ’s moves, circles are A’s.

Our solution to this is to allow some “shifting” between Büchi states. If the
Büchi automaton is in a dead-end state, we now allow the transition relation to
be overridden by making a shift i.e make a transition as if the Büchi automaton
were in a different state. We maintain the set of reachable Büchi states at all
times, and this provides the justification for shifts – whenever a shift is made, it
is made to some reachable state and, thus, is equivalent to retaking some earlier
non-deterministic choices. The set of reachable states is provided by the shift
automaton, S = 〈QS , iS, δS〉, a deterministic automaton derived from B with
the subset construction where each state in QS represents a set of states from
QB :

QS = P(QB) iS = {iB} δS(φ, q) = {t′ | ∃t ∈ φ.t′ ∈ δB(t, q)} (1)

Accordingly, we define the synthesis algorithm over G × B × S. We call this
product the composite, C, and define some shorthands to ease the burden of

notation:

QC = QG ×QB ×QS (2)

FC = {(q, t, φ) ∈ QC | t ∈ FB} (3)

QCP = {(q, t, φ) ∈ QC | q ∈ QGP } (4)

QCA = {(q, t, φ) ∈ QC | q ∈ QGA} (5)

Now, if we are in a situation such as the one in Figure 1, we can make win-
ning transitive by allowing some shifts. The informal argument is as follows:
From (1, t0, {t0}) we always go to (2, t1, {t0, t1}) because we are optimistic about
getting an accepting run in the B component. If the opponent always chooses
2 → 1, then we have an accepting run made up of (1, t0, {t0}) ((2, t1, {t0, t1})
(1, t0, {t0, t1}))ω. If the opponent eventually chooses 2 → 3, then we take a shift:
In state (2, t1, {t0, t1}) the B component could have been in t0, so when the
opponent chooses 3 we make a shift and take the t0 →3 t2 transition i.e. we
go to (3, t2, {t0, t2}). From here, P can win and we end up with an overall win-
ning path made up by (1, t0, {t0})((2, t1, {t0, t1})(1, t0, {t0, t1}))∗(2, t1, {t0, t1})
((3, t2, {t0, t2}) (4, t2, {t0, t2}))

ω.
Shifting helps the issue of completeness, but allowing an infinite number of

shifts would be unsound. However, if shifting is only allowed finitely often, the
language is not changed. Informally we justify this on the basis that acceptance
is evaluated over infinite paths, and although shifting may allow finitely many
extra visits to FC , paths must eventually have no more shifts and thus would
be accepting without any shifting. The soundness of finite shifting is implied by
Theorem 2.

To write down the main synthesis algorithm with finite shifting, we first
define two predecessor functions preP and preA. These are evaluated over the
triple state-space of G × B × S, respecting the alternation of the game and
allowing for shifting. Unlike a conventional predecessor function, two arguments
are supplied. The second argument is a set that we allow shifts into. preP (X,W)
is the set of transitions which obey the game and shift automaton, and either
have a transition in B to reachX (t′ ∈ δB(t, q′)∧(q′, t′, φ′) ∈ X in Equation 6) or
have a shift justified by the shift automaton to reach W (t′ ∈ φ′∧ (q′, t′, φ′) ∈W
in Equation 6). preA(X,W) simply uses preP (X,W) as an approximation, and
then makes sure that there is a good transition for every possible game-successor.

preP (X,W) ={〈(q, t, φ), (q′, t′, φ′)〉 | q′ ∈ δG(q), φ′ = δS(φ, q′),

(t′ ∈ δB(t, q′) ∧ (q′, t′, φ′) ∈ X) ∨ (t′ ∈ φ′ ∧ (q′, t′, φ′) ∈ W)}
(6)

preA(X,W) = {〈(q, t, φ), (q′, t′, φ′)〉 ∈ preP (X,W) | ∀q′2 ∈ δG(q)

∃〈(q, t, φ), (q′2, t
′
2, φ

′
2)〉 ∈ preP (X,W)}

(7)

Using these definitions, we write the main algorithm in Figure 21. To understand
how the synthesis algorithm works, consider each of the variables in turn:

1 We denote the k-th projection of a tuple T by πk(T)

1 w0 := ∅;
2 δF,0,∞,∞ := ∅;
3 repeat counted by j = 1 . . .

4 zj,0 := QC ;
5 repeat counted by k = 1 . . .

6 τj,k := zj,k−1 ∩ FC ;
7 sj,k,0 := ∅;
8 δFj,k,0 := δFj−1,∞,∞;
9 repeat counted by l = 1 . . .

10 uA := preA(τj,k ∪ sj,k,l−1, wj−1) ∩ (QCA × QCV);
11 uV := preV (τj,k ∪ sj,k,l−1, wj−1) ∩ (QCV × QCA);
12 δFj,k,l := δFj,k,l−1 ∪ {〈(q, t, φ), (q′, t′, φ′)〉 ∈ uA ∪ uV

| (q, t, φ) 6∈ π1(δFj,k,l−1)};
13 sj,k,l := sj,k,l−1 ∪ π1(uA) ∪ π1(uV);
14 until sj,k,l = sj,k,l−1

15 zj,k := zj,k−1 ∩ sj,k,∞;
16 until zj,k = zj,k−1

17 wj := wj−1 ∪ zj,∞;
18 until wj = wj−1

Fig. 2. Synthesis algorithm with finite shifting

– wj : At the end of the algorithm, this will contain the set of winning states.
The j subscript is the maximum number of shifts required to win from a
state in wj .

– zj,k: At the end of the middle loop, this is the set of states from where every
outcome reaches zj,k ∩ FC infinitely often with no shifting or just reaches
wj−1 (possibly by shifting). During the middle loop, every outcome reaches
zj,k−1 ∩ FC with no shifting or wj−1 (possibly by shifting).

– τj,k: The “target” for the innermost loop. This variable could be substituted
for its definition at each use, it is clearer (and more efficient in implementa-
tion) to write separately.

– sj,k,l: The set of states from where P can be sure to reach τj,k in l steps with
no shifting or wj−1 in l steps with a shift.

– δF ,j,k,l: The partial strategy as it is synthesised. On the first j-loop it will
be a strategy to win with no shifting. On line 12 we must be careful not to
overwrite old moves. On iteration l of the inner loop, when a transition is
first added to the strategy it must go into sj,k,l−1∪τj,k or wj−1. However, this
state will be rediscovered on later iteration of the inner loop and uP /uA may
contain transitions which do not make progress towards an accepting state
and we must therefore keep the transition from the first discovery. Having
built a strategy with no shifts, we carry this forward to the next iteration
of the j-loop. Here another strategy is built up, but this time it allows the
possibility of a shift to wj−1 since we already have a winning strategy from
there. New moves are written for states in wj − wj−1, but as soon as the
strategy reaches wj−1 the old strategy takes over.

The algorithm in Figure 2 is computing nested fixed-points which can be
characterised as µw.νz.µs.π1((preP (s∨ (z∧FC), w)∧ (QCP ×QCA))∨ (preA(s∨
(z ∧ FC), w) ∧ (QCA × QCP)). We note that on the first iteration of the outer
loop in this algorithm, the computation performed is the näıve extension of the
solution for Büchi games i.e. νz.µs.π1((preP (s∨ (z ∧FC),⊥)∧ (QCP ×QCA))∨
(preA(s ∨ (z ∧ FC),⊥) ∧ (QCA × QCP)). This calculation does not depend on
the shift automaton and, in this way, we are sometimes able to perform the
strategy synthesis without having to generate the shift automaton. We can give
a precise condition which assures this by first defining trivially determinisable
Büchi automata.

Definition 1. A Büchi automaton is trivially determinisable if and only if it
can be made deterministic by removing 0 or more transitions without changing
its language.

Using this definition it is possible to prove the following theorem:

Theorem 1. For any game G, with a winning condition specified by a Büchi
automaton B, if B is trivially determinisable, then all winning states for P in
QC satisfy νz.µs.π1((preP (s ∨ (z ∧ FC),⊥) ∧ (QCP × QCA)) ∨ (preA(s ∨ (z ∧
FC),⊥) ∧ (QCA ×QCP)).

Whilst this definition includes the shift automaton, it is clear that the predeces-
sor functions do not depend on the shift automaton when W is empty, so this
proves that if B is trivially determinisable, the algorithm can succeed without
generating the shift automaton. Intuitively, this theorem holds because the näıve
algorithm is complete for deterministic Büchi automata and since the transitions
of B are evaluated existentially, a trivially determinisable Büchi automaton is
as good as a deterministic one. In the long version of this paper, this theorem
and all the other theorems that follow are proven in the appendix.

Since preP and preA are monotonic functions and the state-spaces involved in
the algorithm are finite, it follows that the algorithm terminates. The algorithm’s
soundness is asserted by the following theorem:

Theorem 2. Once the algorithm has terminated, for all (q, t, φ) ∈ w∞,
δF∞,∞,∞ is a partial strategy such that ∀λ ∈ out(δF∞,∞,∞, (q, t, φ)) π1(λ[1,∞])
∈ L(B, φ).

In much the same way as the completeness condition in Theorem 1, we can
give a condition for the algorithm in Figure 2. To do this, we introduce the
concept of the generalised Rabin expansion of a Büchi automaton. Intuitively,
this automaton encodes the idea of finite shifting by its structure and winning
condition.

Definition 2. Let B be a Büchi automaton, and S be the corresponding shift
automaton for B. The generalised Rabin expansion, R = 〈QR, iR, δR, FR, ER〉,

of B and S is defined as

QR = QB ×QS

iR = iB × iS

δR = {((t, φ), a, (t′, φ′)) ∈ QR ×Σ ×QR | φ′ ∈ δS(φ, a), t′ ∈ φ′}

FR = {(t, φ) ∈ QR | t ∈ FB}

ER = {((t, φ), a, (t′, φ′)) ∈ δR | t′ 6∈ δB(t, a)}

where, in the usual way, QR, iR, and δR are the state-space, initial state, and
transition function, respectively. FR and ER are used to define the winning con-
dition of R: A run ρ on a word λ is winning if and only if ∃∞i ≥ 0.ρ[i] ∈ FR
and ∃j ≥ 0.∀k ≥ j (ρ[k], λ[k], ρ[k + 1]) 6∈ ER.

It is convenient to specify a winning condition on transitions rather than states,
but it is easy to translate such an automaton into a conventional Rabin automa-
ton. The translation could be done as follows: create a second copy of every
state; make every transition in ER go instead to the copy; make every transition
in the copy go back into the original; finally, set the Rabin condition to have
infinitely many visits to FR in the original and only finitely many visits to the
copied states. We also note that for any reachable state (t, φ) in R, the invariant
is maintained that t ∈ φ.

With this definition in place, it is possible to prove the following theorem
about completeness for the synthesis algorithm.

Theorem 3. For any game G, with a winning condition specified by a Büchi
automaton B, if B’s generalised Rabin expansion is trivially determinisable then
all winning states for P in QC satisfy µw.νz.µs.π1((preP (s ∨ (z ∧ FC), w) ∧
(QCP ×QCA)) ∨ (preA(s ∨ (z ∧ FC), w) ∧ (QCA ×QCP)).

We note that this is a safe approximation of the class of problems for which the
algorithm will be complete. In fact, the structure of the game is also cruical to
completeness. Providing a characterisation which uses the structure of both the
game and the specification would be an interesting avenue for future research.

4 Synthesis for LTL Games

In the previous section we provided an algorithm for solving games with NB win-
ning conditions that was complete under a condition on the form of the NB. We
can perform synthesis for LTL games by using the tableau method to translate
an LTL specification into a NB and then using the algorithm in Figure 2. With
the restriction of Theorem 3 and our goal of symbolic implementation in mind,
our choice of translation from LTL to NB must be made wisely. The method that
we use is based on the symbolic construction of [4], with three changes: First,
we deal with formulae in negation normal form rather than using a minimal set
of temporal operators – as noted by [15], this provides us with a slight efficiency
improvement as safety formulae do not have to be treated as negated liveness

formulae. Secondly, we define a weaker transition formula than [4] – this allows
some types of formulae to be translated into trivially determinisable Büchi au-
tomata and allows for the last change. Finally, we split variables into “required”
and “optional” forms meaning that the fairness constraints of optional formulae
do not necessarily have to be met as long as some other fairness constraints are
whilst the constraints of required formulae must always be met.

First we recall the syntax and semantics of LTL, a more thorough review can
be found in [6]. Syntactically, we consider an LTL formula ψ in negation normal
form to obey the following grammar

Π ::= p | ¬Π | Π ∨Π ψ ::= Π | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ | ψ R ψ

where p is a member of the set of atomic propositions. The semantics of LTL
are defined inductively over infinite paths λ.

– λ � p iff p ∈ λ[0].
– λ � ¬ψ iff λ 6� ψ.
– λ � ψ1 ∨ ψ2 iff λ � ψ1 or λ � ψ2.
– λ � ψ1 U ψ2 iff ∃i ≥ 0.λ[i,∞] � ψ2 and ∀j ∈ [0, i− 1] λ[j,∞] � ψ1.
– λ � ψ1 R ψ2 iff ∀i ≥ 0 either λ[i,∞] � ψ2 or there exists j ∈ [0, i] such that
λ[j,∞] � ψ1 ∧ ψ2.

Like [4], we define a function el() to return the set of elementary sub-formulae
of an LTL formula. The set el(ψ) forms the set of propositions in the tableau for
ψ.

– el(p) = {p}
– el(¬ψ) = el(ψ)
– el(ψ1 ∧ ψ2) = el(ψ1) ∪ el(ψ2)
– el(Xψ1) = {(Xψ1)

r} ∪ el(ψ1)
– el(ψ1 ∨ ψ2) = el(ψ1) ∪ el(ψ2) ∪ {xo | xr ∈ el(ψ1) ∪ el(ψ2)}
– el(ψ1 U ψ2) = {(X(ψ1 U ψ2))

r} ∪ el(ψ1) ∪ el(ψ2)
– el(ψ1 R ψ2) = {(X(ψ1 R ψ2))

r} ∪ el(ψ1) ∪ el(ψ2)

We see from this that the propositions arising from formulae under an ∨ appear
in optional and required forms. This is how the optional formation is used –
in a formula ψ1 ∨ ψ2 the conventional tableau construction would generate an
automaton which chooses between three covering formulae: ψ1 ∧¬ψ2, ¬ψ1 ∧ψ2,
and ψ1 ∧ ψ2. In a game where the opponent can infinitely often choose between
satisfying the fairness constraints of ψ1 or ψ2, this splitting can necessitate in-
finite shifting for the algorithm in Figure 2. By making the fairness constraints
optional, we allow the tableau to follow the ψ1 ∧ ψ2 path as long as the play
is consistent with the safety requirements of ψ1 ∧ ψ2 and consider the play to
be accepted if it satisfies either the fairness constraints of ψ1 or the fairness
constraints of ψ2.

Again like [4], we define a function sat() which takes an LTL formula and
returns a formula representing the set of states in the tableau for which out-
going fair paths are labelled by plays which satisfy the LTL formula. It works

uniformly for all t ∈ {r, o}. The only change from the standard definition is in
sat((ψ1 ∨ψ2)

r); here we always allow the possibility of the optional versions be-
ing taken instead of the required ones. Since the clause for the optional variables
is (sat(ψo1)∧ sat(ψo2)), the structure of the tableau ensures that paths are consis-
tent with both formulae (i.e. they satisfy the non-fairness part of the formulae).
Our new definition of the fairness constraints will allow one or the other to be
satisfied. For all t ∈ {r, o}, sat(ψt) is defined as:

– sat(Πt) = Π
– sat((ψ1 ∧ ψ2)

t) = sat(ψt1) ∧ sat(ψt2)
– sat((ψ1 ∨ ψ2)

t) = sat(ψt1) ∨ sat(ψt2) ∨ (sat(ψo1) ∧ sat(ψo2))
– sat((Xψ1)

t) = (Xψ1)
t

– sat((ψ1 U ψ2)
t) = sat(ψt2) ∨ (sat(ψt1) ∧X(ψ1 U ψ2)

t)
– sat((ψ1 R ψ2)

t) = (sat(ψt1) ∧ sat(ψt2)) ∨ (sat(ψt2) ∧X(ψ1 R ψ2)
t)

The transition relation ensures that if Xψ occurs in a state, all fair paths from
all successors of that state satisfy ψ.

∧

t∈{r,o}

∧

(Xψ1)t∈el(ψr)

(Xψ1)
t ⇒ sat(ψt1)

′ (8)

This differs from [4] by the inclusions of optional/required tags and by using
⇒ instead of ⇔. This relaxation is possible because the input formulae are in
negation normal form and its soundness is implied by Theorem 4.

The fairness constraints on the tableau are defined by another new function,
fsat(). Conventionally, the fairness constraints for a formula ψ would require that
for each sub-formula of the form ψ1 U ψ2 a fair path infinitely often has either
¬X(ψ1 U ψ2) or sat(ψ2) i.e. at any point, either ψ1 U ψ2 is not required or it
is eventually satisfied. Our definition of fsat is based on this notion, but allows
for the special case of optional variables. Fairness on a path π is defined by the
following function:

– fsat(Πt) = >
– fsat((ψ1 ∨ ψ2)

t) = fsat(ψt1) ∧ fsat(ψt2) ∧ (fsat(ψo1) ∨ fsat(ψo2))
– fsat((ψ1 ∧ ψ2)

t) = fsat(ψt1) ∧ fsat(ψt2)
– fsat((Xψ1)

t) = fsat(ψt1)
– fsat((ψ1 U ψ2)

t) = fsat(ψt1) ∧ fsat(ψt2)

∧ ∃∞i ≥ 0.π[i] ∈ sat(ψt2) ∨ ¬(X(ψ1 U ψ2))
t

– fsat((ψ1 R ψ2)
t) = fsat(ψt1) ∧ fsat(ψt2)

We see that the only departure from the conventional usage (a convention ob-
served by [4]) is in allowing one or the other of a pair of optional variables to be
satisfied.

Since our construction is a relaxation of the one given by [4], we do not prove
its completeness. However, its soundness is asserted by the following theorem:

Theorem 4. Let ψ be an LTL formula over a set, P, of atomic propositions.
Let T be the symbolic tableau automaton for ψ constructed as above. For any
ψ1 ∈ sub(ψ), any t ∈ {r, o} and any path, π, in T , for all i ≥ 0 if π[i] ∈ sat(ψt1)
and π[i,∞] satisfies fsat(ψt1) then π[i,∞] � ψ1.

Using this tableau construction we can perform the entire synthesis procedure
symbolically. First the LTL formula is translated in the manner described above.
This tableau is then used as the Büchi automaton in the algorithm from Figure 2
which can also be computed symbolically. Despite the doubly exponential worst-
case complexity of this procedure we shall see in the following section that useful
results can be computed. First, we note that for request-response specifications
[20], strategies can be synthesised without generating a shift automaton i.e.
the tableau for such specifications is trivially determinisable. Request-response
specifications can be written in LTL as G(p ∧ (r0 ⇒ Fs0) ∧ . . . ∧ (rn ⇒ Fsn))
and we prove the following proposition in the appendix.

Proposition 1. The tableau for LTL formulae of the form G(p∧ (r0 ⇒ Fs0) ∧
. . . ∧ (rn ⇒ Fsn)) (where p, ri, and si are propositional formulae) is always
trivially determinisable.

5 Implementation

The synthesis algorithm has been implemented in Java using native calls to
the CuDD [5] library to handle BDDs. As input, the program takes an XML
file containing a symbolic description of the game and an LTL specification.
After successful synthesis, a number of output options are possible: the program
can print the set of winning states; produce an explicit graph of the winning
strategy with dot; show an interactive, expandable tree of the strategy so that
the user can play it out; and convert the strategy into a program in the language
of the Cadence SMV model checker [3]. The output to SMV can be used to
check the correctness of the implementation by checking against the original
LTL specification (once a winning strategy has been synthesised, it is possible
to view the strategy as a closed system and check for correctness on all paths).

5.1 Examples

Mutual Exclusion In this example we synthesise a controller to enforce mutual
exclusion. We solve this problem for various numbers of processes in order to get
a measure of the scalibility of the implementation, using n as the parameter for
size.

The game is modelled with the following boolean variables: u indicates the
current turn and alternates between moves. When u is true, it is the user pro-
cesses turn, when it is false it is the system’s turn. r1, r2, . . . , rn indicate that a
process requesting access to its critical section. When a request is made, it can-
not be withdrawn until the critical section is reached. Furthermore, when it is
the system’s turn, the request variables must keep their old values. c1, c2, . . . , cn
indicate that a process is in its critical section. ci can only become true if it is
the system’s turn and ri is true. When it is true, ci will become false in the next
turn.

The specification of mutual exclusion and liveness can easily be written in in
LTL as

G(
∧

i∈[1,n]

(

(ri ⇒ Fci) ∧
∧

j∈[i+1,n]

¬(ci ∧ cj)
)

)

For two processes, the synthesis implementation ran in about 30ms and pro-
duced a strategy which plays out Peterson’s algorithm for mutual exclusion.
Whenever both processes request at once, one process (say process 1) is chosen
non-deterministically to proceed. From then until process 2 gets to enter its crit-
ical section, if both processes request at once then process 2 will be favoured.
This behaviour is symmetric for both processes, guaranteeing that neither pro-
cess starves. Strategies were found for problems with between 2 and 80 processes,
recording the “peak live node usage” and time for each problem. The peak live
node usage is a statistic gathered by the CuDD library denoting the maximum
number of BDD nodes that have been used during a computation. The tests were
run on a 1.5GHz Pentium 4 system with 256MB of RAM running Linux. The
results are shown in Figure 3. We note that even with 80 processes, which gives a
state-space of 2(80×2)+1 ≈ 1048 and a formula with 80 liveness sub-formulae, the
time taken was about 50 minutes. This is quite reasonable for a model checking
tool and the overall growth in the two plots shows the feasibility of the approach.

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

P
ea

k
n
o
d
e

u
sa

g
e

(×
1
0
3
)

T
im

e
(s

)

Number of processes

nodes
time

Fig. 3. Mutual exclusion performance data

Lift system Here we synthesise a controller for a lift (elevator) system. The
game describes some general behaviour regarding the physical situation of a lift
(there are user-controlled buttons, movement between floors is consecutive etc.),
and the LTL specification puts requirements on the actual controller. We model
the lift system with various numbers of floors, using n as a parameter for the size;
the variables used to describe the system are: u which indicates the current turn
and works as in mutual exclusion. f which indicates the current floor. This is
modelled with dlog(n)e variables which we treat as a single integer variable. We
write f [0], f [1], . . . f [n] to denote floors. Initially, the floor is 0; we require that
transitions between floors are consecutive and that the floor does not change on
users turns. b[0], b[1], . . . , b[n] are the button variables. These boolean variables
are controlled by the users to simulate requests for the lift. Initially, all buttons
are off; once lit, a button stays on until the lift arrives and the buttons do
not change on the system’s turns. up is a boolean variable which observes the

transition between floors and is true if the lift is going up. Initially up is false.
The specification that we use for the lift system is as follows:

G
(

(
∧

i∈[0,n]

b[i] ⇒ Ff [i]) ∧
∧

i∈[0,n]

f [i] ∧ ¬sb⇒ f [i] U (sb R (F (f [0] ∨ sb) ∧ ¬up))
)

Where sb is an abbreviation for
∨

i∈[1,n] b[i] to mean “some button is lit”. The
first conjunct says that every request is eventually answered, the second demands
that the lift should park when it is idle. If we synthesise a strategy without the
parking specification, we find that the lift does answer all calls, but it does so by
moving up and down continuously regardless of what calls are made (this was
apparent from playing out the strategy and verified formally using SMV). In the
second conjunct, the release formula is the actual parking action: the lift should
go to f [0] by going continuously down, unless some button is pressed. The rest
of the formula can be read as: if the lift is on floor i and no button (other than
0) is pressed, then remain at floor i until parking can commence. Synthesising a
strategy for the entire specification, we find that the lift now behaves as expected
and, once again, we can verify that the strategy implements the specification by
using SMV. The results for a range of sizes are plotted in Figure 4 – we see
the time taken and the number of nodes used rising dramatically. This is due
to the size and complexity of the specification resulting in an extremely large
tableau. The fluctuations in time taken and nodes used are hard to explain.
One possible cause could be the heuristic nature of the re-ordering algorithms
in CuDD. Similar fluctuations are seen in the shifting example below, but they
seem to be magnified here by the size of the state-space increase as each extra
floor is added to the lift problem.

0
200
400
600
800

1000
1200
1400
1600
1800

4 6 8 10 12 14 16 18 20 22
0

500

1000

1500

2000

2500

3000

P
ea

k
n
o
d
e

u
sa

g
e

(×
1
0
3
)

T
im

e
(s

)

Number of floors

nodes
time

Fig. 4. Lift performance data

A Shifting Problem The previous two examples were computed without hav-
ing to use any shifting. Although a number of specifications were tried in the
context of these systems, shifting was never required. It is clear that shifting is
necessary for some specifications, though, so we use an abstract example based

on the one from Figure 1 to measure performance in such cases. The game is
shown in Figure 5.

0 0u 1 1u n nu

Fig. 5. Game for shifting example

The specification used is simply FG0 ∨ FG1 ∨ . . . ∨ FGn. For n = 2, this
produces a tableau with the same property as the Büchi automaton in Figure
1 – it has two disjoint regions, one for FG0 and one for FG1. In order to solve
this game, the algorithm needs to consider shifting. As expected, the synthesis
algorithm generates a shift automaton and terminates using one shift. The win-
ning strategy simply keeps play in 1 if the opponent ever chooses it, otherwise it
has no choice but to stay in 0. Figure 6 shows the performance over a range of
sizes. Even with a length of 95, and having to generate the doubly exponential
shift automaton, the implementation ran in 1 hour 14 minutes.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

P
ea

k
n
o
d
e

u
sa

g
e

(×
1
0
3
)

T
im

e
(s

)
n

nodes
time

Fig. 6. Shift performance data

6 Conclusion

We have provided a new algorithm and corresponding symbolic implementation
to solve the problem of strategy synthesis in LTL games. Whilst this algorithm
is not complete, it has performed well in the test-cases that were given to it
and holds enough promise to warrant use on larger, real-world problems in the
future. The separation between the partial solution to NB games and the sym-
bolic tableau method itself offers the prospect of future improvements to the
completeness result by changes to the tableau method. It would be interesting
to see whether the completeness result given in terms of automata could be re-
lated back to a fragment of LTL so that it might be compared with such work
as [2]. At present, there are formulae for which we know that the algorithm here
does not perform optimally and there are formulae which cannot be dealt with
in fragments solved by [2], but can be dealt with by our work.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

2. R. Alur and S. La Torre. Deterministic generators and games for LTL fragments.
ACM Transactions on Computational Logic, 5(1):1–25, January 2004.

3. SMV 10-11-02p1. http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/, Novem-
ber 2002.

4. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In David L. Dill, editor, CAV94, volume 818, pages 415–427. Springer-Verlag, 1994.

5. CuDD: Colorado university decision diagram package, release 2.30. http://vlsi.
colorado.edu/~fabio/CUDD/, February 2001.

6. E. A. Emerson. Handbook of Theoretical Computer Science Volume B, chapter
Temporal and Modal Logic, pages 995–1072. Elsevier, 1990.

7. E. A. Emerson and C. Lei. Efficient model checking in fragments of the propo-
sitional model mu-calculus. In IEEE Symposium on Logic in Computer Science,
pages 267–278, June 1986.

8. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logic, and Infinite

Games. Number 2500 in Lecture Notes In Computer Science. Springer, 2002.
9. S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and fair

exchange protocols. Journal Of Computer Security, 11(3):399–429, 2003.
10. O. Kupferman and M. Y. Vardi. Module checking. In 8th Conference on Computer-

Aided Verification, volume 1102 of LNCS, pages 75–86, 1996.
11. C. Löding. Optimal bounds for the transformation of ω-automata. In Proceedings

of the 19th Conference on Foundations of Software Technology and Theoretical

Computer Science, number 1738 in LNCS, pages 97–109. Springer, 1999.
12. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings Of

16th ACM Symposium On Principles Of Programming Languages, pages 179–190,
1989.

13. R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute
of Science, Rehovot, Israel, 1992.

14. S. Safra. Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science, Rehovot, Israel, March 1989.

15. K. Schneider. Improving automata generation for linear temporal logic by consid-
ering the automaton hierarchy. Lecture Notes in Computer Science, 2250, 2001.

16. F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic scc hull algorithms. In
Proceedings of the 4th International Conference on Formal Methods in Computer-

Aided Design, pages 88–105. Springer-Verlag, 2002.
17. S. Tasiran, R. Hojati, and R. K. Brayton. Language containment using non-

deterministic omega-automata. In Proceedings of Advanced Research Working

Conference on Correct Hardware Design and Verification Methods, CHARME’95,
number 987 in Lecture Notes In Computer Science, pages 261–277, 1995.

18. W. Thomas. Handbook of Theoretical Computer Science Volume B, chapter Au-
tomata on Infinite Objects, pages 133–192. Elsevier, 1990.

19. W. Thomas. On the synthesis of strategies in infinite games. In Symposium on

Theoretical Aspects of Computer Science, pages 1–13, 1995.
20. N. Wallmeier, P. Hütten, and W. Thomas. Symbolic synthesis of finite-state con-

trollers for request-response specifications. In Proceedings of the 8th International

Conference on the Implementation and Application of Automata, CIAA, volume
2759 of Lecture Notes in Computer Science, pages 11–22, 2003.

A Appendix

A.1 Proof of Theorem 1

Theorem 1. For any game G, with a winning condition specified by a Büchi
automaton B, if B is trivially determinisable, then all winning states for P in
QC satisfy νz.µs.π1((preP (s ∨ (z ∧ FC),⊥) ∧ (QCP × QCA)) ∨ (preA(s ∨ (z ∧
FC),⊥) ∧ (QCA ×QCP)).

Proof. Let B = 〈QB , iB , δB , FB〉 be a trivially determinisable Büchi automaton
and G = 〈QG, iG, QP , QA, δG〉 be a game. We prove that for any state (q, t, φ) ∈
QC (where QC is defined by Equation 2) such that P has a strategy to ensure
that all plays in out(G, q) are in L(B, t), (q, t, φ) � νz.µs.π1((preP (s ∨ (z ∧
FC),⊥) ∧ (QCP ×QCA)) ∨ (preA(s ∨ (z ∧ FC),⊥) ∧ (QCA ×QCP)). Since B is
trivially determinisable and the preP /preA operators evaluate Büchi transitions
existentially, we can treat B as deterministic by assuming that every existential
choice is the one that would be used in trivially determinising B. We prove using
fixed-point induction and contradiction: Suppose (q, t, φ) � νnz.µs.π1((preP (s∨
(z∧FC),⊥)∧(QCP×QCA))∨(preA(s∨(z∧FC),⊥)∧(QCA×QCP)) but (q, t, φ) 6�
νn+1z.µs.π1((preP (s ∨ (z ∧ FC),⊥) ∧ (QCP ×QCA)) ∨ (preA(s ∨ (z ∧ FC),⊥) ∧
(QCA ×QCP)). Then, for any strategy fP , there would be a run λ ∈ out(q, fP)
such that the corresponding run ρB ∈ run(B, t, λ) visits FB n times; but on the
n-th visit (call this (λ[i], ρB [i+ 1])), (λ[i], ρB [i+ 1]) 6� ν0z.µs.π1((preP (s ∨ (z ∧
FC),⊥)∧ (QCP ×QCA))∨ (preA(s∨ (z ∧FC),⊥)∧ (QCA×QCP)). This in turn,
means that for any strategy f ′

P for P there is a run λ′ ∈ out(λ[i], f ′
P) such that

the corresponding Büchi run never visits FB . So whatever the strategy fP does
from λ[i], it is guaranteed never to reach FB . This contradicts the premise that
there is a winning strategy for P . ut

A.2 Proof of Theorem 2

We begin with a loop invariant on the inner loop to say (roughly) that if (q, t, φ) ∈
sj,k,l − wj−1 then δF∞,∞,∞ is a partial strategy to reach τj,k in l steps or less
from (q, t, φ) (possibly using a shift).

Lemma 1. For all l ≥ 0, if δFj−1,∞,∞ is a partial strategy then δFj,k,l is a
partial strategy and if (q, t, φ) ∈ sj,k,l − wj−1 then ∀λ ∈ out(δFj,k,l, (q, t, φ))
there exists an integer i ∈ [1, l] such that ∀m ∈ [1, i − 1] λ[i] ∈ sj,k,l−m and
either (λ[i] ∈ wj−1) or (λ[i] ∈ zj,k−1 ∩ FC and ∀m ∈ [0, i − 1] π2(λ[m + 1]) ∈
δB(π2(λ[m]), π1(λ[m + 1]))).

Proof. We prove by induction over l.

– l = 0: By line 7 sj,k,0 is empty. By line 8 δFj,k,0 = δFj−1,∞,∞, so by hypoth-
esis δFj,k,0 is a non-deterministic partial strategy.

– l > 0: If (q, t, φ) ∈ sj,k,l−1 then we simply use the inductive hypothesis.
From line 12 of the algorithm, if δFj,k,l−1(q, t, φ) is already defined then
δFj,k,l−1(q, t, φ) = δFj,k,l(q, t, φ). Since each move in the partial strategy is
in a smaller sj,k,l, there is a continuous path of preserved strategies up to
each i.

1. Otherwise, (q, t, φ) ∈ sj,k,l − sj,k,l−1.

2. First, suppose that q ∈ QGP , then by lines 10, 11, and 13 of the algo-
rithm (q, t, φ) ∈ π1(uP) and (q, t, φ) 6∈ π1(uA). Let Succ = {(q′, t′, φ′) |
〈(q, t, φ), (q′, t′, φ′)〉 ∈ uP }.

3. By line 10 of the algorithm and the definition of preA (Equation 6)
for all (q′, t′, φ′) ∈ Succ q′ ∈ δG(q), φ′ = δS(φ, q′) and either (t′ ∈
φ′ ∧ (q′, t′, φ′) ∈ wj−1) or (t′ ∈ δB(t, q′) ∧ (q′, t′, φ′) ∈ τj,k ∪ sj,k,l−1). If
δFj,k,l−1(q, t, φ) is undefined then δFj,k,l(q, t, φ) = Succ; we have dealt
with the case where (q, t, φ) ∈ sj,k,l−1 and by hypothesis (q, t, φ) 6∈ wj−1

so δFj,k,l−1(q, t, φ) is undefined. Thus, δFj,k,l(q, t, φ) = Succ which are
all legal moves, so if δFj,k,l−1 is a partial strategy (by induction, it is)
then δFj,k,l is a partial strategy.

4. We split cases on (q′, t′, φ′) ∈ Succ:

• If (q′, t′, φ′) ∈ wj−1, then we are done for q ∈ QGP .
• If (q′, t′, φ′) ∈ τj,k, then (q′, t′, φ′) ∈ FC ∩ zj,k−1 so we are done for
q ∈ QGP .

• If (q′, t′, φ′) ∈ sj,k,l−1 we apply the inductive hypothesis

5. Now suppose that q ∈ QGA. By lines 10, 11, and 13 of the algorithm
(q, t, φ) ∈ π1(uA) and (q, t, φ) 6∈ π1(uP). Let Succ = {(q′, t′, φ′) |
〈(q, t, φ), (q′, t′, φ′)〉 ∈ uA}.

6. We argue, as above, that δFj,k,l−1(q, t, φ) is undefined, so δFj,k,l(q, t, φ) =
Succ.

7. We must show that Fj,k,l is a non-deterministic partial strategy automa-
ton (i.e. all moves are legal and it includes moves for all q′ ∈ δG(q)) and
that all outcomes are good. By line 11 of the algorithm and the definition
of preV (7) ∀q′ ∈ δG(q)∃(q′, t′, φ′) ∈ π2(uA) so if δFj,k,l−1 is a partial
strategy (by induction, it is) then δFj,k,l is a partial strategy. Further-
more, 〈(q, t, φ)(q′, t′, φ′)〉 ∈ uA if and only if either (t′ ∈ φ′ ∧ (q′, t′, φ′) ∈
wj−1) or (t′ ∈ δB(t, q′) ∧ (q′, t′, φ′) ∈ τj,k ∪ sj,k,l−1). We can show that
all outcomes are good by splitting cases on (q′, t′, φ′), in a similar way
as above.

ut

Now we prove the result of the middle loop: if (q, t, φ) ∈ zj,∞, then δFj,∞,∞ is a
partial strategy to reach FC infinitely often, or reach wj−1.

Lemma 2. If δFj−1,∞,∞ is a partial strategy then δFj,∞,∞ is a partial strat-
egy and if (q, t, φ) ∈ zj,∞ then ∀λ ∈ out(δFj,∞,∞, (q, t, φ)) either (∃i > 0
such that λ[i] ∈ wj−1) or (∃∞i > 0.λ[i] ∈ FC and ∀m ≥ 0 π2(λ[m + 1]) ∈
δB(π2(λ[m]), π1(λ[m + 1]))) .

Proof. We know that the middle loop will terminate at a fixed-point for zj,k
i.e. at termination zj,k = zj,k−1. Let n be the value of k when the middle loop
terminates. The loop executes at least once, so n > 0. (q, t, φ) ∈ zj,n, so by line
15 of the algorithm (q, t, φ) ∈ sj,k,∞. Thus by Lemma 1 if δFj−1,∞,∞ is a partial
strategy then δFj,n,∞ is a partial strategy and ∀λ ∈ out(δFj,n,∞, (q, t, φ)) there
exists an integer i > 0 such that either (λ[i] ∈ wj−1) or (λ[i] ∈ zj,n−1 ∩ FC and
∀m ∈ [0, i−1] π2(λ[m+1]) ∈ δB(π2(λ[m]), π1(λ[m+1]))). If λ[i] ∈ wj−1 then we
are done. If λ[i] ∈ zj,n−1 ∩ FC , we have shown one visit to FC and since zj,n =
zj,n−1 we can re-use the same argument to show that ∀λ′ ∈ out(Fj,∞,∞, C, λ[i])
there exists an integer i2 > 0 such that either (λ′[i2] ∈ wj−1) or (λ′[i2] ∈
zj,n−1 ∩ FC and ∀m ∈ [0, i2 − 1] π2(λ[m+ 1]) ∈ δB(π2(λ[m]), π1(λ[m+ 1]))).

Since λ and λ′ meet at λ[i] and λ′[0], we have shown continuous run which
either reaches wj−1 or visits FC twice and obeys δB until the second visit. We can
re-use this argument infinitely many times to show that there is a run visiting
FC infinitely often and obeying δB forever, or there is a point where λ reaches
wj−1. ut

For the final lemma we prove an invariant on the outer loop: (q, t, φ) ∈ wj implies
that δFj,∞,∞ is a partial strategy such that the game part of all outcomes can
be accepted by B from φ.

Lemma 3. For all j ≥ 0 δFj,∞,∞ is a non-deterministic partial strategy au-
tomaton and if (q, t, φ) ∈ wj then ∀λ ∈ out(δFj,∞,∞, (q, t, φ)) π1(λ[1,∞]) ∈
L(B, φ).

Proof. We prove by induction over j:

– j = 0: By line 1 of the algorithm w0 is empty. By line 2 of the algorithm,
δF ,0,∞,∞ = ∅ so δF0,∞,∞ is a partial strategy.

– j > 0: First we show that δFj,∞,∞ is a partial strategy. By inductive hy-
pothesis, δFj−1,∞,∞ is a partial strategy; thus it follows from Lemma 2 that
δFj,∞,∞ is a partial strategy.
If (q, t, φ) ∈ wj−1, then we use the inductive hypothesis. Moves in δFj−1,∞,∞

are carried forward to δFj,∞,∞ and never overwritten, so this is sound. Oth-
erwise, (q, t, φ) ∈ wj − wj−1:

1. By line 17 of the algorithm, (q, t, φ) ∈ zj,∞. By Lemma 2, this implies
that ∀λ ∈ out(δFj,∞,∞, (q, t, φ)) either (∃i > 0 such that λ[i] ∈ wj−1) or
(∃∞i > 0.λ[i] ∈ FC and ∀m ≥ 0 π2(λ[m + 1]) ∈ δB(π2(λ[m]), π1(λ[m +
1]))) .

2. Suppose ∃∞i > 0.λ[i] ∈ FC and ∀m ≥ 0 π2(λ[m + 1]) ∈ δB(π2(λ[m]),
π1(λ[m+ 1]))). This means that there exists ρB ∈ run(B, t, π1(λ[1,∞]))
such that ρB = π2(λ). So, by the Equation 3 λ[i] ∈ FC ⇔ ρB [i] ∈ FB .
Thus, π1(λ[1,∞]) ∈ L(B, t).

3. Otherwise, ∃i > 0.λ[i] ∈ wj−1. By the inductive hypothesis, ∀λ′ ∈
out(δFj−1,∞,∞, λ[i]) π1(λ

′[1,∞]) ∈ L(B, π3(λ[i])).
4. Since strategies are not overwritten λ[i,∞] ∈ out(δFj−1,∞,∞, λ[i]), thus
π1(λ[i+ 1,∞]) ∈ L(B, π3(λ[i]))

5. This means that there exists t′ ∈ π3(λ[i]) such that ∃ρ′ ∈ run(B, t′,
π1(λ[i+ 1,∞])).∃∞j ≥ 0.ρ′[j] ∈ FB .

6. Since the strategy obeys the transition relation of S, by the definition
of δS in Equation 1 there exists tB ∈ φ, ρB ∈ run(B, tB , π1(λ[1, i])) such
that ρB [i] = t′.

7. Thus, there is a path in B, ρ = ρB [0, i]ρ′[1,∞] which is labelled by π1(λ)
and for which ∃∞j ≥ 0.ρ[j] ∈ FB i.e. π1(λ[1,∞]) ∈ L(B, φ)

ut

Theorem 2. Once the algorithm has terminated, for all (q, t, φ) ∈ w∞,
δF∞,∞,∞ is a partial strategy such that ∀λ ∈ out(δF∞,∞,∞, (q, t, φ)) π1(λ[1,∞])
∈ L(B, φ).

Proof. Follows directly from termination and Lemma 3. ut

A.3 Proof of Theorem 3

We begin by proving the following unsurprising lemma:

Lemma 4. A Büchi automaton B and its generalised Rabin expansion R are
language-equivalent.

Proof. First we prove that if λ ∈ L(B) then λ ∈ L(R). By the definition of δR, if
t′ ∈ δB(t, a) then for all (t, φ) ∈ QR such that t ∈ φ, t′ ∈ π1(δR(t, φ)). So, since
there exists a run ρB ∈ win(B, λ) and for any reachable state (t, φ) in R, t ∈ φ,
we can conclude that there exists a run ρR ∈ run(R, λ) such that π1(ρR) = ρB .
Furthermore, if ρB visits FB infinitely often, then ρR visits FR infinitely often
and since every transition in ρR is in δB none of them are in ER so ρR is a
winning run and thus λ ∈ L(R).

Now we prove that if λ ∈ L(R) then λ ∈ L(B). There exists a run ρR ∈
win(R, λ) so ∃i ≥ 0.∀j ≥ i (ρR[j], λ[j], ρR[j+1]) 6∈ ER. So for all j ≥ i π1(ρR[j+
1]) ∈ δB(π1(ρR[j]), λ[j]) i.e. π1(ρR[i,∞]) ∈ run(B, π1(ρR[i]), λ[i,∞]). We must
show that B can reach this point and that the complete run is accepting. Since
S maintains the set of reachable states in B and for every reachable state (t, φ)
in R, t ∈ φ, there is a run ρB of B on λ[0, i−1] such that ρB [i] = π1(ρR[i]). Thus
there is a complete run ρB of B on λ such that ρB [i,∞] = π1(ρR[i,∞]) and by
the acceptance condition of R this run visits FB infinitely often so λ ∈ L(B). ut

Now we define new predecessor functions to work over the product of a game
and a generalised Rabin expansion.

preRP (X,W) = {〈(q, (t, φ)), (q′, (t′, φ′))〉 | q′ ∈ δG(q), (t′, φ′) ∈ δR((t, φ), q′)

(〈(t, φ), q′(t′, φ′)〉 6∈ ER ∧ (q′, (t′, φ′)) ∈ X) ∨ ((q′, (t′, φ′)) ∈W)}

(9)

preRA(X,W) = {〈(q, (t, φ)), (q′, (t′, φ′))〉 ∈ preP (X,W) | ∀q′2 ∈ δG(q)

∃〈(q, (t, φ)), (q′2, (t
′
2, φ

′
2))〉 ∈ preP (X,W)}

(10)

We also define abbreviations over G×R as follows:

FGR = {(q, (t, φ)) ∈ QG ×QR | (t, φ) ∈ FR} (11)

QGRP = {(q, (t, φ)) ∈ QG ×QR | q ∈ QP } (12)

QGRA = {(q, (t, φ)) ∈ QG ×QR | q ∈ QA} (13)

Lemma 5. For any game G, with a winning condition specified by a Büchi
automaton B, if B’s generalised Rabin expansion R is trivially determinisable
then all winning states for P in G×R satisfy

µw.νz.µs.π1((preRP (s ∨ (z ∧ FGR), w) ∧ (QGRP ×QGRA))

∨ (preRA(s ∨ (z ∧ FGR), w) ∧ (QGRA ×QGRP))
(14)

Proof. Since R is trivially determinisable, and its transitions are evaluated exis-
tentially in preRP and preRA, we treat it as deterministic. We prove that (under
the assumed determinism) for all states (q, (t, φ)) ∈ QG×QR if (q, (t, φ)) is win-
ning for P then it satisfies Equation 14. For any winning state (q, (t, φ)) there
exists n ≥ 0 such that if f is the winning strategy for P , ∀λ ∈ out(f, q) the run
ρ = win(R, (t, φ), λ) has at most n transitions from ER: a pumping argument
shows that if there are a series of runs in out(f, q) requiring an increasing num-
ber of transitions from ER, then there is a run which requires infinitely many,
violating the premise that f is winning. We prove by induction over n that
(q, (t, φ)) � µnw.νz.µs.π1((preRP (s∨ (z∧FGR), w)∧ (QCP ×QCA))∨ (preRA(s∨
(z ∧ FR), w) ∧ (QGRA ×QGRP)).

– n = 0: When n = 0, R behaves like a deterministic Büchi automaton so we
can prove that (q, (t, φ)) � µ0w.νz.µs.π1((preRP (s ∨ (z ∧ FR), w) ∧ (QCP ×
QCA)) ∨ (preRA(s ∨ (z ∧ FR), w) ∧ (QCA × QCP)) in the same way as we
proved Theorem 1.

– n > 0: We show by fixed-point induction that (q, (t, φ)) satisfies

νz.µs.π1((preRP (s ∨ (z ∧ FR),Wn−1) ∧ (QCP ×QCA))

∨ (preRA(s ∨ (z ∧ FR),Wn−1) ∧ (QCA ×QCP))
(15)

WhereWn−1 is the n−1-th approximant of Equation 14. If (q, (t, φ)) is in the
m-th approximant of Equation 15, and not the m+1-th then for all strategies
f there exists λ ∈ out(f, q) such that on the corresponding run ρ = run(R, λ)
visits FR m times, but on the m-th visit (say, at (λ[i], ρ[i+1])), (λ[i], ρ[i+1])
is not in the 0-th approximant of Equation 15. This means that for every
strategy f ′ there is a run λ′ ∈ run(f ′, λ[i]) such that the corresponding
run ρ′ = run(R, ρ[i+ 1], λ′) either does not visit FR infinitely often without
visiting ER or it visits ER and then is not in W n−1. Take the first case, if this
is true, then λ′ 6∈ L(R, ρ[i + 1]) since R is deterministic, this means that f
cannot be a winning strategy: a contradiction. In the second case, the target
of the ER transition (say, (λ′[j], ρ′[j + 1])) is a reachable state and must use
strictly less than n ER transitions in accepting any outcome from λ′[j] or else

it would not be true that n was the maximum needed from (q, (t, φ)). This
means that by the inductive hypothesis, (λ′[j], ρ′[j + 1]) ∈ W n−1, another
contradiction. Thus, (q, (t, φ)) satisfies Equation 15.

Theorem 3. For any game G, with a winning condition specified by a Büchi
automaton B, if B’s generalised Rabin expansion is trivially determinisable then
all winning states for P in QC satisfy µw.νz.µs.π1((preP (s ∨ (z ∧ FC), w) ∧
(QCP ×QCA)) ∨ (preA(s ∨ (z ∧ FC), w) ∧ (QCA ×QCP)).

This theorem follows from Lemma 5, the definitions of the generalised Rabin
expansion of B, preRP and preRA and the definition of the main algorithm.

A.4 Proof of Theorem 4

Theorem 4. Let ψ be an LTL formula over a set, P, of atomic propositions.
Let T be the symbolic tableau automaton for ψ constructed as above. For any
ψ1 ∈ sub(ψ), any t ∈ {r, o} and any path, π, in T , for all i ≥ 0 if π[i] ∈ sat(ψt1)
and π[i,∞] satisfies fsat(ψt1) then π[i,∞] � ψ1.

Proof. We prove for all t ∈ {r, o} by induction over the structure of ψ1.

– Case ψ1 ∈ Π : π[i] ∈ sat(ψt1) ⇔ π[i] � ψ1 ⇔ π[i,∞] � ψ1.
– Case (ψ1 ∨ψ2)

t: We split on the cases for π[i] ∈ sat((ψ1 ∨ψ2)
t). In all cases,

π[i,∞] satisfies fsat(ψt1) ∧ fsat(ψt2) ∧ (fsat(ψo1) ∨ fsat(ψo2)):

• π[i] ∈ sat(ψt1): By induction, π[i,∞] � ψ1 so π[i,∞] � ψ1 ∨ ψ2.
• π[i] ∈ sat(ψt2): By induction, π[i,∞] � ψ2 so π[i,∞] � ψ1 ∨ ψ2.
• π[i] ∈ sat(ψo1) ∧ sat(ψo2): By induction, π[i,∞] � ψ1 or π[i,∞] � ψ2 so
π[i,∞] � ψ1 ∨ ψ2.

– Case (ψ1 ∧ ψ2)
t: π[i] ∈ sat(ψt1) and π[i] ∈ sat(ψt2) and π[i,∞] satisfies

fsat(ψt1) ∧ fsat(ψt2) so by induction π[i,∞] � ψ1 ∧ ψ2.
– Case (Xψ1)

t: By the definition of sat and the transition relation, π[i] ∈
sat((Xψ1)

t) implies that π[i + 1] ∈ sat(ψt1). π[i,∞] satisfies fsat(ψ1) so, by
induction π[i+ 1] � ψ1. Thus, π[i,∞] � Xψ1.

– Case (ψ1 U ψ2)
t: π[i] ∈ sat(ψt2) or π[i] ∈ sat(ψt1) ∧ sat((X(ψ1 U ψ2))

t). In
either case π[i,∞] satisfies fsat(ψt1) ∧ fsat(ψt2) and ∃∞j ≥ i.π[j] ∈ sat(ψt2) ∨
¬(X(ψ1 U ψ2))

t.

• If π[i] ∈ sat(ψt2), then by induction π[i,∞] � ψ2 and thus π[i,∞] �

ψ1 U ψ2.
• If π[i] ∈ sat(ψt1)∧sat((X(ψ1 U ψ2))

t) then, again by induction, π[i,∞] �

ψ1. By the definition of sat and the transition relation π[i+ 1] ∈
sat((ψ1 U ψ2)

t). We can make the same argument that π[i+1] ∈ sat(ψt2)
or π[i+1] ∈ sat(ψt1)∧sat((X(ψ1 U ψ2))

t). Since ∃∞j ≥ i.π[j] ∈ sat(ψt2)∨
¬(X(ψ1 U ψ2))

t, there must eventually be some k > i such that π[k] ∈
sat(ψ2). Take k to be the smallest such integer; since ∀i2 ∈ [i, k − 1] we
can prove that π[i2,∞] � ψ1, we conclude that π[i,∞] � ψ1 U ψ2.

– Case (ψ1 R ψ2)
t: By definition of sat, either π[i] ∈ sat(ψt1) ∧ sat(ψt2) or

π[i] ∈ sat(ψt2)∧ sat((X(ψ1 R ψ2))
t). In both cases π[i,∞] satisfies fsat(ψt1)∧

fsat(ψt2).
• If π[i] ∈ sat(ψt1) ∧ sat(ψt2), then by induction π[i,∞] � ψ1 and π[i,∞] �

ψ2 so π[i,∞] � ψ1 R ψ2.
• If π[i] ∈ sat(ψt2) ∧ sat((X(ψ1 R ψ2))

t), then by induction π[i,∞] � ψ2

and π[i + 1] ∈ sat((ψ1 R ψ2)
t). We can re-use the same argument for

π[i + 1] and all further cases. Either there exists some j > i such that
π[j] ∈ sat(ψt1) ∧ sat(ψt2), or there does not. If such a j exists, take it to
be the smallest one; we prove by induction that π[j,∞] � ψ1 ∧ ψ2 and
since ∀k ∈ [i, j] we can prove that π[k,∞] � ψ2 we have proven that
π[i,∞] � ψ1 R ψ2. If there is no such k, then for all j ≥ i we can prove
that π[i,∞] � ψ2 so π[i,∞] � ψ1 R ψ2.

ut

A.5 Proof of Proposition 1

Proposition 1. The tableau for LTL formulae of the form G(p∧ (r0 ⇒ Fs0) ∧
. . . ∧ (rn ⇒ Fsn)) (where p, ri, and si are propositional formulae) is always
trivially determinisable.

Proof. Let ψ be the entire request-response formula. We prove the proposition
by showing that the tableau generated for ψ can be trivially determinised to a
language equivalent tableau, TD. Instead of using sat(ψ) for the initial states
and Equation 8 for the transition relation of the tableau we make a number of
changes. First, we assume that optional variables are always false so any varaibles
mentioned are in their required forms. Then, we use Xψ ∧ p∧

∧

i∈[0,n]

(

XFsi ⇔

ri∧¬si
)

for the initial states andXψ∧p′∧
∧

i∈[0,n]

(

XFs′i ⇔ (XFsi∨r′i)∧¬s
′
i

)

for
the transition. The initial formula is clearly deterministic for a given assignment
to the labels of the tableau {r0, s0, r1, s1, . . .} and the transition is deterministic
for a given assignment to current-state tableau variables and the next-state labels
{XFs0, r′0, s

′
0, XFs1, r

′
1, s

′
1, . . .}, thus TD is deterministic. The transition formula

is non-blocking and both formulae imply the corresponding definitions in Section
42. We now prove that this deterministic tableau still accepts any path satisfying
ψ by showing that for any path λ � ψ, the run ρ = run(TD, λ) is fair with
respect to fsat(ψ). Specifically, this means that ∀i ∈ [0, n] ∃∞j.XFsi 6∈ ρ[j].
By the definition of the initial states and transition relation, ∀i ∈ [0, n], j ≥
0 XFsi ∈ ρ[j] ⇒ ∃k ≤ j.ri ∈ ρ[k] ∧ ∀m ∈ [k, j] si 6∈ ρ[m]. Since λ � ψ,
λ[k,∞] � ri ⇒ Fsi so there exists n > j such that si ∈ ρ[n] and by the
definition of the transition relation XFsi 6∈ ρ[n]. So the fairness constraints are
satisfied. Thus the tableau for ψ can be trivially determinised. ut

2 This would not be the case had we not weakened the condition on the transition
relation (Equation 8) from the ⇔ definition of [4] to ⇒

