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Requirements, spe
i�
ations, and minimalre�nementNikos Gorogiannis 1 and Mark Ryan 2S
hool of Computer S
ien
eUniversity of BirminghamEdgbaston, Birmingham B15 2TT, UKAbstra
tRe�nement is usually employed to produ
e more 
on
rete versions of a spe
i�
ation,or to add new requirements to it. However, during spe
i�
ation revision one mayover-re�ne, thus in
orporating unne
essary requirements. In this paper, we arguethat this pro
ess 
an be formalised by the notion of minimal re�nements, hen
eavoiding over-re�nement, and prove that this de�nition is well-behaved theoreti
allyas well as 
omputationally.1 Introdu
tionA 
ommon way to develop 
omputer systems (whether hardware or software)is by re�nement : one starts with an abstra
t spe
i�
ation, and re�nes itgradually (e.g. [1℄). The re�nements may be triggered by the need to satisfyadditional requirements. However, one would like to avoid re�ning the spe
i�-
ation too mu
h, in order to keep it 
exible and avoid building in unne
essaryassumptions. In this paper, we study minimal re�nements. We address thequestion: given a spe
i�
ation and a requirement, what is the smallest re�ne-ment of the spe
i�
ation whi
h will make it satisfy the requirement?Example 1.1 A university department has a poli
y whi
h governs a

ess tostudent marks, in
luding perhaps the requirements:� a student has read-a

ess to all his marks;� a student does not have write-a

ess to any of his marks;� a professor has read-a

ess to all student marks, and write-a

ess to themarks of the modules she tea
hes.1 nkg�
s.bham.a
.uk2 mdr�
s.bham.a
.uk, http://www.
s.bham.a
.uk/~mdrThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Gorogiannis and RyanThis system allows 
ertain a

ess operations and denies others. Be
ause it isunder-spe
i�ed it may also be non-deterministi
 about the out
ome (whethera

ess allowed or not) of some operations. The poli
y may be en
oded as anon-deterministi
 transition system M . Any implementation whi
h satis�esthe requirements, i.e. whi
h re�nes M , is a

eptable.A further requirement is now imposed upon the department, perhaps bynew legislation, su
h as:� no student may have read-a

ess to another student's marks.To in
orporate this, we seek a re�nement of M whi
h satis�es the new re-quirement. Naturally, we do not want to re�ne too mu
h, unne
essarily loos-ing 
exibility with respe
t of further requirements, so we attempt to re�neminimally, just enough to satisfy the new 
onstraint.We assume that spe
i�
ations and implementations of systems are repre-sented as models (Kripke models or transition systems), and that requirementsare presented as logi
al formulas. We study the operator � whi
h takes a modelM and a formula �, and returns a set of modelsM �� whi
h is the set of leastre�nements of M whi
h satisfy �. We explore the following properties of thisoperation:� When do minimal re�nements exist?� When are the properties of the minimal re�nements de
idable?These questions are studied in a variety of 
ontexts, su
h as: �nite models,serial models, and m-saturated models.We will use Kripke models to model systems. A well-understood notionof re�nement in this 
ontext is simulation [12℄. It has been studied exten-sively as well as having served as the basis for a multitude of other more�ne-grained proposed notions for re�nement. The logi
 used in the followingis the polymodal logi
 Kn (essentially Hennessy-Milner logi
 [8℄ extended withpropositional information) with an outlook on temporal logi
s. Using simula-tion, we de�ne an ordering that depends on M , whi
h 
aptures re�nement ofM and that is related to the simulation preorder (see e.g. [3,7℄). Then, M � �is de�ned as the set of the models of � that are minimal with respe
t to theordering.Below we prove that for two important 
lasses of Kripke models, the m-saturated and the �nite models, the operation is well-behaved. We 
hara
terisethe 
onditions that the spe
i�
ation and the property need to satisfy in orderfor the operation to yield non-trivial results (i.e. not just all the models of �).In the 
ase of �nite models, we prove that 
he
king whether an implementationis minimal is de
idable and that for properties in a fragment of Kn (and alsofor a fragment of CTL�), 
he
king whether su
h properties are true on theresults of the operation is de
idable.The de�nition of M �� is reminis
ent of, and indeed inspired from, theory
hange and non-monotoni
 reasoning. In those �elds one of the ways to de�ne2



Gorogiannis and Ryana theory 
hange operation is to de�ne an ordering on possible worlds that
aptures a notion of 
loseness to the initial world, and then minimising withrespe
t to that ordering within a pres
ribed set of worlds. In this sense M ��is a non-monotoni
 operation sin
e it may be the 
ase that M � � 6j=  whileM j=  .2 De�nitionsLet A be a set of l atomi
 propositions. The modal language L of the logi
Kn on A with k modalities is de�ned indu
tively� if p 2 A then p 2 L,� if �;  2 L then :�; � ^  2 L,� if � 2 L then 3i� 2 L for all 1 � i � k.The usual propositional abbreviations apply as well as the modal 2i � :3i:.The degree deg(�) of a formula � is de�ned as the maximum nesting depth ofmodalities in �.A Kripke model M for L is a tuple hWM ; rM ; R1M ; � � � ; RkM ; vMi. WM is aset of states or worlds. rM is a distinguished state inWM 
alled the initial stateor the root. RiM � WM �WM are a

essibility relations and vM : WM ! 2A isa valuation for the propositional letters. Satisfa
tion of formulas at a state sis de�ned indu
tively by the usual propositional 
lauses along with the modalone: M; s j= 3i� i� there exists a state t 2 WM su
h that (s; t) 2 RiM andM; t j= �. We will write s j= � when the model is obvious. By jM j we denotethe 
ardinality of WM . A model M is �nite i� jM j is �nite.A path is a �nite sequen
e of states su
h that for any pair of states si; si+1in the sequen
e, there exists a j su
h that (si; si+1) 2 RjM . The depth of astate s is de�ned as the minimum length of a path from the root to s if su
ha path exists, otherwise as !.A model M for a logi
 with a single modality is 
alled serial if the singlea

essibility relation RM is serial, i.e. i� for all states s 2 WM there exists astate t 2 WM su
h that (s; t) 2 RM .The set of senten
es true at a state s is denoted by th(s). In the followingwe will fo
us on validity of formulas on the root and not on the whole model asis usual in modal logi
. This approa
h is 
ommonpla
e in the temporal logi
literature where models represent transition systems with a starting state.Thus we de�ne the theory of a model to be the theory of its root, th(M) =th(rM). Sin
e the root is our `entry point' in a model, we will only 
onsidermodels whose states are all rea
hable from the root. Two models M;N arelogi
ally equivalent i� th(M) = th(N).The logi
 usually studied in modal logi
 is the one enfor
ed by global va-lidity on frames. In other words, � j= � is taken to mean that for all frames F ,if F j= �, then F j= �. As noted above, we employ a lo
al entailment relationat the level of states of models, i.e. taking � j= � to mean that for all models3



Gorogiannis and RyanM and all states s 2 WM , if M; s j= � then M; s j= �. These two de�nitionsgive rise to the same logi
, a fa
t witnessed by the strong 
ompleteness of Kn(see e.g. [2℄). To simplify our exposition, we will use an axiomatisation thatis equivalent to the usual for Kn but validates the dedu
tion theorem at the
ost of losing the ne
essitation rule. This axiomatisation has modus ponensas its sole rule of inferen
e and as axioms it has all propositional tautologies,possibly pre�xed by an arbitrary sequen
e of box modalities and any formulaof the form 2i1 : : :2in(2j(�)  )) (2j�) 2j )).Let M;N be models and B � WM �WN a relation. B is a bisimulation if� It relates the initial states, (rM ; rN) 2 B,� It respe
ts the valuations, (s; t) 2 B implies vM (s) = vN(t),� If (s; t) 2 B and s0 is an RjM -su

essor of s then there exists t0, an RjN -su

essor of t, su
h that (s0; t0) 2 B, for all j (the forth 
ondition),� If (s; t) 2 B and t0 is an RjN -su

essor of t then there exists s0, an RjM -su

essor of s, su
h that (s0; t0) 2 B, for all j (the ba
k 
ondition).If there exists a bisimulation between M;N then M and N are bisimilar,written M � N and it follows that th(M) = th(N).An approximation of bisimulation is n-bisimulation. Two models M;Nare n-bisimilar, written M �n N i� there exists a sequen
e of relations �n�� � � ��0� WM �WN su
h that� rM �n rN ,� For all 1 � i � k and all m < n, if s �m+1 t and s0 is an RiM -su

essor of sthen there is an RiN -su

essor t0 of t su
h that s0 �m t0,� For all 1 � i � k and all m < n, if s �m+1 t and t0 is an RiN -su

essor of tthen there is an RiM -su

essor s0 of s su
h that s0 �m t0,� For all m � n, if s �m t then vM(s) = vN (t).Bisimilarity implies n-bisimilarity for all n, but the 
onverse is not true ingeneral. Another standard result about n-bisimulations is that M �n N i�for all formulas � with deg(�) � n, M j= � i� N j= �. Also, a result whi
hwe will make use of below is that for all n there is an e�e
tive pro
edure for
omputing a �nite set of �nite models Tn su
h that (a) every model in Tn is atree of depth at most n and (b) for any model M there is a tree T 2 Tn su
hthat M �n T . These results 
an be found in [13℄.A formula is 
alled positive universal i� it is made up only from p;:p;^;_and 2i for all 1 � i � k. LPU is the subset of L that 
onsists of positiveuniversal formulas. If s is a state then PU(s) = LPU \ th(s). If M is a model,then PU(M) = PU(rM). Dually, a positive existential formula is made upfrom p;:p;^;_ and 3i. LPE and PE are de�ned similarly and are duals ofLPU and PU respe
tively. Note that the negation of a PU formula is a PE oneand vi
e versa. If P is a set of PU senten
es then P 
 is the 
omplement of Pwith respe
t to LPU. P 
ontains the negation of every formula in P .4



Gorogiannis and RyanIntuitively, positive universal formulas des
ribe restri
tions on what statesare a

essible. In the 
ontext of transition systems, PU formulas pres
ribewhat 
onditions a sequen
e of a
tions must satisfy if it is to be allowed. Dually,a PE formula asserts the possibility of the exe
ution of a sequen
e of a
tions.Let M be a model and s 2 WM a state. A set of senten
es T will be
alled satis�able on the su

essors of s i� for ea
h relation RiM there existsa state t 2 WM su
h that (s; t) 2 RiM and T � th(t). Similarly, T will be
alled �nitely-satis�able on the su

essors of s i� for ea
h relation RiM andfor any �nite set of senten
es F � T there exists an RiM -su

essor t of s su
hthat F � th(t). A state s is 
alled m-saturated i� for any set of senten
esT , if T is �nitely-satis�able on the su

essors of s, then it is satis�able onthe su

essors of s. A model is m-saturated if all its states are m-saturated.modm(�) is the 
lass of m-saturated models M of �. We write MSAT for the
lass of m-saturated models. Noti
e that MSAT is bisimulation-
losed.In the following we will use the ultra�lter extension of a model. We willnot make referen
e to the internals of the 
onstru
tion, just to two of itsproperties: the ultra�lter extension of a model M is another model ue(M)that is logi
ally equivalent to M and also, ue(M) is m-saturated. A

ounts ofthe 
onstru
tion appear in many pla
es, e.g. [2℄.A 
lass of models has the Hennessy-Milner property whenever for everypair of its models, they are bisimilar i� they are logi
ally equivalent. In otherwords, models in a Hennessy-Milner 
lass are 
ompletely 
hara
terised by thelogi
, i.e. if two su
h models are not bisimilar then there is a witnessing formulathat distinguishes them.MSAT has the following important properties [9℄� It subsumes the 
lass of image-�nite models (and hen
e the �nite ones).� It has the Hennessy-Milner property.� It is maximal in the sense that no proper super
lass of MSAT has theHennessy-Milner property.� It has also been used to provide semanti
s for pro
ess algebras.Let M;N be models and S � WM �WN a relation on their states. S willbe 
alled a simulation i� it satis�es the �rst three 
lauses in the de�nitionof bisimulation, i.e. it must link the initial states, preserve valuations andrespe
t the a

essibility relations but in one-way only (the forth 
ondition). Ifthere exists a simulation from M to N we write M ! N or N  M and saythat N simulates M or that M is simulated by N . Whenever M  N andM ! N we will say that M and N are similar or simulation equivalent andwrite M � N . It is easy to 
he
k that simulations are transitive.Let M be a 
lass of models. An ordering � over M is stoppered fora formula � i� for any model M 2 modM(�) there is another model N 2modM(�) su
h that N � M and that N is �-minimal in modM(�). Thede�nition is extended for sets of senten
es in the obvious way.5



Gorogiannis and Ryan3 ResultsLet M;N1; N2 be models. We de�ne an ordering �M su
h that N1 �M N2 i�(i) M  N1  N2 or(ii) M  N1 but M 8 N2 or(iii) N1 � N2.It is not hard to prove that this ordering is transitive and re
exive. By takingsimilarity as the main equivalen
e notion between models, antisymmetry isobtained, i.e. if A �M B and B �M A then A� B. In other words, �M is apartial order.Let M be a 
lass of models, M a model inM and T a set of senten
es.We de�ne an operation �M :M� 2L ! 2MM �M T = min�M (modM(T ))This de�nition reminds one of a type of theory 
hange whi
h is known asupdate [11℄. It is a point-wise de�nition, i.e. the ordering depends on a modelrather than an arbitrary theory as is usual in the 
ase of revisions, the otherwell-known type of theory 
hange (see, e.g. [6,10℄). In addition, the orderingis partial, a 
ondition whi
h automati
ally validates the update axioms viathe representation theorem mentioned in [11℄.Given su
h an operation, several questions arise. Firstly, it is not obviousthat it is well-de�ned, i.e. whether the existen
e of minimal models is guaran-teed so that M �M T 6= ;. We address this question in propositions 3.6 and3.11, for the 
lass of m-saturated models and arbitrary sets of senten
es andfor the 
lass of �nite models and arbitrary senten
es, respe
tively.Moreover, it is of interest to know the 
onditions that guarantee non-triviality of the results of the operation, or in other words, when it is the
ase that M �M T � modM(T ). The ne
essary and suÆ
ient 
onditions fornon-triviality are presented in lemmas 3.4 and 3.7 for m-saturated and �nitemodels, respe
tively. In addition, the de
idability of determining non-trivialityfor a �nite model M and a formula � is proved in lemma 3.8.Finally, in the 
ase of �nite models, we prove that two interesting problemsare de
idable: �rstly, that 
he
king minimality of a �nite modelN with respe
tto a �nite modelM and a formula � is de
idable (lemma 3.12). Se
ondly, thatreasoning within a fragment of the language about the results of the operationis de
idable, i.e. answering queries of the form M � � j=  (proposition 3.14).The �rst three lemmas 
hara
terise simulation in synta
ti
 terms, andestablish an exa
t mat
h in the m-saturated 
ase.Lemma 3.1 (Folklore) IfM;N are models su
h thatM  N , then PU(M) �PU(N).Lemma 3.2 (Folklore) Let M;N be models. If PU(M) � PU(N) and M ism-saturated, then there exists a simulation from N to M , M  N .6



Gorogiannis and RyanProof. For 
onvenien
e we will work with PE formulas, the dual of PU ones.Note that PU(s) � PU(t) i� PE(s) � PE(t). De�ne a relation S su
h that(s; t) 2 S i� s 2 WN , t 2 WM and PE(s) � PE(t). We prove that Sis a simulation. Obviously it respe
ts the valuations, i.e. if (s; t) 2 S thenvN(s) = vM(t). Assume that s has a su

essor s0 with respe
t to a relationRiN . Let P be the set of PE senten
es of s0. For any �nite subset F � P ,s0 j= VF and thus s j= 3iVF . 3iVF is a PE formula, so by de�nitionit is satis�ed at t. Thus there is an RiM -su

essor of t that satis�es VF . Inother words, P is �nitely-satis�able on the su

essors of t. M however is m-saturated, thus there is an RiM -su

essor t0 of t that satis�es P and as su
hPE(s0) � PE(t0).So, S is a simulation whenever it is non-empty and it relates the initialstates. Those 
onditions are satis�ed by the assumption PU(M) � PU(N) orequivalently PE(N) � PE(M). 2Let T be a set of senten
es. T is 
losed under taking disjun
ts i� whenever� _  2 T then � 2 T or  2 T . T is 
losed under LPU-
onsequen
e i�whenever T ` � and � 2 LPU then � 2 T .Lemma 3.3 Let P � LPU. There exists a model M su
h that P = PU(M)i� P is 
onsistent, 
losed under LPU-
onsequen
e and taking disjun
ts.Proof. The left-to-right dire
tion is trivial. Right-to-left: for a model M tohave exa
tly P as its set of PU formulas, it must satisfy P and falsify its
omplement with respe
t to LPU. In other words, there exists su
h a modeli� P; P 
 6` ?. Assume the latter is not the 
ase. Then there exist formulas�;  1; : : : ;  m su
h that � 2 P (note that P is 
losed under 
onjun
tion),: i 2 P 
 and �;: 1; : : : ;: m ` ?. But then, � `  1 _ : : : _  m and sin
e Pis 
losed under LPU-
onsequen
e,  1 _ : : : _  m 2 P . P is also 
losed undertaking disjun
ts so there exists 1 � j � m su
h that  j 2 P whi
h is a
ontradi
tion be
ause  j 2 P 
. 2If no model of a set of senten
es T is simulated by a model M , then asnoted in the beginning of this se
tion, all models of T will be in
omparablewith respe
t to the ordering �M , and thus, M �m T = modm(T ). If there isat least one su
h model in modm(T ), then �m will return a stri
t subset ofmodm(T ), in view of the se
ond 
lause of the de�nition of the ordering. The
onditions under whi
h this happens are 
hara
terised in the next lemma.Lemma 3.4 Let M be an m-saturated model and T a set of senten
es. Then,there exists an m-saturated model N of T su
h thatM  N i� PU(M); T 6` ?.Proof. Left-to-right: Sin
eM  N it follows from lemma 3.1 that PU(M) �PU(N). Thus N is a model of both T and PU(M).Right-to-left: Let N be a model of PU(M) [ T . Then, PU(M) � PU(N).Sin
e N may not be m-saturated, we take the ultra�lter-extension of N , ue(N)7



Gorogiannis and Ryanwhi
h is logi
ally equivalent to N and as su
h a model of PU(M) [ T , andm-saturated. It follows that T � th(ue(N)) and that PU(M) � PU(ue(N)).As M is m-saturated it follows from lemma 3.2 that M  ue(N). 2The following lemma and proposition 
on
ern stopperedness of the order-ing for m-saturated models. Lemma 3.5 enables us to apply Zorn's lemmaby proving that for any suitable 
hain (i.e. a totally ordered set of models), asuitable lower bound 
an be found, and indeed, the in�mum.Lemma 3.5 Let M be an m-saturated model and T a 
onsistent set of sen-ten
es of whi
h M is not a model. Let C � modm(T ) be a nonempty 
hainwith respe
t to �M where all of its members are simulated by M . Then thereexists an m-saturated model of T whi
h is the in�mum of C (modulo simula-tion equivalen
e).Proof. De�ne P = TN2C PU(N). Sin
e any model N in the 
hain is simu-lated by M , PU(M) � PU(N) and therefore PU(M) � P . Also, for any twomodels A;B 2 C it will be the 
ase that PU(A) � PU(B) or PU(B) � PU(A).We will prove that there exists a model I with PU(I) = P whi
h satis�es T .P is obviously 
onsistent as a subset of 
onsistent sets. Also, it is easy to
he
k that P is 
losed under LPU-
onsequen
e.We now prove that P is 
losed under taking disjun
ts. Assume �_ 2 P .Then, for all L 2 C, L j= � _  . If all the models in C satisfy � we aredone, so assume that there exists a pair of models N;N 0 2 C su
h thatN j= �^: and N 0 j= :�^ . But this 
ontradi
ts the fa
t mentioned above,that PU(N) � PU(N 0) or PU(N 0) � PU(N). Hen
e P is 
losed under takingdisjun
ts.From lemma 3.3 it follows that P[P 
 is 
onsistent. Assume that P; P 
; T `?. Then there exist :�1; : : : ;:�n 2 P 
 su
h that P; T;:�1; : : : ;:�n ` ? orequivalently P; T ` �1 _ : : : _ �n. Thus, for all N 2 C, N j= �1 _ : : : _ �n,hen
e �1 _ : : : _ �n 2 PU(N) and therefore �1 _ : : : _ �n 2 P . As P is 
losedunder taking disjun
ts there is one disjun
t �j su
h that �j 2 P , whi
h is a
ontradi
tion. So there is a model I of P [P 
[T . I need not be m-saturated,but its ultra�lter extension ue(I) is, and as it is logi
ally equivalent to I itwill satisfy P [ P 
 [ T too.By the de�nition of P we have that for all N 2 C, PU(ue(I)) � PU(N).Thus, by lemma 3.2 we get that ue(I)  N . Also, PU(M) � PU(ue(I))whi
h implies that M  ue(I). So, ue(I) is a lower bound of C with respe
tto �M . In addition, for any other lower bound L of C, it follows that PU(L) �TN2C PU(N) and thus that ue(I) is the in�mum of C (modulo similarity).2In propositions 3.6 and 3.11 we prove stopperedness for m-saturated and�nite models, respe
tively. The appli
ation of Zorn's lemma is usually a 
ru
ialpart of su
h proofs. The 
ommonly 
ited version of Zorn's lemma, however,is not enough to yield stopperedness when its premises are satis�ed. We usean easily derivable, but stronger version: if X is a partially-ordered set and8



Gorogiannis and Ryanany well-ordered subset of X has a lower bound in X, then for any elementof s 2 X, there exists a minimal element s0 2 X that is 
omparable to s,i.e. s0 � s.Proposition 3.6 Let M be an m-saturated model. The ordering �M over the
lass of m-saturated models is stoppered for any 
onsistent set of senten
es T .Proof. If T � th(M) then, of 
ourse, M is a minimum with respe
t to�M in modm(T ), as well as any other m-saturated model N of T su
h thatM � N . It follows that for any m-saturated model L of T there is an m-saturated model of T , i.e. M , whi
h is minimal and M �M N . In the 
asewhere M =2 modm(T ), it may or may not be the 
ase that PU(M) [ T is
onsistent. If not, then by applying lemma 3.4 it follows that there are nomodels in modm(T ) that are simulated by M . Hen
e, only the third 
lause ofthe de�nition of �M 
an ever apply, rendering all (equivalen
e 
lasses undersimulation of) models in modm(T ) in
omparable. In this 
ase, for any modelN 2 modm(T ) there is a model N 0 (namely N itself) su
h that N 0 �M N ,where N 0 is minimal.Thus, we assume that PU(M) [ T is 
onsistent. Be
ause of the se
ond
lause of the de�nition of the ordering, it is easy to see that in this 
ase theset of minimal elements will be a subset of modm(PU(M) [ T ). Therefore werestri
t our attention to the models in modm(PU(M)[ T ) whi
h, by virtue oflemma 3.4, are all simulated by M . Then, for a 
hain in modm(PU(M) [ T ),lemma 3.5 applies. Sin
e it asserts something about any 
hain, i.e. any totally-ordered set of models, it spe
ialises dire
tly to well-ordered 
hains of models.Therefore, by Zorn's lemma, for any model N 2 modm(T ) there exists anothermodel N 0 2 modm(T ) su
h that N 0 is minimal and N 0 �M N . 2This 
on
ludes our set of results for m-saturated models. For �nite models,we start again from 
hara
terising the 
onditions under whi
h the operation isnon-trivial, and also prove the de
idability of determining non-triviality. Wewill use modf (�) to denote the 
lass of �nite models that satisfy �.Lemma 3.7 Let M be a �nite model and � a formula. Then, PU(M); � 6` ?i� there exists a �nite tree L of depth at most deg(�) su
h that L j= � andM  L.Proof. The right-to-left dire
tion is trivial. So, we assume the former andapply lemma 3.4 to obtain a (possibly in�nite) model K su
h that K j= �and M  K. We 
onstru
t a �nite model L of � su
h that K  L. Fora �xed n there is a (
omputable) �nite 
olle
tion of trees Tn of depth up ton su
h that for any model A there is a tree T 2 Tn su
h that A �n T . Letn = deg(�). Let L be the tree in Tn su
h that L �n K. Obviously L j= �. Then-bisimulation between K and L is also a (ba
kwards) simulation between Kand L, i.e. K  L. Be
ause of transitivity of simulations, M  L. 29



Gorogiannis and RyanLemma 3.8 Let M be a �nite model and � a formula. The de
ision problemof whether there exists a �nite model L of � su
h that M  L is de
idable.Proof. From lemma 3.7 it follows that if there is su
h a model there is alsoa �nite one. Indeed one with depth at most n = deg(�). We produ
e Tn.For ea
h model T in Tn we 
he
k whether T j= � and whether M  T (bothproblems are de
idable be
ause M and T are �nite). 2Let L be a model, and s 2 WL one of its states. s is said to have in-degree one whenever it has a unique an
estor with respe
t to the union ofall a

essibility relations in L. L will be 
alled smooth i� every state in WLapart from the root has in-degree one and �nite depth, or in other words, Lis a 
ountable tree. For every model L there is a smooth one Ls su
h thatL � Ls. The proof of this result as well as of a general version of the followinglemma 
an be found in [5℄. This lemma will allow us to 
on
entrate on simplesimulations, i.e. fun
tional ones, in what follows.Lemma 3.9 Let K andM be models su
h that K is smooth,M is m-saturatedand M  K. Then there exists a fun
tional simulation from K to M .Proof. We de�ne a fun
tion S : WK ! WM and prove by indu
tion that forany t 2 WK , PE(t) � PE(S(t)). We set S(rK) = rM . Sin
e M  K it followsfrom lemma 3.1 that PU(M) � PU(K) and thus PU(S(rK)) � PU(rK), orPE(rK) � PE(S(rK)).Assume that S has been de�ned for all states in K of depth up to n�1 andlet t 2 WK be a state of depth n. Sin
e K is smooth, t has a uniquely de�nedan
estor t0 with respe
t to some relation RiK . By the indu
tive hypothesis,PE(t0) � PE(S(t0)). So, for any �nite set of PE senten
es F � PE(t), it followsthat t0 j= 3iVF , hen
e S(t0) j= 3iVF , and as su
h, there exists a u 2 WMsu
h that u j= VF and (S(t0); u) 2 RiM . In other words, PE(t) is �nitelysatis�able on the RiM -su

essors of S(t0) whi
h through the m-saturation ofM gives us that PE(t) is satis�able at a RiM -su

essor u0. We set S(t) = u0and this 
ompletes the proof. 2In the following lemma we 
onstru
t a model, the set of states of whi
h isde�ned by the disjoint union of a 
olle
tion of (sets of states of) models. Tothat end we use the following notational devi
e: ifW = fA;B; : : :g is a familyof models then an element of the disjoint union of the sets of states of modelsin W is written as hZ; si where Z is a model in W and s is a state in Z,i.e. s 2 WZ . Lemma 3.10 is the basis for most of the results 
on
erning �nitemodels; it asserts that when M  K for some �nite model M and a possiblyin�nite model K, with K j= �, then there is a �nite model of a bounded sizethat satis�es � and stands in-between M and K.Lemma 3.10 Let M be a �nite model and � a senten
e. Assume that thereexists a (possibly in�nite) model K of � su
h that M  K. Then there existsa �nite model L of � su
h that M  L  K. In addition, the size of L is10



Gorogiannis and Ryanbounded by a 
omputable fun
tion f dependent on M and �.Proof. Let U be the smooth 
ounterpart of K. Sin
e U � K and M  K itfollows that M  U . Moreover, sin
e M is �nite it is also m-saturated thuslemma 3.9 applies, giving us a fun
tional simulation S between U and M .Let n = deg(�). Let A be the submodel of U , having the same rootand su
h that no state has depth more that n � 1. Formally WA = f s 2WU j depth(s) � n� 1 g, rA = rU , RiA = RiU \WA�WA for all 1 � i � k andvA is the restri
tion of vU on WA.If t 2 WU then Ut is the generated submodel of U with t as its root.Similarly, byMs we denote the generated submodel ofM with s as its root. Itis easy to see that sin
e S is fun
tional, the image of Ut under S is a submodelof MS(t).De�ne a model N in the following way:(i) WN is the disjoint union of WA, and of WMS(t) for all t 2 WU withdepth(t) = n. In symbols, if t 2 WA then hA; ti 2 WN and if t0 2 WMS(t)for some t 2 WU with depth(t) = n then hMS(t); t0i 2 WN . The latter iswell-de�ned be
ause for any state t0 in WU with depth n or more, fromthe smoothness of U it follows that there is a unique an
estor of depth nof t0.(ii) rN = hA; rAi.(iii) RiN is the disjoint union of RiA and RiMS(t) for all t of depth n, along withanother 
omponent: for all states s 2 WU with depth n � 1 (and hen
ein WA), if for some i, (s; t) 2 RiU then (hA; si; hMS(t); ti) 2 RiN .(iv) vN is de�ned in the natural way, i.e. if hA; ti 2 WN then vN(hA; ti) =vA(t). If hMS(t); t0i 2 WN for some suitable t0 and t, then vN (hMS(t); t0i) =vMS(t)(t0).From the de�nition of N it follows that N �n K and thus, N j= �.De�ne a relation SUN as the smallest one with the following properties� For all t 2 WU with depth(t) < n (thus in WA too), (t; hA; ti) 2 SUN .� If (s; s0) 2 S su
h that there is a state t 2 WU with depth n su
h thats 2 WUt, then (s; hMS(t); s0i) 2 SUN .Similarly, de�ne SNM� If (s; t) 2 S where depth(s) < n then (hA; si; t) 2 SNM .� For all hMS(t); t0i 2 WN , (hMS(t); t0i; t0) 2 SNM .It is easy but tedious to verify that SUN and SNM are simulations. Thus,M  N  K.We now prove that N has a �nite bisimilar 
ounterpart L. Sin
e the statesat depth n are all initial states of generated submodels of M , there 
an be atmost jM j non-bisimilar ones. The nodes at depth n� 1 
an have 2l di�erentpropositional valuations where l is the number of atomi
 propositions. Also, a11



Gorogiannis and Ryannode at depth n� 1 
an have 2jM j possible di�erent 
ombinations of 
hildrenfrom depth n, so the maximum number of non-bisimilar states at depth n� 1is 2l �2jM j�k, where k is the number of a

essibility relations. In general, if thereare g(i+1) non-bisimilar states at depth i+1, there are g(i) = 2l+g(i+1)�k manynon-bisimilar states at depth i. Thus, the total number of states will 
onsistof (a) the initial state, (b) the sum of the number of states at ea
h layer, withdepth ranging from 1 to n � 1, and (
) the number of non-bisimilar statesin all the possible generated submodels of M , i.e. jM j2. So, there is a �nitemodel L with at most f(M;�) = 1 +Pdeg(�)�1i=1 g(i) + jM j2 states, whi
h isbisimilar to N .Sin
e L � N and M  N  K it is easy to see that M  L  K andthat L j= �. 2Proposition 3.11 Let M be a �nite model. The ordering �M over the 
lassof �nite models is stoppered for any 
onsistent senten
e �.Proof. As in the proof of proposition 3.6, it is easy to 
he
k that whenM j= �or PU(M); � ` ? then for any model N 2 modf(�) there exists a modelN 0 2 modf (�) su
h that N 0 �M N and N 0 is minimal. So we assume thatM 6j= �, that PU(M); � 6` ? and restri
t our attention to the models inmodf(PU(M) [ f�g).Let C � modf(PU(M) [ f�g) be a 
hain with respe
t to �M . Sin
e �nitemodels are m-saturated, from proposition 3.5 we obtain that there is an m-saturated I whi
h is a model of PU(M) [ f�g and a lower bound of C withrespe
t to �M . But then, by lemma 3.10, there is a �nite model F of � su
hthatM  F  I. Therefore, F is a lower bound of C and by applying Zorn'slemma we obtain stopperedness for the 
lass of �nite models. 2We 
ontinue with a set of de
idability results 
on
erning the �nite 
ase.Firstly we prove that 
he
king whether a spe
i�
 model N is minimal withrespe
t to a model M and �, i.e. whether N 2 M �f �, is de
idable. We willsay that M �f � is non-trivial whenever M 6j= � and PU(M); � 6` ?.Lemma 3.12 Let M;N be �nite models and � a senten
e, su
h that M �f �is non-trivial. The de
ision problem of whether N 2M �f � is de
idable.Proof. Sin
e M �f � is non-trivial then if M 8 N then surely N is notminimal. So, we assume that M  N . Now, N is minimal i� there is noother model N 0 2 modf(�) su
h that N 0 <M N . Assume N is not minimal.Then there exists N 0 2 modf (�) su
h that M  N 0  N but N 0 9 N .By applying lemma 3.10 to the pair of models M;N 0 it follows that thereexists a model N 00 2 modf (�) su
h that M  N 00  N 0 and thus, N 00 9 N .Therefore, N is not minimal i� there exists a model N 00 of � whi
h is stri
tlysmaller than N with respe
t to �M and it has at most f(M;�) states.Consequently, given N;M and �, we 
an enumerate all the models of �that have at most f(M;�) states, of whi
h there is a �nite number. For ea
hmodel L we 
he
k the simulations M  L, L  N , L 9 N . If we �nd a12
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onditions, then N is not minimal. If we do not�nd one, then by using the result in the previous paragraph, N is minimal.2The next proposition 
hara
terises the stru
ture of M �f � with respe
t tothe ordering. It asserts that ea
h equivalen
e 
lass of models in M �f � withrespe
t to �M , 
ontains a representative model of a bounded size.Proposition 3.13 Let M be a �nite model and � a formula su
h that M �f �is non-trivial. Then, there is a 
omputable �nite set of �nite models �M;� �M �f � su
h that for any model N 2M �f � there is a model N 0 2 �M;� su
hthat N � N 0 and jN 0j � f(M;�).Proof. Let N 2M �f �. The appli
ation of lemma 3.10 gives us a model N 0of � su
h that M  N 0  N and jN j � f(M;�). But sin
e N is minimal,it follows that N � N 0. Thus �M;� 
an be 
omputed by enumerating the�nite models of � that have at most f(M;�) states and 
he
king them forminimality via lemma 3.12. 2A 
orollary of the above is that given the premises of proposition 3.13,the number of equivalen
e 
lasses of �nite models that 
onstitute M �f � is�nite. We next examine the de
idability of reasoning about the results of theoperation.Proposition 3.14 Assume that M �f � is non-trivial. Let  be a formula inLPU [ LPE. Then, the de
ision problem M �f � j=  is de
idable.Proof. M �f � 
an be seen as the union of a (�nite) set of equivalen
e 
lassesof �nite models under simulation. Let E � M �f � be su
h an equivalen
e
lass. For any two models N1; N2 2 E it holds that PU(N1) = PU(N2) andequivalently PE(N1) = PE(N2). In other words, the problem of 
he
kingwhether all models in M �f � satisfy  , where  2 LPU [ LPE, redu
es to
he
king whether for ea
h equivalen
e 
lass E in M �f �, there is a modelN 2 E su
h that N j=  . But �M;� 
ontains at least one model from ea
hsu
h equivalen
e 
lass, so the problem is further redu
ed to whether �M;� j=  or not. Sin
e �M;� is �nite and 
omputable, the problem is de
idable. 2Lastly, we mention some results that extend the ones in this se
tion to serialmodels and the 
orresponding fragment to the PU formulas in the temporallogi
 CTL�[4℄, known as 8CTL�[7℄ and its dual 9CTL�. Due to la
k of spa
ewe omit the proofs that are in any 
ase trivial extensions of the above. Notethat in the following, the formula-argument of the operation � remains a Knformula.� If M;N are serial models, then M  N implies 8CTL�(M) � 8CTL�(N).� If M;N are serial m-saturated models then 8CTL�(M) � 8CTL�(N) im-plies M  N .� Lemma 3.5 extends to serial models too (the idea being that lemma 3.5 
anbe used as is but with T extended to T [�, where � = f 2n3> j n � 0 g).13



Gorogiannis and RyanIt follows that proposition 3.6 extends to serial m-saturated models.� Lemma 3.10 extends to serial models. The 
ru
ial point is that generatedsubmodels of a serial model are serial as well. This implies that proposition3.11 extends to serial �nite models.� Similarly, lemma 3.12 and proposition 3.13 extend to the 
ase of serial �nitemodels, by adding (de
idable) 
he
ks for seriality in the models involved inthe proofs.� Proposition 3.14 
an be extended to the following: Assume the 
onditionsof proposition 3.13. Let  be a formula in 8CTL� [ 9CTL�. Then, thede
ision problem M �fs � j=  is de
idable.4 Con
lusions and Further WorkOur results are positive and intuitive, showing that� The re�nement ordering �M with respe
t to a model M is stoppered, andtherefore has minimals, in the 
lass of m-saturated models, for any set ofsenten
es; and in the 
lass of �nite models, for any formula.� The properties of minimal re�nements over �nite models are de
idable.A limitation of our framework is the expressiveness of the underlying logi
Kn. Properties that involve e.g. transitivity, quanti�
ation over sets of statesor 
omputational paths in the model, 
annot be expressed in Kn. To addressthis, we intend to extend our results to more expressive languages, and alreadyhave a preliminary set of results 
on
erning Kn but with global validity inmind. Furthermore we intend to investigate the 
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