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Requirements, spei�ations, and minimalre�nementNikos Gorogiannis 1 and Mark Ryan 2Shool of Computer SieneUniversity of BirminghamEdgbaston, Birmingham B15 2TT, UKAbstratRe�nement is usually employed to produe more onrete versions of a spei�ation,or to add new requirements to it. However, during spei�ation revision one mayover-re�ne, thus inorporating unneessary requirements. In this paper, we arguethat this proess an be formalised by the notion of minimal re�nements, heneavoiding over-re�nement, and prove that this de�nition is well-behaved theoretiallyas well as omputationally.1 IntrodutionA ommon way to develop omputer systems (whether hardware or software)is by re�nement : one starts with an abstrat spei�ation, and re�nes itgradually (e.g. [1℄). The re�nements may be triggered by the need to satisfyadditional requirements. However, one would like to avoid re�ning the spei�-ation too muh, in order to keep it exible and avoid building in unneessaryassumptions. In this paper, we study minimal re�nements. We address thequestion: given a spei�ation and a requirement, what is the smallest re�ne-ment of the spei�ation whih will make it satisfy the requirement?Example 1.1 A university department has a poliy whih governs aess tostudent marks, inluding perhaps the requirements:� a student has read-aess to all his marks;� a student does not have write-aess to any of his marks;� a professor has read-aess to all student marks, and write-aess to themarks of the modules she teahes.1 nkg�s.bham.a.uk2 mdr�s.bham.a.uk, http://www.s.bham.a.uk/~mdrThis is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Gorogiannis and RyanThis system allows ertain aess operations and denies others. Beause it isunder-spei�ed it may also be non-deterministi about the outome (whetheraess allowed or not) of some operations. The poliy may be enoded as anon-deterministi transition system M . Any implementation whih satis�esthe requirements, i.e. whih re�nes M , is aeptable.A further requirement is now imposed upon the department, perhaps bynew legislation, suh as:� no student may have read-aess to another student's marks.To inorporate this, we seek a re�nement of M whih satis�es the new re-quirement. Naturally, we do not want to re�ne too muh, unneessarily loos-ing exibility with respet of further requirements, so we attempt to re�neminimally, just enough to satisfy the new onstraint.We assume that spei�ations and implementations of systems are repre-sented as models (Kripke models or transition systems), and that requirementsare presented as logial formulas. We study the operator � whih takes a modelM and a formula �, and returns a set of modelsM �� whih is the set of leastre�nements of M whih satisfy �. We explore the following properties of thisoperation:� When do minimal re�nements exist?� When are the properties of the minimal re�nements deidable?These questions are studied in a variety of ontexts, suh as: �nite models,serial models, and m-saturated models.We will use Kripke models to model systems. A well-understood notionof re�nement in this ontext is simulation [12℄. It has been studied exten-sively as well as having served as the basis for a multitude of other more�ne-grained proposed notions for re�nement. The logi used in the followingis the polymodal logi Kn (essentially Hennessy-Milner logi [8℄ extended withpropositional information) with an outlook on temporal logis. Using simula-tion, we de�ne an ordering that depends on M , whih aptures re�nement ofM and that is related to the simulation preorder (see e.g. [3,7℄). Then, M � �is de�ned as the set of the models of � that are minimal with respet to theordering.Below we prove that for two important lasses of Kripke models, the m-saturated and the �nite models, the operation is well-behaved. We haraterisethe onditions that the spei�ation and the property need to satisfy in orderfor the operation to yield non-trivial results (i.e. not just all the models of �).In the ase of �nite models, we prove that heking whether an implementationis minimal is deidable and that for properties in a fragment of Kn (and alsofor a fragment of CTL�), heking whether suh properties are true on theresults of the operation is deidable.The de�nition of M �� is reminisent of, and indeed inspired from, theoryhange and non-monotoni reasoning. In those �elds one of the ways to de�ne2



Gorogiannis and Ryana theory hange operation is to de�ne an ordering on possible worlds thataptures a notion of loseness to the initial world, and then minimising withrespet to that ordering within a presribed set of worlds. In this sense M ��is a non-monotoni operation sine it may be the ase that M � � 6j=  whileM j=  .2 De�nitionsLet A be a set of l atomi propositions. The modal language L of the logiKn on A with k modalities is de�ned indutively� if p 2 A then p 2 L,� if �;  2 L then :�; � ^  2 L,� if � 2 L then 3i� 2 L for all 1 � i � k.The usual propositional abbreviations apply as well as the modal 2i � :3i:.The degree deg(�) of a formula � is de�ned as the maximum nesting depth ofmodalities in �.A Kripke model M for L is a tuple hWM ; rM ; R1M ; � � � ; RkM ; vMi. WM is aset of states or worlds. rM is a distinguished state inWM alled the initial stateor the root. RiM � WM �WM are aessibility relations and vM : WM ! 2A isa valuation for the propositional letters. Satisfation of formulas at a state sis de�ned indutively by the usual propositional lauses along with the modalone: M; s j= 3i� i� there exists a state t 2 WM suh that (s; t) 2 RiM andM; t j= �. We will write s j= � when the model is obvious. By jM j we denotethe ardinality of WM . A model M is �nite i� jM j is �nite.A path is a �nite sequene of states suh that for any pair of states si; si+1in the sequene, there exists a j suh that (si; si+1) 2 RjM . The depth of astate s is de�ned as the minimum length of a path from the root to s if suha path exists, otherwise as !.A model M for a logi with a single modality is alled serial if the singleaessibility relation RM is serial, i.e. i� for all states s 2 WM there exists astate t 2 WM suh that (s; t) 2 RM .The set of sentenes true at a state s is denoted by th(s). In the followingwe will fous on validity of formulas on the root and not on the whole model asis usual in modal logi. This approah is ommonplae in the temporal logiliterature where models represent transition systems with a starting state.Thus we de�ne the theory of a model to be the theory of its root, th(M) =th(rM). Sine the root is our `entry point' in a model, we will only onsidermodels whose states are all reahable from the root. Two models M;N arelogially equivalent i� th(M) = th(N).The logi usually studied in modal logi is the one enfored by global va-lidity on frames. In other words, � j= � is taken to mean that for all frames F ,if F j= �, then F j= �. As noted above, we employ a loal entailment relationat the level of states of models, i.e. taking � j= � to mean that for all models3



Gorogiannis and RyanM and all states s 2 WM , if M; s j= � then M; s j= �. These two de�nitionsgive rise to the same logi, a fat witnessed by the strong ompleteness of Kn(see e.g. [2℄). To simplify our exposition, we will use an axiomatisation thatis equivalent to the usual for Kn but validates the dedution theorem at theost of losing the neessitation rule. This axiomatisation has modus ponensas its sole rule of inferene and as axioms it has all propositional tautologies,possibly pre�xed by an arbitrary sequene of box modalities and any formulaof the form 2i1 : : :2in(2j(�)  )) (2j�) 2j )).Let M;N be models and B � WM �WN a relation. B is a bisimulation if� It relates the initial states, (rM ; rN) 2 B,� It respets the valuations, (s; t) 2 B implies vM (s) = vN(t),� If (s; t) 2 B and s0 is an RjM -suessor of s then there exists t0, an RjN -suessor of t, suh that (s0; t0) 2 B, for all j (the forth ondition),� If (s; t) 2 B and t0 is an RjN -suessor of t then there exists s0, an RjM -suessor of s, suh that (s0; t0) 2 B, for all j (the bak ondition).If there exists a bisimulation between M;N then M and N are bisimilar,written M � N and it follows that th(M) = th(N).An approximation of bisimulation is n-bisimulation. Two models M;Nare n-bisimilar, written M �n N i� there exists a sequene of relations �n�� � � ��0� WM �WN suh that� rM �n rN ,� For all 1 � i � k and all m < n, if s �m+1 t and s0 is an RiM -suessor of sthen there is an RiN -suessor t0 of t suh that s0 �m t0,� For all 1 � i � k and all m < n, if s �m+1 t and t0 is an RiN -suessor of tthen there is an RiM -suessor s0 of s suh that s0 �m t0,� For all m � n, if s �m t then vM(s) = vN (t).Bisimilarity implies n-bisimilarity for all n, but the onverse is not true ingeneral. Another standard result about n-bisimulations is that M �n N i�for all formulas � with deg(�) � n, M j= � i� N j= �. Also, a result whihwe will make use of below is that for all n there is an e�etive proedure foromputing a �nite set of �nite models Tn suh that (a) every model in Tn is atree of depth at most n and (b) for any model M there is a tree T 2 Tn suhthat M �n T . These results an be found in [13℄.A formula is alled positive universal i� it is made up only from p;:p;^;_and 2i for all 1 � i � k. LPU is the subset of L that onsists of positiveuniversal formulas. If s is a state then PU(s) = LPU \ th(s). If M is a model,then PU(M) = PU(rM). Dually, a positive existential formula is made upfrom p;:p;^;_ and 3i. LPE and PE are de�ned similarly and are duals ofLPU and PU respetively. Note that the negation of a PU formula is a PE oneand vie versa. If P is a set of PU sentenes then P  is the omplement of Pwith respet to LPU. P ontains the negation of every formula in P .4



Gorogiannis and RyanIntuitively, positive universal formulas desribe restritions on what statesare aessible. In the ontext of transition systems, PU formulas presribewhat onditions a sequene of ations must satisfy if it is to be allowed. Dually,a PE formula asserts the possibility of the exeution of a sequene of ations.Let M be a model and s 2 WM a state. A set of sentenes T will bealled satis�able on the suessors of s i� for eah relation RiM there existsa state t 2 WM suh that (s; t) 2 RiM and T � th(t). Similarly, T will bealled �nitely-satis�able on the suessors of s i� for eah relation RiM andfor any �nite set of sentenes F � T there exists an RiM -suessor t of s suhthat F � th(t). A state s is alled m-saturated i� for any set of sentenesT , if T is �nitely-satis�able on the suessors of s, then it is satis�able onthe suessors of s. A model is m-saturated if all its states are m-saturated.modm(�) is the lass of m-saturated models M of �. We write MSAT for thelass of m-saturated models. Notie that MSAT is bisimulation-losed.In the following we will use the ultra�lter extension of a model. We willnot make referene to the internals of the onstrution, just to two of itsproperties: the ultra�lter extension of a model M is another model ue(M)that is logially equivalent to M and also, ue(M) is m-saturated. Aounts ofthe onstrution appear in many plaes, e.g. [2℄.A lass of models has the Hennessy-Milner property whenever for everypair of its models, they are bisimilar i� they are logially equivalent. In otherwords, models in a Hennessy-Milner lass are ompletely haraterised by thelogi, i.e. if two suh models are not bisimilar then there is a witnessing formulathat distinguishes them.MSAT has the following important properties [9℄� It subsumes the lass of image-�nite models (and hene the �nite ones).� It has the Hennessy-Milner property.� It is maximal in the sense that no proper superlass of MSAT has theHennessy-Milner property.� It has also been used to provide semantis for proess algebras.Let M;N be models and S � WM �WN a relation on their states. S willbe alled a simulation i� it satis�es the �rst three lauses in the de�nitionof bisimulation, i.e. it must link the initial states, preserve valuations andrespet the aessibility relations but in one-way only (the forth ondition). Ifthere exists a simulation from M to N we write M ! N or N  M and saythat N simulates M or that M is simulated by N . Whenever M  N andM ! N we will say that M and N are similar or simulation equivalent andwrite M � N . It is easy to hek that simulations are transitive.Let M be a lass of models. An ordering � over M is stoppered fora formula � i� for any model M 2 modM(�) there is another model N 2modM(�) suh that N � M and that N is �-minimal in modM(�). Thede�nition is extended for sets of sentenes in the obvious way.5



Gorogiannis and Ryan3 ResultsLet M;N1; N2 be models. We de�ne an ordering �M suh that N1 �M N2 i�(i) M  N1  N2 or(ii) M  N1 but M 8 N2 or(iii) N1 � N2.It is not hard to prove that this ordering is transitive and reexive. By takingsimilarity as the main equivalene notion between models, antisymmetry isobtained, i.e. if A �M B and B �M A then A� B. In other words, �M is apartial order.Let M be a lass of models, M a model inM and T a set of sentenes.We de�ne an operation �M :M� 2L ! 2MM �M T = min�M (modM(T ))This de�nition reminds one of a type of theory hange whih is known asupdate [11℄. It is a point-wise de�nition, i.e. the ordering depends on a modelrather than an arbitrary theory as is usual in the ase of revisions, the otherwell-known type of theory hange (see, e.g. [6,10℄). In addition, the orderingis partial, a ondition whih automatially validates the update axioms viathe representation theorem mentioned in [11℄.Given suh an operation, several questions arise. Firstly, it is not obviousthat it is well-de�ned, i.e. whether the existene of minimal models is guaran-teed so that M �M T 6= ;. We address this question in propositions 3.6 and3.11, for the lass of m-saturated models and arbitrary sets of sentenes andfor the lass of �nite models and arbitrary sentenes, respetively.Moreover, it is of interest to know the onditions that guarantee non-triviality of the results of the operation, or in other words, when it is thease that M �M T � modM(T ). The neessary and suÆient onditions fornon-triviality are presented in lemmas 3.4 and 3.7 for m-saturated and �nitemodels, respetively. In addition, the deidability of determining non-trivialityfor a �nite model M and a formula � is proved in lemma 3.8.Finally, in the ase of �nite models, we prove that two interesting problemsare deidable: �rstly, that heking minimality of a �nite modelN with respetto a �nite modelM and a formula � is deidable (lemma 3.12). Seondly, thatreasoning within a fragment of the language about the results of the operationis deidable, i.e. answering queries of the form M � � j=  (proposition 3.14).The �rst three lemmas haraterise simulation in syntati terms, andestablish an exat math in the m-saturated ase.Lemma 3.1 (Folklore) IfM;N are models suh thatM  N , then PU(M) �PU(N).Lemma 3.2 (Folklore) Let M;N be models. If PU(M) � PU(N) and M ism-saturated, then there exists a simulation from N to M , M  N .6



Gorogiannis and RyanProof. For onveniene we will work with PE formulas, the dual of PU ones.Note that PU(s) � PU(t) i� PE(s) � PE(t). De�ne a relation S suh that(s; t) 2 S i� s 2 WN , t 2 WM and PE(s) � PE(t). We prove that Sis a simulation. Obviously it respets the valuations, i.e. if (s; t) 2 S thenvN(s) = vM(t). Assume that s has a suessor s0 with respet to a relationRiN . Let P be the set of PE sentenes of s0. For any �nite subset F � P ,s0 j= VF and thus s j= 3iVF . 3iVF is a PE formula, so by de�nitionit is satis�ed at t. Thus there is an RiM -suessor of t that satis�es VF . Inother words, P is �nitely-satis�able on the suessors of t. M however is m-saturated, thus there is an RiM -suessor t0 of t that satis�es P and as suhPE(s0) � PE(t0).So, S is a simulation whenever it is non-empty and it relates the initialstates. Those onditions are satis�ed by the assumption PU(M) � PU(N) orequivalently PE(N) � PE(M). 2Let T be a set of sentenes. T is losed under taking disjunts i� whenever� _  2 T then � 2 T or  2 T . T is losed under LPU-onsequene i�whenever T ` � and � 2 LPU then � 2 T .Lemma 3.3 Let P � LPU. There exists a model M suh that P = PU(M)i� P is onsistent, losed under LPU-onsequene and taking disjunts.Proof. The left-to-right diretion is trivial. Right-to-left: for a model M tohave exatly P as its set of PU formulas, it must satisfy P and falsify itsomplement with respet to LPU. In other words, there exists suh a modeli� P; P  6` ?. Assume the latter is not the ase. Then there exist formulas�;  1; : : : ;  m suh that � 2 P (note that P is losed under onjuntion),: i 2 P  and �;: 1; : : : ;: m ` ?. But then, � `  1 _ : : : _  m and sine Pis losed under LPU-onsequene,  1 _ : : : _  m 2 P . P is also losed undertaking disjunts so there exists 1 � j � m suh that  j 2 P whih is aontradition beause  j 2 P . 2If no model of a set of sentenes T is simulated by a model M , then asnoted in the beginning of this setion, all models of T will be inomparablewith respet to the ordering �M , and thus, M �m T = modm(T ). If there isat least one suh model in modm(T ), then �m will return a strit subset ofmodm(T ), in view of the seond lause of the de�nition of the ordering. Theonditions under whih this happens are haraterised in the next lemma.Lemma 3.4 Let M be an m-saturated model and T a set of sentenes. Then,there exists an m-saturated model N of T suh thatM  N i� PU(M); T 6` ?.Proof. Left-to-right: SineM  N it follows from lemma 3.1 that PU(M) �PU(N). Thus N is a model of both T and PU(M).Right-to-left: Let N be a model of PU(M) [ T . Then, PU(M) � PU(N).Sine N may not be m-saturated, we take the ultra�lter-extension of N , ue(N)7



Gorogiannis and Ryanwhih is logially equivalent to N and as suh a model of PU(M) [ T , andm-saturated. It follows that T � th(ue(N)) and that PU(M) � PU(ue(N)).As M is m-saturated it follows from lemma 3.2 that M  ue(N). 2The following lemma and proposition onern stopperedness of the order-ing for m-saturated models. Lemma 3.5 enables us to apply Zorn's lemmaby proving that for any suitable hain (i.e. a totally ordered set of models), asuitable lower bound an be found, and indeed, the in�mum.Lemma 3.5 Let M be an m-saturated model and T a onsistent set of sen-tenes of whih M is not a model. Let C � modm(T ) be a nonempty hainwith respet to �M where all of its members are simulated by M . Then thereexists an m-saturated model of T whih is the in�mum of C (modulo simula-tion equivalene).Proof. De�ne P = TN2C PU(N). Sine any model N in the hain is simu-lated by M , PU(M) � PU(N) and therefore PU(M) � P . Also, for any twomodels A;B 2 C it will be the ase that PU(A) � PU(B) or PU(B) � PU(A).We will prove that there exists a model I with PU(I) = P whih satis�es T .P is obviously onsistent as a subset of onsistent sets. Also, it is easy tohek that P is losed under LPU-onsequene.We now prove that P is losed under taking disjunts. Assume �_ 2 P .Then, for all L 2 C, L j= � _  . If all the models in C satisfy � we aredone, so assume that there exists a pair of models N;N 0 2 C suh thatN j= �^: and N 0 j= :�^ . But this ontradits the fat mentioned above,that PU(N) � PU(N 0) or PU(N 0) � PU(N). Hene P is losed under takingdisjunts.From lemma 3.3 it follows that P[P  is onsistent. Assume that P; P ; T `?. Then there exist :�1; : : : ;:�n 2 P  suh that P; T;:�1; : : : ;:�n ` ? orequivalently P; T ` �1 _ : : : _ �n. Thus, for all N 2 C, N j= �1 _ : : : _ �n,hene �1 _ : : : _ �n 2 PU(N) and therefore �1 _ : : : _ �n 2 P . As P is losedunder taking disjunts there is one disjunt �j suh that �j 2 P , whih is aontradition. So there is a model I of P [P [T . I need not be m-saturated,but its ultra�lter extension ue(I) is, and as it is logially equivalent to I itwill satisfy P [ P  [ T too.By the de�nition of P we have that for all N 2 C, PU(ue(I)) � PU(N).Thus, by lemma 3.2 we get that ue(I)  N . Also, PU(M) � PU(ue(I))whih implies that M  ue(I). So, ue(I) is a lower bound of C with respetto �M . In addition, for any other lower bound L of C, it follows that PU(L) �TN2C PU(N) and thus that ue(I) is the in�mum of C (modulo similarity).2In propositions 3.6 and 3.11 we prove stopperedness for m-saturated and�nite models, respetively. The appliation of Zorn's lemma is usually a ruialpart of suh proofs. The ommonly ited version of Zorn's lemma, however,is not enough to yield stopperedness when its premises are satis�ed. We usean easily derivable, but stronger version: if X is a partially-ordered set and8



Gorogiannis and Ryanany well-ordered subset of X has a lower bound in X, then for any elementof s 2 X, there exists a minimal element s0 2 X that is omparable to s,i.e. s0 � s.Proposition 3.6 Let M be an m-saturated model. The ordering �M over thelass of m-saturated models is stoppered for any onsistent set of sentenes T .Proof. If T � th(M) then, of ourse, M is a minimum with respet to�M in modm(T ), as well as any other m-saturated model N of T suh thatM � N . It follows that for any m-saturated model L of T there is an m-saturated model of T , i.e. M , whih is minimal and M �M N . In the asewhere M =2 modm(T ), it may or may not be the ase that PU(M) [ T isonsistent. If not, then by applying lemma 3.4 it follows that there are nomodels in modm(T ) that are simulated by M . Hene, only the third lause ofthe de�nition of �M an ever apply, rendering all (equivalene lasses undersimulation of) models in modm(T ) inomparable. In this ase, for any modelN 2 modm(T ) there is a model N 0 (namely N itself) suh that N 0 �M N ,where N 0 is minimal.Thus, we assume that PU(M) [ T is onsistent. Beause of the seondlause of the de�nition of the ordering, it is easy to see that in this ase theset of minimal elements will be a subset of modm(PU(M) [ T ). Therefore werestrit our attention to the models in modm(PU(M)[ T ) whih, by virtue oflemma 3.4, are all simulated by M . Then, for a hain in modm(PU(M) [ T ),lemma 3.5 applies. Sine it asserts something about any hain, i.e. any totally-ordered set of models, it speialises diretly to well-ordered hains of models.Therefore, by Zorn's lemma, for any model N 2 modm(T ) there exists anothermodel N 0 2 modm(T ) suh that N 0 is minimal and N 0 �M N . 2This onludes our set of results for m-saturated models. For �nite models,we start again from haraterising the onditions under whih the operation isnon-trivial, and also prove the deidability of determining non-triviality. Wewill use modf (�) to denote the lass of �nite models that satisfy �.Lemma 3.7 Let M be a �nite model and � a formula. Then, PU(M); � 6` ?i� there exists a �nite tree L of depth at most deg(�) suh that L j= � andM  L.Proof. The right-to-left diretion is trivial. So, we assume the former andapply lemma 3.4 to obtain a (possibly in�nite) model K suh that K j= �and M  K. We onstrut a �nite model L of � suh that K  L. Fora �xed n there is a (omputable) �nite olletion of trees Tn of depth up ton suh that for any model A there is a tree T 2 Tn suh that A �n T . Letn = deg(�). Let L be the tree in Tn suh that L �n K. Obviously L j= �. Then-bisimulation between K and L is also a (bakwards) simulation between Kand L, i.e. K  L. Beause of transitivity of simulations, M  L. 29



Gorogiannis and RyanLemma 3.8 Let M be a �nite model and � a formula. The deision problemof whether there exists a �nite model L of � suh that M  L is deidable.Proof. From lemma 3.7 it follows that if there is suh a model there is alsoa �nite one. Indeed one with depth at most n = deg(�). We produe Tn.For eah model T in Tn we hek whether T j= � and whether M  T (bothproblems are deidable beause M and T are �nite). 2Let L be a model, and s 2 WL one of its states. s is said to have in-degree one whenever it has a unique anestor with respet to the union ofall aessibility relations in L. L will be alled smooth i� every state in WLapart from the root has in-degree one and �nite depth, or in other words, Lis a ountable tree. For every model L there is a smooth one Ls suh thatL � Ls. The proof of this result as well as of a general version of the followinglemma an be found in [5℄. This lemma will allow us to onentrate on simplesimulations, i.e. funtional ones, in what follows.Lemma 3.9 Let K andM be models suh that K is smooth,M is m-saturatedand M  K. Then there exists a funtional simulation from K to M .Proof. We de�ne a funtion S : WK ! WM and prove by indution that forany t 2 WK , PE(t) � PE(S(t)). We set S(rK) = rM . Sine M  K it followsfrom lemma 3.1 that PU(M) � PU(K) and thus PU(S(rK)) � PU(rK), orPE(rK) � PE(S(rK)).Assume that S has been de�ned for all states in K of depth up to n�1 andlet t 2 WK be a state of depth n. Sine K is smooth, t has a uniquely de�nedanestor t0 with respet to some relation RiK . By the indutive hypothesis,PE(t0) � PE(S(t0)). So, for any �nite set of PE sentenes F � PE(t), it followsthat t0 j= 3iVF , hene S(t0) j= 3iVF , and as suh, there exists a u 2 WMsuh that u j= VF and (S(t0); u) 2 RiM . In other words, PE(t) is �nitelysatis�able on the RiM -suessors of S(t0) whih through the m-saturation ofM gives us that PE(t) is satis�able at a RiM -suessor u0. We set S(t) = u0and this ompletes the proof. 2In the following lemma we onstrut a model, the set of states of whih isde�ned by the disjoint union of a olletion of (sets of states of) models. Tothat end we use the following notational devie: ifW = fA;B; : : :g is a familyof models then an element of the disjoint union of the sets of states of modelsin W is written as hZ; si where Z is a model in W and s is a state in Z,i.e. s 2 WZ . Lemma 3.10 is the basis for most of the results onerning �nitemodels; it asserts that when M  K for some �nite model M and a possiblyin�nite model K, with K j= �, then there is a �nite model of a bounded sizethat satis�es � and stands in-between M and K.Lemma 3.10 Let M be a �nite model and � a sentene. Assume that thereexists a (possibly in�nite) model K of � suh that M  K. Then there existsa �nite model L of � suh that M  L  K. In addition, the size of L is10



Gorogiannis and Ryanbounded by a omputable funtion f dependent on M and �.Proof. Let U be the smooth ounterpart of K. Sine U � K and M  K itfollows that M  U . Moreover, sine M is �nite it is also m-saturated thuslemma 3.9 applies, giving us a funtional simulation S between U and M .Let n = deg(�). Let A be the submodel of U , having the same rootand suh that no state has depth more that n � 1. Formally WA = f s 2WU j depth(s) � n� 1 g, rA = rU , RiA = RiU \WA�WA for all 1 � i � k andvA is the restrition of vU on WA.If t 2 WU then Ut is the generated submodel of U with t as its root.Similarly, byMs we denote the generated submodel ofM with s as its root. Itis easy to see that sine S is funtional, the image of Ut under S is a submodelof MS(t).De�ne a model N in the following way:(i) WN is the disjoint union of WA, and of WMS(t) for all t 2 WU withdepth(t) = n. In symbols, if t 2 WA then hA; ti 2 WN and if t0 2 WMS(t)for some t 2 WU with depth(t) = n then hMS(t); t0i 2 WN . The latter iswell-de�ned beause for any state t0 in WU with depth n or more, fromthe smoothness of U it follows that there is a unique anestor of depth nof t0.(ii) rN = hA; rAi.(iii) RiN is the disjoint union of RiA and RiMS(t) for all t of depth n, along withanother omponent: for all states s 2 WU with depth n � 1 (and henein WA), if for some i, (s; t) 2 RiU then (hA; si; hMS(t); ti) 2 RiN .(iv) vN is de�ned in the natural way, i.e. if hA; ti 2 WN then vN(hA; ti) =vA(t). If hMS(t); t0i 2 WN for some suitable t0 and t, then vN (hMS(t); t0i) =vMS(t)(t0).From the de�nition of N it follows that N �n K and thus, N j= �.De�ne a relation SUN as the smallest one with the following properties� For all t 2 WU with depth(t) < n (thus in WA too), (t; hA; ti) 2 SUN .� If (s; s0) 2 S suh that there is a state t 2 WU with depth n suh thats 2 WUt, then (s; hMS(t); s0i) 2 SUN .Similarly, de�ne SNM� If (s; t) 2 S where depth(s) < n then (hA; si; t) 2 SNM .� For all hMS(t); t0i 2 WN , (hMS(t); t0i; t0) 2 SNM .It is easy but tedious to verify that SUN and SNM are simulations. Thus,M  N  K.We now prove that N has a �nite bisimilar ounterpart L. Sine the statesat depth n are all initial states of generated submodels of M , there an be atmost jM j non-bisimilar ones. The nodes at depth n� 1 an have 2l di�erentpropositional valuations where l is the number of atomi propositions. Also, a11



Gorogiannis and Ryannode at depth n� 1 an have 2jM j possible di�erent ombinations of hildrenfrom depth n, so the maximum number of non-bisimilar states at depth n� 1is 2l �2jM j�k, where k is the number of aessibility relations. In general, if thereare g(i+1) non-bisimilar states at depth i+1, there are g(i) = 2l+g(i+1)�k manynon-bisimilar states at depth i. Thus, the total number of states will onsistof (a) the initial state, (b) the sum of the number of states at eah layer, withdepth ranging from 1 to n � 1, and () the number of non-bisimilar statesin all the possible generated submodels of M , i.e. jM j2. So, there is a �nitemodel L with at most f(M;�) = 1 +Pdeg(�)�1i=1 g(i) + jM j2 states, whih isbisimilar to N .Sine L � N and M  N  K it is easy to see that M  L  K andthat L j= �. 2Proposition 3.11 Let M be a �nite model. The ordering �M over the lassof �nite models is stoppered for any onsistent sentene �.Proof. As in the proof of proposition 3.6, it is easy to hek that whenM j= �or PU(M); � ` ? then for any model N 2 modf(�) there exists a modelN 0 2 modf (�) suh that N 0 �M N and N 0 is minimal. So we assume thatM 6j= �, that PU(M); � 6` ? and restrit our attention to the models inmodf(PU(M) [ f�g).Let C � modf(PU(M) [ f�g) be a hain with respet to �M . Sine �nitemodels are m-saturated, from proposition 3.5 we obtain that there is an m-saturated I whih is a model of PU(M) [ f�g and a lower bound of C withrespet to �M . But then, by lemma 3.10, there is a �nite model F of � suhthatM  F  I. Therefore, F is a lower bound of C and by applying Zorn'slemma we obtain stopperedness for the lass of �nite models. 2We ontinue with a set of deidability results onerning the �nite ase.Firstly we prove that heking whether a spei� model N is minimal withrespet to a model M and �, i.e. whether N 2 M �f �, is deidable. We willsay that M �f � is non-trivial whenever M 6j= � and PU(M); � 6` ?.Lemma 3.12 Let M;N be �nite models and � a sentene, suh that M �f �is non-trivial. The deision problem of whether N 2M �f � is deidable.Proof. Sine M �f � is non-trivial then if M 8 N then surely N is notminimal. So, we assume that M  N . Now, N is minimal i� there is noother model N 0 2 modf(�) suh that N 0 <M N . Assume N is not minimal.Then there exists N 0 2 modf (�) suh that M  N 0  N but N 0 9 N .By applying lemma 3.10 to the pair of models M;N 0 it follows that thereexists a model N 00 2 modf (�) suh that M  N 00  N 0 and thus, N 00 9 N .Therefore, N is not minimal i� there exists a model N 00 of � whih is stritlysmaller than N with respet to �M and it has at most f(M;�) states.Consequently, given N;M and �, we an enumerate all the models of �that have at most f(M;�) states, of whih there is a �nite number. For eahmodel L we hek the simulations M  L, L  N , L 9 N . If we �nd a12



Gorogiannis and Ryanmodel that satis�es all those onditions, then N is not minimal. If we do not�nd one, then by using the result in the previous paragraph, N is minimal.2The next proposition haraterises the struture of M �f � with respet tothe ordering. It asserts that eah equivalene lass of models in M �f � withrespet to �M , ontains a representative model of a bounded size.Proposition 3.13 Let M be a �nite model and � a formula suh that M �f �is non-trivial. Then, there is a omputable �nite set of �nite models �M;� �M �f � suh that for any model N 2M �f � there is a model N 0 2 �M;� suhthat N � N 0 and jN 0j � f(M;�).Proof. Let N 2M �f �. The appliation of lemma 3.10 gives us a model N 0of � suh that M  N 0  N and jN j � f(M;�). But sine N is minimal,it follows that N � N 0. Thus �M;� an be omputed by enumerating the�nite models of � that have at most f(M;�) states and heking them forminimality via lemma 3.12. 2A orollary of the above is that given the premises of proposition 3.13,the number of equivalene lasses of �nite models that onstitute M �f � is�nite. We next examine the deidability of reasoning about the results of theoperation.Proposition 3.14 Assume that M �f � is non-trivial. Let  be a formula inLPU [ LPE. Then, the deision problem M �f � j=  is deidable.Proof. M �f � an be seen as the union of a (�nite) set of equivalene lassesof �nite models under simulation. Let E � M �f � be suh an equivalenelass. For any two models N1; N2 2 E it holds that PU(N1) = PU(N2) andequivalently PE(N1) = PE(N2). In other words, the problem of hekingwhether all models in M �f � satisfy  , where  2 LPU [ LPE, redues toheking whether for eah equivalene lass E in M �f �, there is a modelN 2 E suh that N j=  . But �M;� ontains at least one model from eahsuh equivalene lass, so the problem is further redued to whether �M;� j=  or not. Sine �M;� is �nite and omputable, the problem is deidable. 2Lastly, we mention some results that extend the ones in this setion to serialmodels and the orresponding fragment to the PU formulas in the temporallogi CTL�[4℄, known as 8CTL�[7℄ and its dual 9CTL�. Due to lak of spaewe omit the proofs that are in any ase trivial extensions of the above. Notethat in the following, the formula-argument of the operation � remains a Knformula.� If M;N are serial models, then M  N implies 8CTL�(M) � 8CTL�(N).� If M;N are serial m-saturated models then 8CTL�(M) � 8CTL�(N) im-plies M  N .� Lemma 3.5 extends to serial models too (the idea being that lemma 3.5 anbe used as is but with T extended to T [�, where � = f 2n3> j n � 0 g).13



Gorogiannis and RyanIt follows that proposition 3.6 extends to serial m-saturated models.� Lemma 3.10 extends to serial models. The ruial point is that generatedsubmodels of a serial model are serial as well. This implies that proposition3.11 extends to serial �nite models.� Similarly, lemma 3.12 and proposition 3.13 extend to the ase of serial �nitemodels, by adding (deidable) heks for seriality in the models involved inthe proofs.� Proposition 3.14 an be extended to the following: Assume the onditionsof proposition 3.13. Let  be a formula in 8CTL� [ 9CTL�. Then, thedeision problem M �fs � j=  is deidable.4 Conlusions and Further WorkOur results are positive and intuitive, showing that� The re�nement ordering �M with respet to a model M is stoppered, andtherefore has minimals, in the lass of m-saturated models, for any set ofsentenes; and in the lass of �nite models, for any formula.� The properties of minimal re�nements over �nite models are deidable.A limitation of our framework is the expressiveness of the underlying logiKn. Properties that involve e.g. transitivity, quanti�ation over sets of statesor omputational paths in the model, annot be expressed in Kn. To addressthis, we intend to extend our results to more expressive languages, and alreadyhave a preliminary set of results onerning Kn but with global validity inmind. Furthermore we intend to investigate the omplexity of the algorithmswe have presented.Referenes[1℄ Abadi, M. and L. Lamport, The existene of re�nement mappings, TheoretialComputer Siene 82 (1991), pp. 253{284.[2℄ Blakburn, P., M. de Rijke and Y. Venema, \Modal Logi," Cambridge Tratsin Theoretial Computer Siene 53, Cambridge University Press, 2001.[3℄ Bouajjani, A., J. C. Fernandez, S. Graf, C. Rodriguez and J. Sifakis, Safety forbranhing time semantis, in: Automata, Languages and Programming, 18thInternational Colloquium, 1991, pp. 76{92.[4℄ Clarke, E. and E. Emerson, Design and synthesis of synhronization skeletonsusing branhing time temporal logi, in: D. Kozen, editor, Logis of Programs,Workshop, Leture Notes in Computer Siene 131 (1981), pp. 52{71.[5℄ de Rijke, M., Modal model theory, Tehnial Report CS-R9517, CWI,Amsterdam (1995). 14
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