
Approximating ATL� in ATLExtended Abstra
tAidan Harding1, Mark Ryan1, and Pierre-Yves S
hobbens21 S
hool of Computer S
ien
e, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK2 Institut d'Informatique, Fa
ult�es Universitaires de Namur, Rue Grandgagnage 21,5000 Namur, BelgiumAbstra
t. The temporal logi
 ATL [2℄ has proved useful in spe
ify-ing systems that
an be viewed as the parallel
omposition of a set ofagents. It has tool-support for model
he
king and simulation in theform of Mo
ha [1℄. ATL� is a more expressive form of ATL whi
h pro-vides a more natural way to write spe
i�
ations. Whilst ATL
an bemodel
he
ked in linear time (relative to the size of the model), ATL�is 2EXPTIME-
omplete [2℄. Here we present a method of \translating"an ATL� formula, into ATL so that model
he
king
an then be per-formed. This method
annot, in general, be entirely exa
t but insteadprodu
es a strong and a weak bound. From these we may be able to inferwhether the original formula was satis�ed. To minimise the number ofunde
ided
ases, the bounds must be as
lose as possible to the original.Exa
t translations help to ensure that this is so, and we have identi�eda number of patterns whi
h
an be translated without loss. Case studiessupport the method by showing that most ATL� formulae attempted didyield
on
lusive results, even after approximation.

1 Introdu
tionThe aim of this work is to provide a method of model
he
king ATL� spe
i�
a-tions using a model
he
ker for ATL. Model
he
king ATL� dire
tly is infeasible,so we have taken the option of rewriting a given ATL� property ', into a pair ofATL properties, 's and 'w. By
he
king these two properties, we may be ableto infer whether or not ' is satis�ed. There is some un
ertainty in the method,be
ause 's and 'w do not
apture all of the information in '. In some
asesthis abstra
tion of the formula may be too
oarse, making it impossible to de-
ide whether ' is true or not. To add to the a

ura
y and sophisti
ation of ourmethod, exa
t (i.e. information preserving) transformations on ATL� formulaeare used, wherever possible.1.1 Why ATL�?ATL� [2℄ is a temporal logi
 for reasoning about systems
omposed of agents. Itis desirable to write spe
i�
ations in ATL� rather than CTL� or LTL be
auseit allows us to distinguish between the possible
hoi
es of agents, whi
h are thesour
es of non-determinism. By re
ognising the agents in a system, it is possibleto separate out properties whi
h would otherwise remain hidden.A formal look at ATL and ATL� is deferred until Se
tion 2, but �rst welook at a motivating example for their use. Consider a basi
 phone system.A natural question to ask about it is \Can two users, i and j,
ooperate su
hthat in the future, they will be talking to one and other". The idea of their
ooperation is that we wish to ex
lude paths su
h as those where i never dialsj, or j goes o�-hook every time the
onne
tion is being attempted. However,we allow for the rest of the system to be as awkward as possible e.g. anotherphone k may try to interfere by also dialling j and the ex
hange may solve the
on
i
t by favouring k. In CTL, this
annot be expressed { it is only possibleto write about all
omputation paths or the existen
e of at least one. However,in ATL we
an write about the paths enfor
eable by the
ooperation of i and j:hhi; jiiF(phone[i℄:talking^phone[j℄:talking^
urrentConne
tion[j℄ = i). Clearlythere are many other systems where ATL� is bene�
ial, allowing us to reasonabout the
apabilities of sets of agents in
ooperation/opposition.Just as CTL� generalises CTL by allowing temporal operators to be nesteddire
tly, ATL� generalises ATL. ATL�
an be more useful than ATL due to thisextra expressiveness. It provides all of the advantages of LTL whilst retaining theability to reason about the
apabilities of agents. LTL spe
i�
ations are
laimedto be easier to write in [8℄, and to be more useful for reasoning about
on
urrentsystems in [6℄. By using ATL�, we have the best of both worlds (in expressivity).1.2 Approximating ATL� in ATLSin
e ATL� is stri
tly more expressive than ATL, we
annot hope to translateall possible formulae exa
tly from ATL� into ATL. The
omplexity of model
he
king ATL is linear in the size of the model, whilst model
he
king ATL�

dire
tly is doubly exponential [2℄. Our method is a partial solution to the problemof model
he
king ATL� { it returns within a feasible time, but may lose some ofthe original information. In essen
e, this is a
hieved by approximating a singleproperty ', into two properties 's and 'w whi
h surround the original propertywith a strong and a weak bound su
h that:'s) ') 'w (1.1)We
an then model
he
k the ATL formulae with Mo
ha to dedu
e the satis-fa
tion of '. If we �nd 's to be true, then ' is true; If we �nd 'w to be false,then ' is false; If 's is false and 'w is true, we
annot de
ide whether ' is trueor false.It is essential to minimise the number of times our method may
ome ba
kunde
ided. This means ensuring that the strong and weak bound are as
loseas possible to '. To do this, we use exa
t equivalen
es, where possible. Theseequivalen
es are designed to make ' in some sense, better with ea
h appli
ationi.e. they should make the property
loser to ATL than it was before. When nomore equivalen
es are appli
able, approximation is used to
opy path quanti�ersover temporal operators e.g.hhAiiFG' hhAiiFhhAiiG' (strong)hhAiiF9G' (weak)After ea
h approximation, equivalen
es are applied until either the formula is inATL or more approximation is needed. With the
omplete set of approximationsprovided, any well-formed ATL� formula
an be translated into into a pair ofwell-formed ATL formulae.The rest of the paper is organised as follows: Se
tion 2 summarises the syntaxand semanti
s of Alur and Henzinger's ATL; Se
tion 3 lists the exa
t equivalen
esused in the translation pro
ess; Se
tion 4
overs the approximations used in thetranslation pro
ess; Se
tion 5 takes a look at how the rules are used and whatproperties they have; Se
tion 6 has a model of a telephone system with ATL�spe
i�
ations whi
h have been translated and
he
ked with Mo
ha; Finally,Se
tion 7 looks at some other methods of moving between temporal logi
s withdi�ering expressivity.2 Alternating-Time Temporal Logi
Alternating-Time Temporal Logi
 [2℄ (ATL) is a temporal logi
 for reasoningabout rea
tive systems
omprised of agents. It
ontains the usual temporal op-erators (next, always, until) plus
ooperation modalities hhAii', where A is a setof agents. This modality quanti�es over the set of behaviours and means that Ahave a
olle
tive strategy to enfor
e ', whatever the
hoi
es of the other players.ATL generalises CTL, and similarly ATL� generalises CTL�, �-ATL generalisesthe �-
al
ulus. These logi
s
an be model-
he
ked by generalising the te
hniquesof CTL, often with the same
omplexity.

This se
tion
ontains a brief review of ATL, as we have used it in this paper.For a more detailed treatment, the interested reader is referred to [2℄.2.1 Alternating Transition SystemsATL is interpreted over Alternating Transition Systems (ATS) whi
h are Kripkestru
tures, extended to represent the
hoi
es of agents.An ATS is a 5-tuple h�;�;Q; �; Æi where{ � is a set of propositions{ � is a set of agents{ Q is a set of states{ � : Q! 2� maps ea
h state to the propositions whi
h are true in that state{ Æ : Q�� ! 22Q is a transition fun
tion from a state, q, and an agent, a, tothe set of a's
hoi
es. a's
hoi
es are sets of states, and one parti
ular
hoi
eis taken, Qa. The next state of the system is the interse
tion of the
hoi
esof all agents Ta2� Qa.The transition fun
tion is non-blo
king and unique i.e. for every state, theinterse
tion of all possible
hoi
es of all agents is singleton.For two states q, q0 and an agent a, q0 is an a-su

essor of q if there existssome Q0 2 Æ(q; a) su
h that q0 2 Q0. The set of a-su

essors of q is denotedsu

(q; a). For two states q and q0, q0 is a su

essor of q if 8a 2 � q0 2 su

(q; a).A
omputation, �, is de�ned as an in�nite sequen
e of states q0; q1; q2; : : : su
hthat for all i � 0, qi+1 is the su

essor of qi.Subsegments of a
omputation path � = q1; q2; : : : are denoted by post�xingan interval in square bra
kets. For example, �[i; j℄ = qi; : : : ; qj , �[i;1℄ = qi; : : :and �[i℄ = qi.2.2 ATL SyntaxLet � be a set of atomi
 propositions and � a set of agents. The syntax of ATLis given by' ::= p j > j :' j '1 _ '2 j hhAii('1 U '2) j hhAii('1 R '2)where p 2 � and A � �1. We use the usual abbreviations for !, ^ in terms of:, _. The operator hh ii is a path quanti�er, and U (until) and R (release) aretemporal operators. As in CTL, we write F' for > U ' and G' for >R '.While the formula hhAii means that the agents in A
an
ooperate to make true (they
an \enfor
e"), the dual formula [[A℄℄ means that the agents in A
annot
ooperate to make false (they
annot \avoid") i.e. [[A℄℄ � :hhAii:'Sin
e ATL is a generalisation of CTL, we
an use CTL as shorthand forsome
ases of ATL i.e. write 8 for hh;ii and 9 for hh�ii . The logi
 ATL*generalises ATL in the same way that CTL* generalises CTL, namely by allowingpath quanti�ers and temporal operators to be nested arbitrarily.1 Following Lamport's warning that the X operator leads to over-spe
i�
ation [7℄ andfor simpli
ity, we di�er from [2℄ by omitting X.

2.3 ATL� Semanti
sIn ATL�, there are two types of formulae: state formulae are evaluated overstates, and denoted here as '; path formulae are evaluated over
omputationpaths, and denoted . To de�ne the semanti
s of ATL�, the notion of strategiesis used. A strategy for an agent a is a mapping fa : Q+ ! 2Q su
h that forall � 2 Q� and all q 2 Q, we have fa(� � q) 2 Æ(q; a). The strategies map �nitepre�xes of �-
omputations to a
hoi
e in Æ(q; a) as suggested by the strategy.The out
ome of a strategy must also be de�ned. For a state q, a set of agentsA, and a family of strategies FA = ffaja 2 Ag the out
omes of FA from q aredenoted out(q; FA). They are the q-
omputations that the agents in A
an en-for
e by following their strategies. � = q0; q1; q2 : : : is in out(q; FA) if q = q0 andfor all positions i � 0 qi+1 is the su

essor of qi satisfying qi+1 2 Ta2A fa(�[0; i℄).The semanti
s of ATL� are de�ned indu
tively:{ � � p i� p 2 �(�[0℄){ � � :' i� � 6� '{ � � '1 _ '2 i� � � '1 or � � '2{ � � ' i� �[0℄ � ', if ' is a state formula{ � � hhAii i� there exists a set of strategies, FA one for ea
h agent in A,su
h that 8� 2 out(q; FA) , we have � � { � � 1 U 2 i� 9i � 0:�[i;1℄ � 2 and 80 � j < i�[j;1℄ � 1.{ � � 1 R 2 i� 8i � 0, we have �[i;1℄ � 2 unless there exists a position0 � j < i su
h that �[j;1℄ � 1.3 Equivalen
esThese exa
t transformations are applied at the �rst stage of re-writing, to elimi-nate redundan
y. In some
ases, it is possible to perform the entire translation atthis exa
t level. Dis
ussion of how we may sensibly apply these rules is deferreduntil Se
tion 5, when all of the ne
essary rules have been introdu
ed.We shall
onsider both ^ and _ as part of the basi
 language for our rule-set.The temporal operators we shall use are Until U , Release R . Mo
ha a

eptsU but not R . However, it does a

ept Weak Until (While). W and Release
an be related as follows: 1 R 2 � 2W (1 ^ 2) 1W 2 � 2 R (2 _ 1) (3.1)Release is used be
ause it is more natural to use the dual of Until and it
anstill be translated into a

eptable input for Mo
ha.We assume that the input formula is in negation normal form, and this beeasily a
hieved with known LTL and ATL identities.

3.1 LTL Equivalen
esLTL equivalen
es
an be used to repla
e parts of ATL� sub-formulae and alsoserve as inspiration for some native ATL� rules. Ea
h rule is applied left to rightand redu
es the number of nested temporal operators. Some of the equivalen
esbelow are from [9℄, others extend or generalise them. Where a rule requiresknowing that '1) '2, this is established using the heuristi
 method des
ribedin [9℄.Future and Global Equations 3.2 to 3.8 are generalised by 3.9 to 3.15, below.These F and G abbreviations are in
luded be
ause their readability aids theintuition behind 3.9 to 3.15. The duals are used in pra
ti
e, but omitted here.FF' � F' (3.2)FGF' � GF' (3.3)F('1 _ F'2) � F('1 _ '2) (3.4)F('1 _GF'2) � F'1 _GF'2 (3.5)F('1 ^ FG'2) � F'1 ^ FG'2 (3.6)F('1 ^GF'2) � F'1 ^GF'2 (3.7)FG('1 ^ F'2) � FG('1 ^ '2) (3.8)Until and Release'1) '2 ` '1 U ('2 U '3) � '2 U '3 (3.9)'1 U ('2 R ('1 U '3)) � '2 R ('1 U '3) (3.10)'1 U ('2 _ '1 U '3) � '1 U ('2 _ '3) (3.11)'1 U ('2 _ '3 R ('1 U '4)) � '1 U '2 _ '3 R ('1 U '4) (3.12)'1) :'3 ` '1 U ('2 ^ ('1 U ('3 R '4))) � ('1 U '2) ^ ('1 U ('3 R '4) (3.13)'1) ('4 _ '5); '1) :'3 `'1 U ('2 ^ '3 R ('4 U '5)) � ('1 U '2) ^ ('3 R ('4 U '5)) (3.14)'1) :'2 ` '1 U ('2 R ('3 ^ '1 U '4)) � '1 U ('2 R ('3 ^ '1 U '4)) (3.15)('1 U) ^ ('2 U) � ('1 ^ '2) U (3.16)') ` ' U � (3.17)3.2 ATL� Equivalen
esAs in Se
tion 3.1, these rules are applied left to right and redu
e the numberof temporal operators whi
h do not have a mat
hing path quanti�er. However,they are spe
i�
 to ATL� { rather than removing redundant temporal operators,they mat
h them to path quanti�ers.

Conjun
tions and Disjun
tions If '1 and '2 are ATL path formulae, thenboth hhAii('1 ^ '2) and hhAii('1 _ '2) are ATL� formulae but neither are well-formed ATL formulae. In Table 1, we
onsider
ases where they have exa
tequivalen
es in ATL that
an be rea
hed by rewriting2. One proof is given below,in order to show the general form of how the others pro
eed, others are availablein the full paper.Table 1. Equivalen
es for Conjun
tions/Disjun
tions of Path FormulaeATL� ATL (Assuming all ' are ATL state formulae)hhAii('1 U '2 ^ '3 U '4) hhAii(('1 ^ '3) U [('2 ^ hhAii('3 U '4))_ ('4 ^ hhAii('1 U '2))℄) (3.18)hhAii('1 U '2 _ '3 U '4) hhAii[('1 ^ '3) U (hhAii('1 U '2)_ hhAii('3 U '4))℄ (3.19)hhAii('1 R '2 ^ '3 R '4) hhAii[(('1 ^ hhAii'3 R '4)_ ('3 ^ hhAii('1 R '2)))R ('2 ^ '4)℄ (3.20)hhAii('1 R '2 _ '3 R '4) hhAii [(hhAii('1 R '2)_ hhAii('3 R '4))R ('2 ^ '4)℄ (3.21)hhAii('1 U '2 ^ '4 R '3) hhAii[('1 ^ '3) U (('2 ^ hhAii('4 R '3))_ ('4 ^ '3 ^ hhAii('1 U '2)))℄(3.22)hhAii('1 U '2 _ '4 R '3) hhAii[('1 ^ '3)W (hhAii('1 U '3)_ hhAii('4 R '3)))℄ (3.23)
Proof. (Equation 3.19) Suppose q � hhAii('1 U '2 _ '3 U '4). Then there existsa set of strategies, FA one for ea
h agent in A, su
h that 8� 2 out(q; FA) � �'1 U '2 or � � '3 U '4. Take a path � 2 out(q; FA), let i be the �rst point su
hthat �[i℄ � '2 _'4 or �[i℄ 6� '1 ^'3 (from the hypothesis, this point must exist).There are four
ases to
onsider:{ �[i℄ � '2 { we know that 80 � j < i�[j℄ � '1^'3. So � � ('1^'3) U (hhAii('1 U '2)_hhAii('3 U '4)){ �[i℄ � '4 is similar to �[i℄ � '2{ �[i℄ 6� '1 _ '2 { We know that 80 � j < i�[j℄ 6� '2 and �[j℄ � '1 ^ '3.Sin
e � 6� '1 U '2, it follows from our assumption that � � '3 U '4. Thus,we
an
onstru
t a strategy GA su
h that �[i℄ � hhAii('3 U '4). GA = fga ja 2 �g where ga(�) = fa(�[0; i� 1℄:�). So � � ('1 ^'3) U (hhAii('1 U '2) _hhAii('3 U '4)){ �[i℄ 6� '3 _ '4 is similar to �[i℄ 6� '1 _ '2Suppose q � hhAii[('1 ^ '3) U (hhAii('1 U '2) _ hhAii('3 U '4))℄. Then thereexists a set of strategies, FA one for ea
h agent in A, su
h that 8� 2 out(q; FA)� � ('1 ^ '3) U (hhAii('1 U '2) _ hhAii('3 U '4)). We show that a strategy HA2 Simpler spe
ial
ases for F and G exists, but are omitted from this extended abstra
t

exists su
h that hhAii('1 U '2_'3 U '4). It is
onstru
ted from a set of fun
tionsha as follows,if 9i < n 8j < i qj � '1 ^ '3 ^ :'4 ^ :'4 and qi 6� '1 ^ '3then We know that qi � hhAii('1 U '2) _ hhAii('3 U '4). If qi �hhAii('1 U '2), then let GA be the set of strategies su
h that8� 2 out(qi; GA)� � '1 U '2. De�ne ha as ha(q0; : : : ; qi; : : : ; qn) =ga(qi; : : : ; qn). Similarly, if qi � hhAii('3 U '4)
all the resultingset of strategies G0A and de�ne ha with ha(q0; : : : ; qi; : : : ; qn) =g0a(qi; : : : ; qn)else h(q0; : : : ; qn) = fa(q0; : : : ; qn) utState Formulae In Se
tion 3.2 above, we
onsidered
onjun
tions and disjun
-tions of path formulae under an hhAii. Often, these
an be pulled apart intowell-formed ATL. However, when state formulae are mixed in, none of the rulesapply dire
tly. For example, hhAii(p ^Fq ^Gr) does not mat
h any rule be
auseof the p. Obviously, a state formula under a path quanti�er is equivalent to thesame formula outside the path quanti�er.stateFormula(') ` hhAii' , ' (3.24)More generally, we
an pull state formulae out from any boolean
ombination ofpath and state formulae by rewriting to disjun
tive normal form and applyingthe following rule:hhAii(('1 ^ 1) _ : : : _ ('n ^ n)) � n_i=1 n_j=1� îk=j'k ^ hhAii i_k=j k� (3.25)4 ApproximationsThese approximations are applied when no more equivalen
es
an be used ona formula. Again, they are applied left to right and mat
h temporal operatorswith path quanti�ers. The s in ea
h rule represent ATL� path formulae. Ea
happroximation produ
es a strong or a weak bound, whi
h is
loser to beingin ATL than the original (one nested temporal operator is paired with a pathquanti�er). Details on how these are used follow in Se
tion 5.hhAiiF) hhAiiF9 hhAiiG (hhAiiG8 (4.1)hhAiiF (hhAiiFhhAii hhAiiG) hhAiiGhhAii (4.2)hhAiiFG) 9FhhAiiG hhAiiGF (8GhhAiiF (4.3)hhAii(1 U 2)) hhAii(hhAii 1 U 9 2) hhAii(1 R 2)(hhAii(hhAii 1 R 8 2) (4.4)hhAii(1 U 2)(hhAii(8 1 U hhAii 2) hhAii(1 R 2)) hhAii(9 1 R hhAii 2) (4.5)hhAii(1 _ 2)) 9 1 _ 9 2 hhAii(1 ^ 2)(8 1 ^ 8 2 (4.6)hhAii(1 _ 2)(hhAii 1 _ hhAii 2 hhAii(1 ^ 2)) hhAii 1 ^ hhAii 2 (4.7)

5 Re-WritingThe rewrite rules given above provide a framework for translating formulae fromATL� into ATL. The general pattern is to use equivalen
es as far as possible.Then approximate and repeat by applying equivalen
es to the strong and weakbounds. Stop when both bounds are well-formed ATL formulae. The rule-set hassome important properties:{ Using these rules, any ATL� formula ' may be re-written into a pair of ATLformulae 's; 'w su
h that 's) ') 'w. This
an be proved using Equa-tions 4.1 to 4.7, and stru
tural indu
tion on the syntax of ATL� formulae.{ The rewrites will always terminate. Every rule has a single dire
tion andall but two redu
e the number of temporal operators whi
h do not havea mat
hing path quanti�er. The ex
eptions, are the ones
on
erned withstate formulae (Se
tion 3.2). However, they do not in
rease the number ofunmat
hed temporal operators, and
learly terminate in themselves. Thenumber of nested temporal operators is �nite, so the rules must terminate.{ It does not matter in whi
h order the equivalen
e rewrites are applied. Whenapproximating, it does not matter whi
h approximation is applied. It is onlyne
essary that equivalen
es are used in preferen
e to approximations.{ The end result is at most two formulae. Although a formula may be split intostrong and weak bounds many times, after the �rst split one of these
anbe thrown away. If you are already working on a strong bound and have toapproximate, then the weak bound of the resulting pair is dis
arded be
auseit
an provide no further information. Similarly, strong bounds are dis
ardedwhen already working on a weak one.6 ExamplesTo adequately measure our te
hnique, it is not enough to just translate someformulae and look at the results. The real use or la
k thereof
omes from theresult of model-
he
king translated properties against models.An existing proje
t3 [5℄ has tried to ease the diÆ
ulty of writing temporallogi
 spe
i�
ations. They identify a number of
ommon patterns drawn from arange of appli
ation domains and provide these as templates. For example, theproperty \p be
omes true between q and r"
an be written in LTL as G(q^:r !(:rW (p ^ :r))). These patterns provide a level of
omplexity whi
h is as deepas hand-written spe
i�
ations are likely to be, thus provide a realisti
 setting totest our te
hnique.3 http://www.
is.ksu.edu/santos/spe
-patterns/

6.1 Feature Intera
tion in a Telephone SystemThe model for this
ase study is one developed for a paper on proving FeatureNon-Intera
tion in ATL [4℄ and as su
h, had a pre-writtenMo
ha model. Someof the spe
i�
ations given in the paper were in ATL�, so they
ould not be
he
ked at the time. Here, we translate the properties with our method and
omment on the results.The basi
 system was the Plain Old Telephone System (POTS) { Four phonesand an ex
hange
an intera
t to make
alls in the familiar way. Then featureswere added with a
onstru
t des
ribed in the paper. For POTS itself, there aresome basi
 properties to
he
k; for the featured system, we examine the CallForward on Busy feature. The results are summarised in Table 2.To illustrate the translation pro
ess, the derivation of one property is givenbelow. \The user
annot
hange the
allee without repla
ing the handset." Al-though the original property was su

essfully
he
ked with our method, a variantgiven below gives a better illustration of how the translation works. Instead of us-ing a W operator, we follow a spe
i�
ation pattern from [5℄ \Existen
e betweenp and r".p � i.
allee=jq � i.tryingr � i.idle) Renaming[[i℄℄G(p ^ q ! (pW r)) Original property from [4℄[[i℄℄G(p ^ q ^ Fr ! (p U r)) Same property, expressed us-ing pattern from [5℄[[i℄℄G(:p _ :q _G:r _ (p U r)) Negation Normal Form[[i℄℄G8(:p _ :q _G:r _ (p U r)) Approximation using Eq 4.1[[i℄℄G(:p _ :q _ 8(G:r _ (p U r))) Equivalen
e using Eq 3.25[[i℄℄G(:p _ :q_ 8((p ^ :r)W ((8(p U r)) _ (8G:r)))) Equivalen
e using Eq 3.23
The unknown result for the third property is a little disappointing, but thisis a
tually an ina

urate spe
i�
ation. It doesn't allow for j putting the phonedown whilst the
all-forwarding is being resolved. If we add this to the formula,and
he
k a new strong bound:hhiiiFhhiiiG(j.trying & j.
allee=i & !i.idle-> A (j.trying U ((j.trying & j.
allee=k) | !j.offhook))We �nd that the property is true { Call Forward on Busy has been implemented
orre
tly. The translation method did not help in
oming to this
on
lusion, otherthan by for
ing
onsideration on why the original strong bound was false.

Table 2. Results of Translating and Model Che
king for POTS and POTS+CFBAny phone may
all any other phone (POTS)Original hhi; jii G F (i.talking & i.
allee=j) n/aStrong 8 G hhi; jii F (i.talking & i.
allee=j) TCon
lusion Original is trueThe user
annot
hange the
allee without repla
ing the handset (POTS)Original [[i℄℄ G (i.
allee=j & i.trying & F i.idle-> (i.
allee=j U i.idle)) n/aStrong [[i℄℄ G (!i.
allee=j | !i.trying| A ((i.
allee=j & !i.idle) W((A (i.
allee=j U i.idle)) | (A G !i.idle))) TCon
lusion Original is trueIf user[i℄ is busy, they
an for
e a
all from j to be forwarded to k (POTS+CFB)Original hhiiiF G (j.trying & j.
allee=i & !i.idle-> j.trying U (j.trying & j.
allee=k)) n/aStrong hhiiiF hhiii G (j.trying & j.
allee=i & !i.idle-> 8 (j.trying U (j.trying & j.
allee=k))) FWeak hhiiiF E G (j.trying & j.
allee=i & !i.idle-> hhiii (j.trying U (j.trying & j.
allee=k))) TCon
lusion No result7 Con
lusions and Related WorkWe have demonstrated that Alur and Henzinger's ATL� is a good logi
 for writ-ing spe
i�
ations of rea
tive systems. Given a spe
i�
ation in ATL�, our methodprodu
es bounds in ATL whi
h are guaranteed to be
orre
t (i.e. the strongbound implies the original and the weak bound is implied by it). Alternative,ad ho
. simpli�
ation may produ
e formulae whi
h look
lose to the original butdue to the subtleties of ATL are not as
lose as they appear. To the best of ourknowledge, there is no existing work to do the same thing with ATL� but thereis mu
h written about the expressivity of linear and bran
hing time logi
s.In [3℄, Clarke et al. show that for any CTL� formula whi
h distinguishes two�nite Kripke models, the models may also be distinguished by a CTL formula.Sin
e ATL is a generalisation of CTL, this seems like exa
tly what we were look-ing for, but their pre
ondition is a
tually very strong. The CTL� formula must\suÆ
iently detailed" i.e. it must
hara
terise exa
tly one
lass of equivalent�nite Kripke stru
tures. The �rst notion of equivalen
e used in [3℄ is similar tobisimulation and then this is extended to equivalen
e modulo stuttering. Evenwith this extension, the resulting CTL� spe
i�
ation must be nearly as detailedas the implementation so it would be just as likely to
ontain errors and thusdefeat the point of model
he
king it.

In Caden
e SMV [10℄, spe
i�
ations are written in LTL and then translatedto CTL in order to perform symboli
 model
he
king. Dire
t
onversions areused where possible, otherwise new variables are introdu
ed into the model to
hara
terise the parts whi
h
annot be translated. We intend to investigate thisidea in the
ontext of ATL.Referen
es1. R. Alur, T. A. Henzinger, S. C. Krishnan, et al. Mo
ha User Manual. Computerand Information S
ien
e Department, University of Pennsylvania and Ele
tri
alEngineering and Computer S
ien
es Department, University of California, Nov.1999.2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi
. InPro
eedings of the 38th Annual Symposium on Foundations of Computer S
ien
e,pages 100{109. IEEE Computer So
iety Press, 1997.3. M. Browne, E. Clarke, and O. Grumberg. Chara
terizing �nite Kripke stru
turesin propositional temporal logi
. Theoreti
al Computer S
ien
e, 59(1-2), July 1988.4. F. Cassez, M. D. Ryan, and P.-Y. S
hobbens. Proving feature non-intera
tion withalternating-time temporal logi
. In S. Gilmore and M. D. Ryan, editors, LanguageConstru
ts for Des
ribing Features. Springer-Verlag, 2000.5. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property spe
i�
ationsfor �nite-state veri�
ation. In Pro
eedings of the 21st International Conferen
e onSoftware Engineering, May 1999.6. L. Lamport. \Sometimes" is sometimes \not never" - on the temporal logi
 ofprograms. In Pro
. 7th ACM Symposium on Prin
iples of Programming Languages,pages 174{185, Jan. 1980.7. L. Lamport. What good is temporal logi
? In R. E. A. Mason, editor, Pro
eedingsof the IFIP Congress on Information Pro
essing, pages 657{667. North-Holland,1983.8. T. Laureys. From event based semanti
s to linear temporal logi
. Master's thesis,S
hool of Cognitive S
ien
e - University of Edinburgh, 2 Bu

leu
h Pla
e, Edin-burgh, UK, 1999.9. F. Somenzi and R. Bloem. EÆ
ient B�u
hi automata from LTL formulae. In Pro-
eedings of 10th International Conferen
e on Computer Aided Veri�
ation, pages248{263. Springer-Verlag, 2000.10. SMV. http://www-
ad.ee
s.berkeley.edu/~kenm
mil/smv/.

