Approximating ATL* in ATL
Extended Abstract

Aidan Harding!, Mark Ryan', and Pierre-Yves Schobbens?

! School of Computer Science, University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK
2 Institut d’Informatique, Facultés Universitaires de Namur, Rue Grandgagnage 21,
5000 Namur, Belgium

Abstract. The temporal logic ATL [2] has proved useful in specify-
ing systems that can be viewed as the parallel composition of a set of
agents. It has tool-support for model checking and simulation in the
form of MocHA [1]. ATL" is a more expressive form of ATL which pro-
vides a more natural way to write specifications. Whilst ATL can be
model checked in linear time (relative to the size of the model), ATL"
is 2EXPTIME-complete [2]. Here we present a method of “translating”
an ATL™ formula, into ATL so that model checking can then be per-
formed. This method cannot, in general, be entirely exact but instead
produces a strong and a weak bound. From these we may be able to infer
whether the original formula was satisfied. To minimise the number of
undecided cases, the bounds must be as close as possible to the original.
Exact translations help to ensure that this is so, and we have identified
a number of patterns which can be translated without loss. Case studies
support the method by showing that most ATL" formulae attempted did
yield conclusive results, even after approximation.

1 Introduction

The aim of this work is to provide a method of model checking ATL* specifica-
tions using a model checker for ATL. Model checking ATL* directly is infeasible,
so we have taken the option of rewriting a given ATL* property ¢, into a pair of
ATL properties, ¢ and ¢,,. By checking these two properties, we may be able
to infer whether or not ¢ is satisfied. There is some uncertainty in the method,
because ¢, and ¢, do not capture all of the information in ¢. In some cases
this abstraction of the formula may be too coarse, making it impossible to de-
cide whether ¢ is true or not. To add to the accuracy and sophistication of our
method, exact (i.e. information preserving) transformations on ATL* formulae
are used, wherever possible.

1.1 Why ATL*?

ATL* [2] is a temporal logic for reasoning about systems composed of agents. It
is desirable to write specifications in ATL* rather than CTL* or LTL because
it allows us to distinguish between the possible choices of agents, which are the
sources of non-determinism. By recognising the agents in a system, it is possible
to separate out properties which would otherwise remain hidden.

A formal look at ATL and ATL* is deferred until Section 2, but first we
look at a motivating example for their use. Consider a basic phone system.
A natural question to ask about it is “Can two users, i and j, cooperate such
that in the future, they will be talking to one and other”. The idea of their
cooperation is that we wish to exclude paths such as those where i never dials
Jj, or j goes off-hook every time the connection is being attempted. However,
we allow for the rest of the system to be as awkward as possible e.g. another
phone k£ may try to interfere by also dialling j and the exchange may solve the
conflict by favouring k. In CTL, this cannot be expressed it is only possible
to write about all computation paths or the existence of at least one. However,
in ATL we can write about the paths enforceable by the cooperation of i and j:
(7,) F (phoneli].talking Aphone[j].talking A currentConnection[j] = i). Clearly
there are many other systems where ATL* is beneficial, allowing us to reason
about the capabilities of sets of agents in cooperation/opposition.

Just as CTL* generalises CTL by allowing temporal operators to be nested
directly, ATL* generalises ATL. ATL* can be more useful than ATL due to this
extra expressiveness. It provides all of the advantages of LTL whilst retaining the
ability to reason about the capabilities of agents. LTL specifications are claimed
to be easier to write in [8], and to be more useful for reasoning about concurrent
systems in [6]. By using ATL*, we have the best of both worlds (in expressivity).

1.2 Approximating ATL* in ATL

Since ATL* is strictly more expressive than ATL, we cannot hope to translate
all possible formulae exactly from ATL* into ATL. The complexity of model
checking ATL is linear in the size of the model, whilst model checking ATL*

directly is doubly exponential [2]. Our method is a partial solution to the problem
of model checking ATL* it returns within a feasible time, but may lose some of
the original information. In essence, this is achieved by approximating a single
property ¢, into two properties ¢, and ¢,, which surround the original property
with a strong and a weak bound such that:

Vs = P = Pu (1.1)

We can then model check the ATL formulae with MoOCHA to deduce the satis-
faction of . If we find ¢, to be true, then ¢ is true; If we find ¢,, to be false,
then ¢ is false; If ¢ is false and ¢,, is true, we cannot decide whether ¢ is true
or false.

It is essential to minimise the number of times our method may come back
undecided. This means ensuring that the strong and weak bound are as close
as possible to ¢. To do this, we use exact equivalences, where possible. These
equivalences are designed to make ¢ in some sense, better with each application
i.e. they should make the property closer to ATL than it was before. When no
more equivalences are applicable, approximation is used to copy path quantifiers
over temporal operators e.g.

(ADF(A)Ge (strong)
(ANFGe ~ 8 p2ae (weal)

After each approximation, equivalences are applied until either the formula is in
ATL or more approximation is needed. With the complete set of approximations
provided, any well-formed ATL* formula can be translated into into a pair of
well-formed ATL formulae.

The rest of the paper is organised as follows: Section 2 summarises the syntax
and semantics of Alur and Henzinger’s ATL; Section 3 lists the exact equivalences
used in the translation process; Section 4 covers the approximations used in the
translation process; Section 5 takes a look at how the rules are used and what
properties they have; Section 6 has a model of a telephone system with ATL*
specifications which have been translated and checked with MocHA; Finally,
Section 7 looks at some other methods of moving between temporal logics with
differing expressivity.

2 Alternating-Time Temporal Logic

Alternating-Time Temporal Logic [2] (ATL) is a temporal logic for reasoning
about reactive systems comprised of agents. It contains the usual temporal op-
erators (next, always, until) plus cooperation modalities {(A)y, where A is a set
of agents. This modality quantifies over the set of behaviours and means that A
have a collective strategy to enforce ¢, whatever the choices of the other players.
ATL generalises CTL, and similarly ATL* generalises CTL*, u-ATL generalises
the p-calculus. These logics can be model-checked by generalising the techniques
of CTL, often with the same complexity.

This section contains a brief review of ATL, as we have used it in this paper.
For a more detailed treatment, the interested reader is referred to [2].

2.1 Alternating Transition Systems

ATL is interpreted over Alternating Transition Systems (ATS) which are Kripke
structures, extended to represent the choices of agents.
An ATS is a 5-tuple (IT, ¥, @, 7, d) where

II is a set of propositions

— X is a set of agents

— (Q is a set of states

— 7 :@Q — 2" maps each state to the propositions which are true in that state
0:Qx XY — 229 is a transition function from a state, ¢, and an agent, a, to
the set of a’s choices. a’s choices are sets of states, and one particular choice
is taken, (),. The next state of the system is the intersection of the choices
of all agents (,cy, Qa-

The transition function is non-blocking and unique i.e. for every state, the
intersection of all possible choices of all agents is singleton.

For two states ¢, ¢’ and an agent a, ¢’ is an a-successor of ¢ if there exists
some @' € §(q,a) such that ¢’ € @Q'. The set of a-successors of ¢ is denoted
succ(q, a). For two states g and ¢', ¢' is a successor of q if Va € X' ¢' € succ(q, a).
A computation, A, is defined as an infinite sequence of states qg, ¢1,¢2,... such
that for all i > 0, g;+1 is the successor of g;.

Subsegments of a computation path A = q1, ¢o, ... are denoted by postfixing
an interval in square brackets. For example, A4, j] = qi,...,q;, Ali,00] = gi, . ..
and A[i] = ¢;.

2.2 ATL Syntax

Let IT be a set of atomic propositions and X a set of agents. The syntax of ATL
is given by

pu=p|T =1V | (A)(p1 U pa) | (A)(p1 R p2)

where p € IT and A C X'. We use the usual abbreviations for —, A in terms of
-, V. The operator (()) is a path quantifier, and U (until) and R (release) are
temporal operators. As in CTL, we write Fp for T U ¢ and Gy for T R ¢.

While the formula ((A))1) means that the agents in A can cooperate to make 9
true (they can “enforce” v), the dual formula [[A]]¢) means that the agents in A
cannot cooperate to make 1 false (they cannot “avoid” v) i.e. [[A]J¢ = ~(A)—yp

Since ATL is a generalisation of CTL, we can use CTL as shorthand for
some cases of ATL i.e. write V¢ for (#)¢) and 3¢ for (X)e. The logic ATL*
generalises ATL in the same way that CTL* generalises CTL, namely by allowing
path quantifiers and temporal operators to be nested arbitrarily.

! Following Lamport’s warning that the X operator leads to over-specification [7] and
for simplicity, we differ from [2] by omitting X.

2.3 ATL* Semantics

In ATL*, there are two types of formulae: state formulae are evaluated over
states, and denoted here as ; path formulae are evaluated over computation
paths, and denoted 1. To define the semantics of ATL*, the notion of strategies
is used. A strategy for an agent a is a mapping f, : Q* — 29 such that for
all A € Q* and all ¢ € @, we have f,(\ - q) € §(q,a). The strategies map finite
prefixes of A-computations to a choice in 6(q,a) as suggested by the strategy.
The outcome of a strategy must also be defined. For a state ¢, a set of agents
A, and a family of strategies Fa = {f.]a € A} the outcomes of F4 from q are
denoted out(q, Fa). They are the g-computations that the agents in A can en-
force by following their strategies. A = qo,q1,¢2 - - . is in out(q, Fa) if ¢ = g0 and
for all positions i > 0 ¢;41 is the successor of ¢; satisfying gi;1 € [),c 4 fa(A[0,1]).

The semantics of ATL* are defined inductively:

— AEpiff pe x(\0])

—AFpiff AF @

—AE o1 Vo iff AE @1 or AE @y

— AE @ iff A[O] E ¢, if ¢ is a state formula

— A E ((A)y iff there exists a set of strategies, Fia one for each agent in A,
such that VA € out(q, Fa) , we have A E ¢

— AE 1 U iff Fi > 0.M]i, 00] F e and VO < j < iA[], 00] E ¢1.

— A E 1 Ry iff Vi > 0, we have A[i,00] F 12 unless there exists a position
0 < j < i such that A[j, 00] F #1.

3 Equivalences

These exact transformations are applied at the first stage of re-writing, to elimi-
nate redundancy. In some cases, it is possible to perform the entire translation at
this exact level. Discussion of how we may sensibly apply these rules is deferred
until Section 5, when all of the necessary rules have been introduced.

We shall consider both A and V as part of the basic language for our rule-set.
The temporal operators we shall use are Until ¢/ , Release R . MOCHA accepts
U but not R . However, it does accept Weak Until (While). W and Release
can be related as follows:

Y1 R s = ha W (Y1 A iha) Y1 Waps =2 R (2 V 1) (3.1)

Release is used because it is more natural to use the dual of Until and it can
still be translated into acceptable input for MOCHA.

We assume that the input formula is in negation normal form, and this be
easily achieved with known LTL and ATL identities.

3.1 LTL Equivalences

LTL equivalences can be used to replace parts of ATL* sub-formulae and also
serve as inspiration for some native ATL* rules. Each rule is applied left to right
and reduces the number of nested temporal operators. Some of the equivalences
below are from [9], others extend or generalise them. Where a rule requires
knowing that @1 = (9, this is established using the heuristic method described
in [9].

Future and Global Equations 3.2 to 3.8 are generalised by 3.9 to 3.15, below.
These F and G abbreviations are included because their readability aids the
intuition behind 3.9 to 3.15. The duals are used in practice, but omitted here.

FFp =Fp (3.2)
FGFyp = GFy (3.3)
F(p1 VFp2) =F(p1 Vo) (3.4)
F(p1 V GFp2) =Fopr V GFo (3.5)
F(p1 ANFGypa) = For AFGes (3.6)
F(p1 A GFp2) = For A GFos (3.7)
FG(p1 AFp2) = FG(p1 A p2) (3.8)
Until and Release
1= 21U (P2l p3) = g2 U @3 (3.9)
prU (p2 R (p1 U ps)) = @2 R (o1 U p3) (3.10)
PrU (p2V o1 U ps) = o1 U (g2 V p3) (3.11)
PrU (2 Vs R (pr1U pa)) = o1 U g2V o3 R (01 U pa) (3.12)

o1 => sk o1 U (2 A(p1 U (pa R pa))) = (1 U p2) A1 U (ps Rpa) (3.13)
1= (paVs), 1 = —ps
PrU (p2 N ps R (pald p5)) = (p1 U 2) A (p3 R (pa U ¢5))
p1 = o2 k1 U (P2 R (3 A p1 U pa)) = o1 U (92 R (03 A o1 U pa)) (3.15)
(Pt UP) AN (2 UY) = (1 Ap2) U Y (3.16)
p=>vFoUtp =1 (3.17)

(3.14)

3.2 ATL* Equivalences

As in Section 3.1, these rules are applied left to right and reduce the number
of temporal operators which do not have a matching path quantifier. However,
they are specific to ATL* — rather than removing redundant temporal operators,
they match them to path quantifiers.

Conjunctions and Disjunctions If ¢; and ¢s are ATL path formulae, then
both {(A)(p1 A p2) and (A)(p1 V ¢2) are ATL* formulae but neither are well-
formed ATL formulae. In Table 1, we consider cases where they have exact
equivalences in ATL that can be reached by rewriting?. One proof is given below,
in order to show the general form of how the others proceed, others are available
in the full paper.

Table 1. Equivalences for Conjunctions/Disjunctions of Path Formulae

ATL” |ATL (Assuming all ¢ are ATL state formulae)
(AN (o1 U p2 Nps U pa) | (AN (o1 A 3) U [(p2 A (A (g3 U pa)) (3.18)

AW[(¢1 A @3) 45) AL #2))]) (3.19)
(AN (o1 U p2 V o3 U pa) Wl e E%\(x 2/(1%(@E i:m
(AN (1 R p2 Aps R pa)| (AN[((¢1 A (AN gz R ¢a) i (3.20)
Ay @D R (@2 Aol (501

(AD(p1 R ¢2 Vo3 R pa) V(AN (g Rog)) R (o A)]
(AN U o2 Npa R p3) | (AD(p1 A p3) U ((p2 A (AN (pa R p3))

V (pa Aoz A AN (1 U ¢2)))]

(AN (p1 U p2 V 1 R 3) (AN(p1 A pa) W ({AN (1 U 3) (3.23)
V(AN (g1 R v3)))]

Proof. (Equation 3.19) Suppose g E {(A)(¢1 U @2 V @3 U p4). Then there exists
a set of strategies, Fy4 one for each agent in A, such that VA € out(q, Fa) A E
w1 U o or A E p3 U 4. Take a path A € out(q, Fa), let i be the first point such
that A[i] E w2 V@4 or A[i] ¥ @1 A ps (from the hypothesis, this point must exist).
There are four cases to consider:

— Mi] E ¢2 weknow that VO < j < iA[j] E @1A@s. So X E (p1Aps) U ((A)(p1 U @)V
(AN (03 U 4))

— Ai] E 4 is similar to A[i] E g9

— Ai] ¥ o1 V g2 — We know that V0 < j < iA[j] F @2 and A[j] E ¢1 A ps.
Since A F o1 U pa, it follows from our assumption that A F o3 U p4. Thus,
we can construct a strategy G4 such that A[i] E (A) (o3 U ¢4). Ga = {ga |
0 € S} where g,(1) = fa(\0,i — 1]2). S0 A E (1 Aps) U (AN (1 U) V
(AN (03 U 4))

— Ai] 7 p3 V @4 is similar to A[i] i ¢1 V @9

Suppose ¢ £ (AN[(@1 A ws) U ((A) (91 U 92) V (AN (g3 U 91))]. Then there
exists a set of strategies, F4 one for each agent in A, such that VA € out(q, Fa)

AE (o1 Ap3) U ({AN(p1 U p2) V (AN (p3 U ¢4)). We show that a strategy Ha

2 Simpler special cases for F and G exists, but are omitted from this extended abstract

exists such that {A)(¢1 U @2 V3 U @4). It is constructed from a set of functions
h, as follows,

if 3 <nVji<i qFo1Ap3A-psA-psand gi i o1 A g3
then We know that ¢; F {(A) (o1 U p2) V {(AN(psU @4). If q; E
(AN (o1 U p2), then let G4 be the set of strategies such that
VA € out(q;,Ga)\F o1 U po. Define h, as ha(qo, -+ Qis - qn) =
9a(Qis -, qn). Similarly, if ¢; F (A)(ps U p4) call the resulting
set of strategies G'y and define h, with ho(qgo,...,qi,---,qn) =
9 (@i Gn)

else h(qo, .-, qn) = faldo,---,qn) O

State Formulae In Section 3.2 above, we considered conjunctions and disjunc-
tions of path formulae under an ((A)). Often, these can be pulled apart into
well-formed ATL. However, when state formulae are mixed in, none of the rules
apply directly. For example, ({(A))(p A Fg A Gr) does not match any rule because
of the p. Obviously, a state formula under a path quantifier is equivalent to the
same formula outside the path quantifier.

stateFormula(p) - {(A)¢ < ¢ (3.24)

More generally, we can pull state formulae out from any boolean combination of
path and state formulae by rewriting to disjunctive normal form and applying
the following rule:

n

AN (91 A1) V -V (9 A t5n) \/\/(/\w A>>\/¢k) (3.25)
k=3

i=1j5=1

4 Approximations

These approximations are applied when no more equivalences can be used on
a formula. Again, they are applied left to right and match temporal operators
with path quantifiers. The s in each rule represent ATL* path formulae. Each
approximation produces a strong or a weak bound, which is closer to being
in ATL than the original (one nested temporal operator is paired with a path
quantifier). Details on how these are used follow in Section 5.

(ANFY = (A)FIY (ANGy < (A)GVy (4.1)
(ANFy < (AF(ADy (ANGY = (ANG(Ahy (4.2)
(ANFGy = FF(A)Gy (ANGFy < VG(A)Fy (4.3)

(AN (1 U P2) = (AN ((ANY1 U Fpa) (AN (Y1 R p2) <= (AN((ANDY1 R Vyp2) (4.4)
(AN (1 U P2) <= (AN (Y1 U (AN2) (AN (1 Rp2) = (AN (T R (ADy2) (4.5)
(AN (1 V 2) = 391 V Topo (AN (1 A tp2) <= Vb1 A VP2 (4.6)
(AN (1 V ip2) <= (ANY1 V (A2 (AN(P1 Adp2) = (AL A (AN (4.7)

5 Re-Writing

The rewrite rules given above provide a framework for translating formulae from
ATL* into ATL. The general pattern is to use equivalences as far as possible.
Then approximate and repeat by applying equivalences to the strong and weak
bounds. Stop when both bounds are well-formed ATL formulae. The rule-set has
some important properties:

— Using these rules, any ATL* formula ¢ may be re-written into a pair of ATL
formulae s, ¢, such that ¢s = ¢ = ¢,. This can be proved using Equa-
tions 4.1 to 4.7, and structural induction on the syntax of ATL* formulae.

— The rewrites will always terminate. Every rule has a single direction and
all but two reduce the number of temporal operators which do not have
a matching path quantifier. The exceptions, are the ones concerned with
state formulae (Section 3.2). However, they do not increase the number of
unmatched temporal operators, and clearly terminate in themselves. The
number of nested temporal operators is finite, so the rules must terminate.

— It does not matter in which order the equivalence rewrites are applied. When
approximating, it does not matter which approximation is applied. It is only
necessary that equivalences are used in preference to approximations.

— The end result is at most two formulae. Although a formula may be split into
strong and weak bounds many times, after the first split one of these can
be thrown away. If you are already working on a strong bound and have to
approximate, then the weak bound of the resulting pair is discarded because
it can provide no further information. Similarly, strong bounds are discarded
when already working on a weak one.

6 Examples

To adequately measure our technique, it is not enough to just translate some
formulae and look at the results. The real use or lack thereof comes from the
result of model-checking translated properties against models.

An existing project® [5] has tried to ease the difficulty of writing temporal
logic specifications. They identify a number of common patterns drawn from a
range of application domains and provide these as templates. For example, the
property “p becomes true between g and r” can be written in LTL as G(gA—r —
(= W (p A —r))). These patterns provide a level of complexity which is as deep
as hand-written specifications are likely to be, thus provide a realistic setting to
test our technique.

3 http://www.cis.ksu.edu/santos/spec-patterns/

6.1 Feature Interaction in a Telephone System

The model for this case study is one developed for a paper on proving Feature
Non-Interaction in ATL [4] and as such, had a pre-written MOCHA model. Some
of the specifications given in the paper were in ATL*, so they could not be
checked at the time. Here, we translate the properties with our method and
comment on the results.

The basic system was the Plain Old Telephone System (POTS) Four phones
and an exchange can interact to make calls in the familiar way. Then features
were added with a construct described in the paper. For POTS itself, there are
some basic properties to check; for the featured system, we examine the Call
Forward on Busy feature. The results are summarised in Table 2.

To illustrate the translation process, the derivation of one property is given
below. “The user cannot change the callee without replacing the handset.” Al-
though the original property was successfully checked with our method, a variant
given below gives a better illustration of how the translation works. Instead of us-
ing a W operator, we follow a specification pattern from [5] “Existence between
pand r”.

p= i.callee=]

q= i.trying } Renaming

r = i.idle

[{]]IGpAg— (pWr)) Original property from [4]

[[]]G(pAgAFr — (pUT)) Same property, expressed us-
ing pattern from [5]

[F]]G(=pV —qV G—r V (pUT)) Negation Normal Form

[F]]GY(=pV =gV G-r V (pUT)) Approximation using Eq 4.1

[{]]G(—=pV —q VV(G-rV (pUT))) Equivalence using Eq 3.25

[]G(=pV ~q

Equivalence using Eq 3.23
VY((p A1) W (Y(p U T)) V (YG-1)))) &

The unknown result for the third property is a little disappointing, but this
is actually an inaccurate specification. It doesn’t allow for j putting the phone
down whilst the call-forwarding is being resolved. If we add this to the formula,
and check a new strong bound:

{(INF(iNG(j.trying & j.callee=i & !i.idle

-> A (j.trying U ((j.trying & j.callee=k) | !j.offhook))
We find that the property is true — Call Forward on Busy has been implemented
correctly. The translation method did not help in coming to this conclusion, other
than by forcing consideration on why the original strong bound was false.

Table 2. Results of Translating and Model Checking for POTS and POTS+CFB

Any phone may call any other phone (POTS)

Original |{{i,7) G F (i.talking & i.callee=j) n/a
Strong VG ((4,j) F (i.talking & i.callee=j) T
Conclusion|Original is true

The user cannot change the callee without replacing the handset (POTS)

Original [[[i]] G (i.callee=j & i.trying & F i.idle n/a
-> (i.callee=j U i.idle))
Strong [[{]] G (!i.callee=j | !i.trying T

| A ((i.callee=j & !'i.idle) W
((A (i.callee=j U i.idle)) | (A G 'i.idle)))
Conclusion|Original is true

If user[i] is busy, they can force a call from j to be forwarded to k (POTS+CFB)

Original [{((i)F G (j.trying & j.callee=i & !i.idle n/a
-> j.trying U (j.trying & j.callee=k))

Strong {(GHF (i) G (j.trying & j.callee=i & !i.idle F
->V (j.trying U (j.trying & j.callee=k)))

Weak {(i)F E G (j.trying & j.callee=i & !i.idle T

-> (i) (j.trying U (j.trying & j.callee=k)))
Conclusion|No result

7 Conclusions and Related Work

We have demonstrated that Alur and Henzinger’s ATL* is a good logic for writ-
ing specifications of reactive systems. Given a specification in ATL*, our method
produces bounds in ATL which are guaranteed to be correct (i.e. the strong
bound implies the original and the weak bound is implied by it). Alternative,
ad hoc. simplification may produce formulae which look close to the original but
due to the subtleties of ATL are not as close as they appear. To the best of our
knowledge, there is no existing work to do the same thing with ATL* but there
is much written about the expressivity of linear and branching time logics.

In [3], Clarke et al. show that for any CTL* formula which distinguishes two
finite Kripke models, the models may also be distinguished by a CTL formula.
Since ATL is a generalisation of CTL, this seems like exactly what we were look-
ing for, but their precondition is actually very strong. The CTL* formula must
“sufficiently detailed” i.e. it must characterise exactly one class of equivalent
finite Kripke structures. The first notion of equivalence used in [3] is similar to
bisimulation and then this is extended to equivalence modulo stuttering. Even
with this extension, the resulting CTL* specification must be nearly as detailed
as the implementation so it would be just as likely to contain errors and thus
defeat the point of model checking it.

In Cadence SMV [10], specifications are written in LTL and then translated
to CTL in order to perform symbolic model checking. Direct conversions are
used where possible, otherwise new variables are introduced into the model to
characterise the parts which cannot be translated. We intend to investigate this
idea in the context of ATL.

References

1. R. Alur, T. A. Henzinger, S. C. Krishnan, et al. Mocha User Manual. Computer
and Information Science Department, University of Pennsylvania and Electrical
Engineering and Computer Sciences Department, University of California, Nov.
1999.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 100-109. IEEE Computer Society Press, 1997.

3. M. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59(1-2), July 1988.

4. F. Cassez, M. D. Ryan, and P.-Y. Schobbens. Proving feature non-interaction with
alternating-time temporal logic. In S. Gilmore and M. D. Ryan, editors, Language
Constructs for Describing Features. Springer-Verlag, 2000.

5. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, May 1999.

6. L. Lamport. “Sometimes” is sometimes “not never” - on the temporal logic of
programs. In Proc. 7th ACM Symposium on Principles of Programming Languages,
pages 174 185, Jan. 1980.

7. L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Proceedings
of the IFIP Congress on Information Processing, pages 657-667. North-Holland,
1983.

8. T. Laureys. From event based semantics to linear temporal logic. Master’s thesis,
School of Cognitive Science - University of Edinburgh, 2 Buccleuch Place, Edin-
burgh, UK, 1999.

9. F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In Pro-
ceedings of 10th International Conference on Computer Aided Verification, pages
248 263. Springer-Verlag, 2000.

10. SMV. http://wwu-cad.eecs.berkeley.edu/ kenmcmil/smv/.

