
Approximating ATL� in ATLExtended AbstratAidan Harding1, Mark Ryan1, and Pierre-Yves Shobbens21 Shool of Computer Siene, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK2 Institut d'Informatique, Fault�es Universitaires de Namur, Rue Grandgagnage 21,5000 Namur, BelgiumAbstrat. The temporal logi ATL [2℄ has proved useful in speify-ing systems that an be viewed as the parallel omposition of a set ofagents. It has tool-support for model heking and simulation in theform of Moha [1℄. ATL� is a more expressive form of ATL whih pro-vides a more natural way to write spei�ations. Whilst ATL an bemodel heked in linear time (relative to the size of the model), ATL�is 2EXPTIME-omplete [2℄. Here we present a method of \translating"an ATL� formula, into ATL so that model heking an then be per-formed. This method annot, in general, be entirely exat but insteadprodues a strong and a weak bound. From these we may be able to inferwhether the original formula was satis�ed. To minimise the number ofundeided ases, the bounds must be as lose as possible to the original.Exat translations help to ensure that this is so, and we have identi�eda number of patterns whih an be translated without loss. Case studiessupport the method by showing that most ATL� formulae attempted didyield onlusive results, even after approximation.

1 IntrodutionThe aim of this work is to provide a method of model heking ATL� spei�a-tions using a model heker for ATL. Model heking ATL� diretly is infeasible,so we have taken the option of rewriting a given ATL� property ', into a pair ofATL properties, 's and 'w. By heking these two properties, we may be ableto infer whether or not ' is satis�ed. There is some unertainty in the method,beause 's and 'w do not apture all of the information in '. In some asesthis abstration of the formula may be too oarse, making it impossible to de-ide whether ' is true or not. To add to the auray and sophistiation of ourmethod, exat (i.e. information preserving) transformations on ATL� formulaeare used, wherever possible.1.1 Why ATL�?ATL� [2℄ is a temporal logi for reasoning about systems omposed of agents. Itis desirable to write spei�ations in ATL� rather than CTL� or LTL beauseit allows us to distinguish between the possible hoies of agents, whih are thesoures of non-determinism. By reognising the agents in a system, it is possibleto separate out properties whih would otherwise remain hidden.A formal look at ATL and ATL� is deferred until Setion 2, but �rst welook at a motivating example for their use. Consider a basi phone system.A natural question to ask about it is \Can two users, i and j, ooperate suhthat in the future, they will be talking to one and other". The idea of theirooperation is that we wish to exlude paths suh as those where i never dialsj, or j goes o�-hook every time the onnetion is being attempted. However,we allow for the rest of the system to be as awkward as possible e.g. anotherphone k may try to interfere by also dialling j and the exhange may solve theonit by favouring k. In CTL, this annot be expressed { it is only possibleto write about all omputation paths or the existene of at least one. However,in ATL we an write about the paths enforeable by the ooperation of i and j:hhi; jiiF(phone[i℄:talking^phone[j℄:talking^urrentConnetion[j℄ = i). Clearlythere are many other systems where ATL� is bene�ial, allowing us to reasonabout the apabilities of sets of agents in ooperation/opposition.Just as CTL� generalises CTL by allowing temporal operators to be nesteddiretly, ATL� generalises ATL. ATL� an be more useful than ATL due to thisextra expressiveness. It provides all of the advantages of LTL whilst retaining theability to reason about the apabilities of agents. LTL spei�ations are laimedto be easier to write in [8℄, and to be more useful for reasoning about onurrentsystems in [6℄. By using ATL�, we have the best of both worlds (in expressivity).1.2 Approximating ATL� in ATLSine ATL� is stritly more expressive than ATL, we annot hope to translateall possible formulae exatly from ATL� into ATL. The omplexity of modelheking ATL is linear in the size of the model, whilst model heking ATL�

diretly is doubly exponential [2℄. Our method is a partial solution to the problemof model heking ATL� { it returns within a feasible time, but may lose some ofthe original information. In essene, this is ahieved by approximating a singleproperty ', into two properties 's and 'w whih surround the original propertywith a strong and a weak bound suh that:'s) ') 'w (1.1)We an then model hek the ATL formulae with Moha to dedue the satis-fation of '. If we �nd 's to be true, then ' is true; If we �nd 'w to be false,then ' is false; If 's is false and 'w is true, we annot deide whether ' is trueor false.It is essential to minimise the number of times our method may ome bakundeided. This means ensuring that the strong and weak bound are as loseas possible to '. To do this, we use exat equivalenes, where possible. Theseequivalenes are designed to make ' in some sense, better with eah appliationi.e. they should make the property loser to ATL than it was before. When nomore equivalenes are appliable, approximation is used to opy path quanti�ersover temporal operators e.g.hhAiiFG' hhAiiFhhAiiG' (strong)hhAiiF9G' (weak)After eah approximation, equivalenes are applied until either the formula is inATL or more approximation is needed. With the omplete set of approximationsprovided, any well-formed ATL� formula an be translated into into a pair ofwell-formed ATL formulae.The rest of the paper is organised as follows: Setion 2 summarises the syntaxand semantis of Alur and Henzinger's ATL; Setion 3 lists the exat equivalenesused in the translation proess; Setion 4 overs the approximations used in thetranslation proess; Setion 5 takes a look at how the rules are used and whatproperties they have; Setion 6 has a model of a telephone system with ATL�spei�ations whih have been translated and heked with Moha; Finally,Setion 7 looks at some other methods of moving between temporal logis withdi�ering expressivity.2 Alternating-Time Temporal LogiAlternating-Time Temporal Logi [2℄ (ATL) is a temporal logi for reasoningabout reative systems omprised of agents. It ontains the usual temporal op-erators (next, always, until) plus ooperation modalities hhAii', where A is a setof agents. This modality quanti�es over the set of behaviours and means that Ahave a olletive strategy to enfore ', whatever the hoies of the other players.ATL generalises CTL, and similarly ATL� generalises CTL�, �-ATL generalisesthe �-alulus. These logis an be model-heked by generalising the tehniquesof CTL, often with the same omplexity.

This setion ontains a brief review of ATL, as we have used it in this paper.For a more detailed treatment, the interested reader is referred to [2℄.2.1 Alternating Transition SystemsATL is interpreted over Alternating Transition Systems (ATS) whih are Kripkestrutures, extended to represent the hoies of agents.An ATS is a 5-tuple h�;�;Q; �; Æi where{ � is a set of propositions{ � is a set of agents{ Q is a set of states{ � : Q! 2� maps eah state to the propositions whih are true in that state{ Æ : Q�� ! 22Q is a transition funtion from a state, q, and an agent, a, tothe set of a's hoies. a's hoies are sets of states, and one partiular hoieis taken, Qa. The next state of the system is the intersetion of the hoiesof all agents Ta2� Qa.The transition funtion is non-bloking and unique i.e. for every state, theintersetion of all possible hoies of all agents is singleton.For two states q, q0 and an agent a, q0 is an a-suessor of q if there existssome Q0 2 Æ(q; a) suh that q0 2 Q0. The set of a-suessors of q is denotedsu(q; a). For two states q and q0, q0 is a suessor of q if 8a 2 � q0 2 su(q; a).A omputation, �, is de�ned as an in�nite sequene of states q0; q1; q2; : : : suhthat for all i � 0, qi+1 is the suessor of qi.Subsegments of a omputation path � = q1; q2; : : : are denoted by post�xingan interval in square brakets. For example, �[i; j℄ = qi; : : : ; qj , �[i;1℄ = qi; : : :and �[i℄ = qi.2.2 ATL SyntaxLet � be a set of atomi propositions and � a set of agents. The syntax of ATLis given by' ::= p j > j :' j '1 _ '2 j hhAii('1 U '2) j hhAii('1 R '2)where p 2 � and A � �1. We use the usual abbreviations for !, ^ in terms of:, _. The operator hh ii is a path quanti�er, and U (until) and R (release) aretemporal operators. As in CTL, we write F' for > U ' and G' for >R '.While the formula hhAii means that the agents in A an ooperate to make true (they an \enfore"), the dual formula [[A℄℄ means that the agents in Aannot ooperate to make false (they annot \avoid") i.e. [[A℄℄ � :hhAii:'Sine ATL is a generalisation of CTL, we an use CTL as shorthand forsome ases of ATL i.e. write 8 for hh;ii and 9 for hh�ii . The logi ATL*generalises ATL in the same way that CTL* generalises CTL, namely by allowingpath quanti�ers and temporal operators to be nested arbitrarily.1 Following Lamport's warning that the X operator leads to over-spei�ation [7℄ andfor simpliity, we di�er from [2℄ by omitting X.

2.3 ATL� SemantisIn ATL�, there are two types of formulae: state formulae are evaluated overstates, and denoted here as '; path formulae are evaluated over omputationpaths, and denoted . To de�ne the semantis of ATL�, the notion of strategiesis used. A strategy for an agent a is a mapping fa : Q+ ! 2Q suh that forall � 2 Q� and all q 2 Q, we have fa(� � q) 2 Æ(q; a). The strategies map �nitepre�xes of �-omputations to a hoie in Æ(q; a) as suggested by the strategy.The outome of a strategy must also be de�ned. For a state q, a set of agentsA, and a family of strategies FA = ffaja 2 Ag the outomes of FA from q aredenoted out(q; FA). They are the q-omputations that the agents in A an en-fore by following their strategies. � = q0; q1; q2 : : : is in out(q; FA) if q = q0 andfor all positions i � 0 qi+1 is the suessor of qi satisfying qi+1 2 Ta2A fa(�[0; i℄).The semantis of ATL� are de�ned indutively:{ � � p i� p 2 �(�[0℄){ � � :' i� � 6� '{ � � '1 _ '2 i� � � '1 or � � '2{ � � ' i� �[0℄ � ', if ' is a state formula{ � � hhAii i� there exists a set of strategies, FA one for eah agent in A,suh that 8� 2 out(q; FA) , we have � � { � � 1 U 2 i� 9i � 0:�[i;1℄ � 2 and 80 � j < i�[j;1℄ � 1.{ � � 1 R 2 i� 8i � 0, we have �[i;1℄ � 2 unless there exists a position0 � j < i suh that �[j;1℄ � 1.3 EquivalenesThese exat transformations are applied at the �rst stage of re-writing, to elimi-nate redundany. In some ases, it is possible to perform the entire translation atthis exat level. Disussion of how we may sensibly apply these rules is deferreduntil Setion 5, when all of the neessary rules have been introdued.We shall onsider both ^ and _ as part of the basi language for our rule-set.The temporal operators we shall use are Until U , Release R . Moha aeptsU but not R . However, it does aept Weak Until (While). W and Releasean be related as follows: 1 R 2 � 2W (1 ^ 2) 1W 2 � 2 R (2 _ 1) (3.1)Release is used beause it is more natural to use the dual of Until and it anstill be translated into aeptable input for Moha.We assume that the input formula is in negation normal form, and this beeasily ahieved with known LTL and ATL identities.

3.1 LTL EquivalenesLTL equivalenes an be used to replae parts of ATL� sub-formulae and alsoserve as inspiration for some native ATL� rules. Eah rule is applied left to rightand redues the number of nested temporal operators. Some of the equivalenesbelow are from [9℄, others extend or generalise them. Where a rule requiresknowing that '1) '2, this is established using the heuristi method desribedin [9℄.Future and Global Equations 3.2 to 3.8 are generalised by 3.9 to 3.15, below.These F and G abbreviations are inluded beause their readability aids theintuition behind 3.9 to 3.15. The duals are used in pratie, but omitted here.FF' � F' (3.2)FGF' � GF' (3.3)F('1 _ F'2) � F('1 _ '2) (3.4)F('1 _GF'2) � F'1 _GF'2 (3.5)F('1 ^ FG'2) � F'1 ^ FG'2 (3.6)F('1 ^GF'2) � F'1 ^GF'2 (3.7)FG('1 ^ F'2) � FG('1 ^ '2) (3.8)Until and Release'1) '2 ` '1 U ('2 U '3) � '2 U '3 (3.9)'1 U ('2 R ('1 U '3)) � '2 R ('1 U '3) (3.10)'1 U ('2 _ '1 U '3) � '1 U ('2 _ '3) (3.11)'1 U ('2 _ '3 R ('1 U '4)) � '1 U '2 _ '3 R ('1 U '4) (3.12)'1) :'3 ` '1 U ('2 ^ ('1 U ('3 R '4))) � ('1 U '2) ^ ('1 U ('3 R '4) (3.13)'1) ('4 _ '5); '1) :'3 `'1 U ('2 ^ '3 R ('4 U '5)) � ('1 U '2) ^ ('3 R ('4 U '5)) (3.14)'1) :'2 ` '1 U ('2 R ('3 ^ '1 U '4)) � '1 U ('2 R ('3 ^ '1 U '4)) (3.15)('1 U) ^ ('2 U) � ('1 ^ '2) U (3.16)') ` ' U � (3.17)3.2 ATL� EquivalenesAs in Setion 3.1, these rules are applied left to right and redue the numberof temporal operators whih do not have a mathing path quanti�er. However,they are spei� to ATL� { rather than removing redundant temporal operators,they math them to path quanti�ers.

Conjuntions and Disjuntions If '1 and '2 are ATL path formulae, thenboth hhAii('1 ^ '2) and hhAii('1 _ '2) are ATL� formulae but neither are well-formed ATL formulae. In Table 1, we onsider ases where they have exatequivalenes in ATL that an be reahed by rewriting2. One proof is given below,in order to show the general form of how the others proeed, others are availablein the full paper.Table 1. Equivalenes for Conjuntions/Disjuntions of Path FormulaeATL� ATL (Assuming all ' are ATL state formulae)hhAii('1 U '2 ^ '3 U '4) hhAii(('1 ^ '3) U [('2 ^ hhAii('3 U '4))_ ('4 ^ hhAii('1 U '2))℄) (3.18)hhAii('1 U '2 _ '3 U '4) hhAii[('1 ^ '3) U (hhAii('1 U '2)_ hhAii('3 U '4))℄ (3.19)hhAii('1 R '2 ^ '3 R '4) hhAii[(('1 ^ hhAii'3 R '4)_ ('3 ^ hhAii('1 R '2)))R ('2 ^ '4)℄ (3.20)hhAii('1 R '2 _ '3 R '4) hhAii [(hhAii('1 R '2)_ hhAii('3 R '4))R ('2 ^ '4)℄ (3.21)hhAii('1 U '2 ^ '4 R '3) hhAii[('1 ^ '3) U (('2 ^ hhAii('4 R '3))_ ('4 ^ '3 ^ hhAii('1 U '2)))℄(3.22)hhAii('1 U '2 _ '4 R '3) hhAii[('1 ^ '3)W (hhAii('1 U '3)_ hhAii('4 R '3)))℄ (3.23)
Proof. (Equation 3.19) Suppose q � hhAii('1 U '2 _ '3 U '4). Then there existsa set of strategies, FA one for eah agent in A, suh that 8� 2 out(q; FA) � �'1 U '2 or � � '3 U '4. Take a path � 2 out(q; FA), let i be the �rst point suhthat �[i℄ � '2 _'4 or �[i℄ 6� '1 ^'3 (from the hypothesis, this point must exist).There are four ases to onsider:{ �[i℄ � '2 { we know that 80 � j < i�[j℄ � '1^'3. So � � ('1^'3) U (hhAii('1 U '2)_hhAii('3 U '4)){ �[i℄ � '4 is similar to �[i℄ � '2{ �[i℄ 6� '1 _ '2 { We know that 80 � j < i�[j℄ 6� '2 and �[j℄ � '1 ^ '3.Sine � 6� '1 U '2, it follows from our assumption that � � '3 U '4. Thus,we an onstrut a strategy GA suh that �[i℄ � hhAii('3 U '4). GA = fga ja 2 �g where ga(�) = fa(�[0; i� 1℄:�). So � � ('1 ^'3) U (hhAii('1 U '2) _hhAii('3 U '4)){ �[i℄ 6� '3 _ '4 is similar to �[i℄ 6� '1 _ '2Suppose q � hhAii[('1 ^ '3) U (hhAii('1 U '2) _ hhAii('3 U '4))℄. Then thereexists a set of strategies, FA one for eah agent in A, suh that 8� 2 out(q; FA)� � ('1 ^ '3) U (hhAii('1 U '2) _ hhAii('3 U '4)). We show that a strategy HA2 Simpler speial ases for F and G exists, but are omitted from this extended abstrat

exists suh that hhAii('1 U '2_'3 U '4). It is onstruted from a set of funtionsha as follows,if 9i < n 8j < i qj � '1 ^ '3 ^ :'4 ^ :'4 and qi 6� '1 ^ '3then We know that qi � hhAii('1 U '2) _ hhAii('3 U '4). If qi �hhAii('1 U '2), then let GA be the set of strategies suh that8� 2 out(qi; GA)� � '1 U '2. De�ne ha as ha(q0; : : : ; qi; : : : ; qn) =ga(qi; : : : ; qn). Similarly, if qi � hhAii('3 U '4) all the resultingset of strategies G0A and de�ne ha with ha(q0; : : : ; qi; : : : ; qn) =g0a(qi; : : : ; qn)else h(q0; : : : ; qn) = fa(q0; : : : ; qn) utState Formulae In Setion 3.2 above, we onsidered onjuntions and disjun-tions of path formulae under an hhAii. Often, these an be pulled apart intowell-formed ATL. However, when state formulae are mixed in, none of the rulesapply diretly. For example, hhAii(p ^Fq ^Gr) does not math any rule beauseof the p. Obviously, a state formula under a path quanti�er is equivalent to thesame formula outside the path quanti�er.stateFormula(') ` hhAii' , ' (3.24)More generally, we an pull state formulae out from any boolean ombination ofpath and state formulae by rewriting to disjuntive normal form and applyingthe following rule:hhAii(('1 ^ 1) _ : : : _ ('n ^ n)) � n_i=1 n_j=1� îk=j'k ^ hhAii i_k=j k� (3.25)4 ApproximationsThese approximations are applied when no more equivalenes an be used ona formula. Again, they are applied left to right and math temporal operatorswith path quanti�ers. The s in eah rule represent ATL� path formulae. Eahapproximation produes a strong or a weak bound, whih is loser to beingin ATL than the original (one nested temporal operator is paired with a pathquanti�er). Details on how these are used follow in Setion 5.hhAiiF) hhAiiF9 hhAiiG (hhAiiG8 (4.1)hhAiiF (hhAiiFhhAii hhAiiG) hhAiiGhhAii (4.2)hhAiiFG) 9FhhAiiG hhAiiGF (8GhhAiiF (4.3)hhAii(1 U 2)) hhAii(hhAii 1 U 9 2) hhAii(1 R 2)(hhAii(hhAii 1 R 8 2) (4.4)hhAii(1 U 2)(hhAii(8 1 U hhAii 2) hhAii(1 R 2)) hhAii(9 1 R hhAii 2) (4.5)hhAii(1 _ 2)) 9 1 _ 9 2 hhAii(1 ^ 2)(8 1 ^ 8 2 (4.6)hhAii(1 _ 2)(hhAii 1 _ hhAii 2 hhAii(1 ^ 2)) hhAii 1 ^ hhAii 2 (4.7)

5 Re-WritingThe rewrite rules given above provide a framework for translating formulae fromATL� into ATL. The general pattern is to use equivalenes as far as possible.Then approximate and repeat by applying equivalenes to the strong and weakbounds. Stop when both bounds are well-formed ATL formulae. The rule-set hassome important properties:{ Using these rules, any ATL� formula ' may be re-written into a pair of ATLformulae 's; 'w suh that 's) ') 'w. This an be proved using Equa-tions 4.1 to 4.7, and strutural indution on the syntax of ATL� formulae.{ The rewrites will always terminate. Every rule has a single diretion andall but two redue the number of temporal operators whih do not havea mathing path quanti�er. The exeptions, are the ones onerned withstate formulae (Setion 3.2). However, they do not inrease the number ofunmathed temporal operators, and learly terminate in themselves. Thenumber of nested temporal operators is �nite, so the rules must terminate.{ It does not matter in whih order the equivalene rewrites are applied. Whenapproximating, it does not matter whih approximation is applied. It is onlyneessary that equivalenes are used in preferene to approximations.{ The end result is at most two formulae. Although a formula may be split intostrong and weak bounds many times, after the �rst split one of these anbe thrown away. If you are already working on a strong bound and have toapproximate, then the weak bound of the resulting pair is disarded beauseit an provide no further information. Similarly, strong bounds are disardedwhen already working on a weak one.6 ExamplesTo adequately measure our tehnique, it is not enough to just translate someformulae and look at the results. The real use or lak thereof omes from theresult of model-heking translated properties against models.An existing projet3 [5℄ has tried to ease the diÆulty of writing temporallogi spei�ations. They identify a number of ommon patterns drawn from arange of appliation domains and provide these as templates. For example, theproperty \p beomes true between q and r" an be written in LTL as G(q^:r !(:rW (p ^ :r))). These patterns provide a level of omplexity whih is as deepas hand-written spei�ations are likely to be, thus provide a realisti setting totest our tehnique.3 http://www.is.ksu.edu/santos/spe-patterns/

6.1 Feature Interation in a Telephone SystemThe model for this ase study is one developed for a paper on proving FeatureNon-Interation in ATL [4℄ and as suh, had a pre-writtenMoha model. Someof the spei�ations given in the paper were in ATL�, so they ould not beheked at the time. Here, we translate the properties with our method andomment on the results.The basi system was the Plain Old Telephone System (POTS) { Four phonesand an exhange an interat to make alls in the familiar way. Then featureswere added with a onstrut desribed in the paper. For POTS itself, there aresome basi properties to hek; for the featured system, we examine the CallForward on Busy feature. The results are summarised in Table 2.To illustrate the translation proess, the derivation of one property is givenbelow. \The user annot hange the allee without replaing the handset." Al-though the original property was suessfully heked with our method, a variantgiven below gives a better illustration of how the translation works. Instead of us-ing a W operator, we follow a spei�ation pattern from [5℄ \Existene betweenp and r".p � i.allee=jq � i.tryingr � i.idle) Renaming[[i℄℄G(p ^ q ! (pW r)) Original property from [4℄[[i℄℄G(p ^ q ^ Fr ! (p U r)) Same property, expressed us-ing pattern from [5℄[[i℄℄G(:p _ :q _G:r _ (p U r)) Negation Normal Form[[i℄℄G8(:p _ :q _G:r _ (p U r)) Approximation using Eq 4.1[[i℄℄G(:p _ :q _ 8(G:r _ (p U r))) Equivalene using Eq 3.25[[i℄℄G(:p _ :q_ 8((p ^ :r)W ((8(p U r)) _ (8G:r)))) Equivalene using Eq 3.23
The unknown result for the third property is a little disappointing, but thisis atually an inaurate spei�ation. It doesn't allow for j putting the phonedown whilst the all-forwarding is being resolved. If we add this to the formula,and hek a new strong bound:hhiiiFhhiiiG(j.trying & j.allee=i & !i.idle-> A (j.trying U ((j.trying & j.allee=k) | !j.offhook))We �nd that the property is true { Call Forward on Busy has been implementedorretly. The translation method did not help in oming to this onlusion, otherthan by foring onsideration on why the original strong bound was false.

Table 2. Results of Translating and Model Cheking for POTS and POTS+CFBAny phone may all any other phone (POTS)Original hhi; jii G F (i.talking & i.allee=j) n/aStrong 8 G hhi; jii F (i.talking & i.allee=j) TConlusion Original is trueThe user annot hange the allee without replaing the handset (POTS)Original [[i℄℄ G (i.allee=j & i.trying & F i.idle-> (i.allee=j U i.idle)) n/aStrong [[i℄℄ G (!i.allee=j | !i.trying| A ((i.allee=j & !i.idle) W((A (i.allee=j U i.idle)) | (A G !i.idle))) TConlusion Original is trueIf user[i℄ is busy, they an fore a all from j to be forwarded to k (POTS+CFB)Original hhiiiF G (j.trying & j.allee=i & !i.idle-> j.trying U (j.trying & j.allee=k)) n/aStrong hhiiiF hhiii G (j.trying & j.allee=i & !i.idle-> 8 (j.trying U (j.trying & j.allee=k))) FWeak hhiiiF E G (j.trying & j.allee=i & !i.idle-> hhiii (j.trying U (j.trying & j.allee=k))) TConlusion No result7 Conlusions and Related WorkWe have demonstrated that Alur and Henzinger's ATL� is a good logi for writ-ing spei�ations of reative systems. Given a spei�ation in ATL�, our methodprodues bounds in ATL whih are guaranteed to be orret (i.e. the strongbound implies the original and the weak bound is implied by it). Alternative,ad ho. simpli�ation may produe formulae whih look lose to the original butdue to the subtleties of ATL are not as lose as they appear. To the best of ourknowledge, there is no existing work to do the same thing with ATL� but thereis muh written about the expressivity of linear and branhing time logis.In [3℄, Clarke et al. show that for any CTL� formula whih distinguishes two�nite Kripke models, the models may also be distinguished by a CTL formula.Sine ATL is a generalisation of CTL, this seems like exatly what we were look-ing for, but their preondition is atually very strong. The CTL� formula must\suÆiently detailed" i.e. it must haraterise exatly one lass of equivalent�nite Kripke strutures. The �rst notion of equivalene used in [3℄ is similar tobisimulation and then this is extended to equivalene modulo stuttering. Evenwith this extension, the resulting CTL� spei�ation must be nearly as detailedas the implementation so it would be just as likely to ontain errors and thusdefeat the point of model heking it.

In Cadene SMV [10℄, spei�ations are written in LTL and then translatedto CTL in order to perform symboli model heking. Diret onversions areused where possible, otherwise new variables are introdued into the model toharaterise the parts whih annot be translated. We intend to investigate thisidea in the ontext of ATL.Referenes1. R. Alur, T. A. Henzinger, S. C. Krishnan, et al. Moha User Manual. Computerand Information Siene Department, University of Pennsylvania and EletrialEngineering and Computer Sienes Department, University of California, Nov.1999.2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi. InProeedings of the 38th Annual Symposium on Foundations of Computer Siene,pages 100{109. IEEE Computer Soiety Press, 1997.3. M. Browne, E. Clarke, and O. Grumberg. Charaterizing �nite Kripke struturesin propositional temporal logi. Theoretial Computer Siene, 59(1-2), July 1988.4. F. Cassez, M. D. Ryan, and P.-Y. Shobbens. Proving feature non-interation withalternating-time temporal logi. In S. Gilmore and M. D. Ryan, editors, LanguageConstruts for Desribing Features. Springer-Verlag, 2000.5. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property spei�ationsfor �nite-state veri�ation. In Proeedings of the 21st International Conferene onSoftware Engineering, May 1999.6. L. Lamport. \Sometimes" is sometimes \not never" - on the temporal logi ofprograms. In Pro. 7th ACM Symposium on Priniples of Programming Languages,pages 174{185, Jan. 1980.7. L. Lamport. What good is temporal logi? In R. E. A. Mason, editor, Proeedingsof the IFIP Congress on Information Proessing, pages 657{667. North-Holland,1983.8. T. Laureys. From event based semantis to linear temporal logi. Master's thesis,Shool of Cognitive Siene - University of Edinburgh, 2 Buleuh Plae, Edin-burgh, UK, 1999.9. F. Somenzi and R. Bloem. EÆient B�uhi automata from LTL formulae. In Pro-eedings of 10th International Conferene on Computer Aided Veri�ation, pages248{263. Springer-Verlag, 2000.10. SMV. http://www-ad.ees.berkeley.edu/~kenmmil/smv/.

