
Implementation of belief hange operators using BDDsNikos Gorogiannis and Mark D. Ryan (fnkg,mdrg�s.bham.a.uk)Shool of Computer SieneUniversity of BirminghamBirmingham B15 2TTUKAbstrat. While the theory of belief hange has attrated a lot of interest fromresearhers, work on implementing belief hange and atually putting it to use inreal-world problems is still sare. In this paper, we present an implementationof propositional belief hange using Binary Deision Diagrams. Upper omplexitybounds for the algorithm are presented and disussed. The approah is presentedboth in the general ase, as well as on spei� belief hange operators from theliterature. In an e�ort to gain a better understanding of the empirial eÆienyof the algorithms involved, a fault diagnosis problem on ombinational iruits ispresented, implemented and evaluated.Keywords: belief revision, binary deision diagrams, fault diagnosis1. IntrodutionWhen an agent aquires information whih ontradits its urrent be-liefs, it is obliged to give up some of its beliefs in order to aommodatethe new information and remain onsistent. The operation of onsis-tently inorporating new information into a belief state by removingsome of the old beliefs is alled belief revision. The seminal work onbelief revision was done by Alhourr�on, G�ardenfors and Makinson (see,e.g., [9℄). The AGM theory, as it is known, proposes a set K1{K8of rationality postulates whih any belief revision operator ought tosatisfy. More reently, a number of subtly di�erent forms of revisionhave been distinguished, suh as update [15℄. While revision is used tomodel the evolution of belief about a stati world, update models thesame proess in a hanging world.As well as work on rationality postulates, several authors have pre-sented spei� revision or update operators [23, 7, 24, 2, 21℄. There hasalso been work on appliations of belief revision beyond the modellingof arti�ial agents. For example, appliations of belief revision in faultdiagnosis have been proposed [7, 24℄. We examine this appliation laterin this paper.In this paper we are onerned with implementation of belief hangeoperators in a �nite, propositional language. An important deision inany implementation of belief hange onerns the hoie of representa- 2001 Kluwer Aademi Publishers. Printed in the Netherlands.
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2tion for belief states. Among the desiderata for suh representations,one may list:Representational ompatness. For example, representing belief setsby formulas is usually more ompat than representing them as setsof models, sine for n atomi propositions there are 2n possiblemodels.Syntax independene. Two logially-equivalent belief states shouldremain logially-equivalent when they are revised by equivalentformulas. This property holds automatially of model-based rep-resentations of belief states, but does not neessarily hold if thebelief hange operator is de�ned on a formula-based representa-tion. While some researhers (e.g, [19℄) have argued that this is agood thing, or at least useful in some ases, we believe that syntax-dependene should be avoided unless ditated by the nature of theproblem to solve.EÆieny. We aim for eÆient algorithms implementing belief hange.However, the word \eÆieny" is used in a relative sense, ratherthan an absolute one. Cheking whether a formula is satis�ableis NP-omplete, and the problem of belief hange is, in general,known to be harder than propositional satis�ability [8, 19, 16℄.Thus, a more preise restatement of our aim is to provide methodsthat perform well in the \average" ase, while inevitably havingan intratable worst-ase omplexity.The possible models representation of belief states is often thoughtto be omputationally least tratable (see, e.g., [10℄). However,Winslett's update operator, whih is based on a possible-modelsrepresentation [24℄, has been proved to have a linear omplexityin the number of models [11℄. Thus, a possible-models approah islikely to be as eÆient as one an get in the worst-ase. One maylook for ways of improving the average-ase eÆieny.The goal of this paper is to explore implementations of belief hangeoperators on propositional logi by means of a data struture known asthe Binary Deision Diagram (BDD). BDDs are widely known beauseof their use in model heking, a hardware veri�ation tehnique whihworks by exhaustive state-spae exploration. In that ontext, theirusage has led to a dramati improvement in the eÆieny of modelheking implementations, and therefore in the size of model that anrealistially be explored [18, 6℄.The paper is strutured as follows. We introdue BDDs and theiroperations in the next setion. In setion 3, we review belief revision,
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3and in setion 4 we implement some belief revision operators in terms ofBDDs, studying their omplexity. Setion 5 is devoted to a substantialexample based on fault diagnosis, and our onlusions are presented insetion 6. 2. Binary Deision Diagrams2.1. Definitions and Basi ResultsBinary Deision Diagrams (BDDs) are a ompat and empirially ef-�ient data struture for representing formulas in propositional logi.The deision tree for the formula x _ y is shown in �gure 1(a). The
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Figure 1. (a) The deision tree and (b) the BDD for the formula x_y. () The BDDfor the formula ((p _ q) ^ r) _ s.dotted lines denote the path to be taken when a node is false, andthe solid lines when it is true. The deision tree shows four paths,orresponding to the four possible values of x and y, and the leavesshow the resulting truth value of the formula in those ases. Deisiontrees thus ode up the truth-table for the formula. They are not spae-eÆient, having 2n+1�1 nodes when the number of atomi propositionsin the formula is n.The BDD for x_ y is shown in �gure 1(b). It is obtained by foldingtogether shared subtrees in the deision trees, and removing redundantdeision nodes. BDDs an be muh more ompat than the orrespond-ing deision trees. For example, the BDD for ((p_ q)^ r)_ s, shown in�gure 1(), ontains 6 nodes, while the orresponding tree ontains 31nodes. In the worst ase, BDDs an still have O(2n) nodes. However,BDDs have been extensively used in veri�ation where they appear tobe a ompat representation in pratie.
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4 Both deision trees and BDDs assume a �xed ordering of the vari-ables into layers. The size of the deision tree is independent of thatordering, but the size of the BDD is not; the spae-eonomy introduedby sharing subdiagrams an depend on the ordering of the variables.A BDD is fully redued if it has no redundant deision points and noisomorphi subdiagrams. There is an eÆient algorithm, alled redue,for reduing a deision tree or partly-redued BDD into its fully-reduedform. One redued, BDDs are anonial : that means that there is aunique redued BDD for a given formula with respet to a �xed variableordering. More detailed information about BDDs and their algorithmsan be found in [1, 6℄ or the book [12℄.2.2. Algorithms on Binary Deision DiagramsAfter onverting a formula to a BDD, that BDD an be manipu-lated using several algorithms that implement logial operations. Someof these algorithms are presented below along with their omplexityharateristis.Note that most of the algorithms presented below have an identialspae and time worst-ase omplexity. Thus unless expliitly stated,omplexity will refer to both ases.2.2.1. Tautology, satis�ability and equivalene hekingBeause of the anoniity of BDDs, it is easy to hek whether a BDDrepresents a tautology, or an unsatis�able formula. Every tautology isrepresented by the same BDD, namely, the BDD with a single node,the terminal 1. Thus, tautology heking is a onstant-time operation.In the same spirit, a formula is satis�able if its BDD representa-tion is not the terminal node 0. Again, this results in a onstant-timeoperation. It follows from these observations that the onversion ofa formula to BDD form is NP- and oNP-hard in the length of theformula. Consequently, sine it is widely believed that NP6=oNP, it isprobably the ase that the problem of onverting a formula to a BDDis not a member of NP[oNP.The anoniity property of BDDs implies that heking if two for-mulas are equivalent by omparing their BDDs is very eÆient. In BDDpakages like CUDD [22℄ or BuDDy [17℄, this an be done by pointeromparison (and hene in onstant time).2.2.2. Conversion to binary deision diagramsRelated to the above observation on the omplexity of the onversion ofa formula to a BDD is the fat that the worst-ase omplexity of a BDDis O(2n) where n is the number of variables in the formula. This ours
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5when the redution o�ers only sub-exponential spae-eonomy. How-ever, the variable ordering drastially a�ets the amount of redutionpossible, so it is not always evident whether this exponential worst-ase omplexity is due to the ordering or is inherent to the formularepresented. On the other hand, many formulas have been found to havevery ompat BDD representations by hoosing appropriate variableorderings (see [5℄).Funtion Class Spae ComplexityBest WorstSymmetri1 O(n) O(n2)Integer Addition (any bit) O(n) O(2n)Integer Multipliation (middle bit) [4℄ O(2n) O(2n)Note that the omplexity measures used for BDDs depend on thenumber of variables and not on the length of the represented formula(whih is the usual omplexity measure in logi). It makes sense to usethe number of variables rather than the length of the formula, beauseof the anoniity of BDDs. For a given variable ordering, the spae-omplexity of a BDD depends only on the number of atoms, and noton the length of the formula.An additional point about the limitations of BDDs is that �nd-ing an optimal variable ordering for a given formula, i.e. an orderingthat minimises the size of its BDD, is a oNP-omplete problem (see[3℄). However, there are several heuristis whih perform quite well inpratie.2.2.3. The algorithms apply, negate and restritGiven two BDDs representing the formulas � and  (having j�j nodesand j j nodes respetively), together with a binary onnetive �, thealgorithm apply omputes the BDD for �� . The worst-ase omplex-ity of apply is O(j�j � j j) and it is known to be a tight bound, i.e. thereare formulas � and  suh that their onjuntion exhibits a omplexityof O(j�j � j j) [3℄.Given the BDD for �, the algorithm negate omputes the BDDfor :� by using apply and the ! operator: :� = � ! ?. Thus itsomplexity is O(j�j � 1) = O(j�j).21 Formulas whose truth value depends only on the number of atoms set to true,suh as p$ q, are alled symmetri.2 Note that negate ould be implemented as a onstant-time operation, by swap-ping the terminal nodes. However, for reasons of eÆieny, most BDD pakages use
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6 These two algorithms provide a way for onverting a formula to aBDD, without reating the deision tree and then reduing it to BDDform. The BDD representation of a propositional variable is a tree withthree nodes, the root labelled by the variable and the two terminalnodes, 1 and 0. Using these and the algorithms apply and negate, aformula an be reursively onverted to the equivalent BDD. Indeed,this is the only algorithm for onversion used in pratie, sine onvert-ing a formula to its deision tree is always an exponential operation inthe number of variables, whereas onversion using apply is expensiveonly in the worst ase.The result �[C=p℄ of the substitution of a variable p by a booleanonstant C an be omputed with the algorithm restrit. The worst-ase omplexity is O(j�j) (see [3℄). As noted in the same paper, thealgorithm an be modi�ed to perform a spei� number of restritionssimultaneously without a�eting its omplexity.2.2.4. The algorithms exists and forallThe formulas 8p: � and 9p: � are de�ned as8p: � = �[>=p℄ ^ �[?=p℄9p: � = �[>=p℄ _ �[?=p℄The BDDs for 8p: � and 9p: � an be omputed from the BDD for � bythe algorithms apply and restrit, with omplexity O(j�j2) (see [5℄).Conseutive quanti�ation over k variables using this algorithm resultsin an upper bound for the worst-ase omplexity, of O(j�j2k).MMillan, in [18℄, desribes the andExists algorithm, for omputingan operation that ours very often in model heking and whih plays aentral role in our formulation of propositional belief hange. Let � and be two BDDs. The algorithm omputes the onseutive existentialquanti�ation over a spei�ed vetor of variables, of the onjuntion� ^  , but without expliitly forming the BDD for it. An upper boundon the time omplexity of this algorithm is O(j�j � j j � 22n), where n isthe total number of variables appearing in � and  . However, intuitionand empirial evidene both suggest the existene of a smaller bound.The resulting BDD has a size bounded by the general worst-ase ofthe result, i.e. O(2n�k), where k is the number of variables on whihwe quantify. MMillan also proves that the omputation of the BDDexpressing an existential quanti�ation over n variables is NP-omplete,making unlikely the possibility of a polynomial algorithm.The universal quanti�ation an be omputed by using the fatthat 8 � :9: and the algorithm negate, giving the same omplexity.the same terminal nodes for all stored BDDs, all of whih would be negated if theterminal nodes were to be swapped.
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7The dual algorithm to andExists, impliesForall, is derivable fromandExists and negate, having again the same omplexity bound.2.2.5. The algorithm replaeAs we see later, we often need to replae some variables in a BDD byother variables, orresponding to substitution in logi. This is a linear-time operation if the BDD resulting from the substitution obeys thevariable ordering hosen. If it does not, then re-ordering is neessaryand in general this an take exponential time.2.3. Expression syntax for BDDsWe use a bold-fae logial notation to denote the algorithms of thepreeding setion, as summarised in the table below. These algorithmswill be used to desribe belief hange operators. We now present somederived algorithms whih will be useful for that purpose. These an bethought of as maros.algorithm (with arguments) notationapply(B1; B2;!) B1!!! B2negate(B) :::Bexists(p; B) 999p: BandExists(p; B1; B2) 999p: (B1 ^̂̂ B2)replae(p;p0; B) B[p0=p℄We have seen how BDDs represent formulas by representing the set ofmodels that satisfy them. To implement some belief hange operators,we need to be able to represent relations on models as BDDs. A relationan be thought of as a funtion whih, given two models, returns aboolean value. Therefore, it an be represented as a BDD over twoopies of the atomi propositions, whih we all unprimed and primed,and write as p;p0.For example, onsider the ordering � shown in �gure 2 over the fourmodels fpq; pq; pq; pqg of the language fp; qg. Its BDD is also shown inthe �gure. To determine whether m � m0, we supply the truth valuesp for m and p0 for m0 to the BDD and get a boolean value result.If BR is a BDD representing a relation R over unprimed and primedvariables, then the BDD for the inverse relation is obtained by simul-taneously renaming the unprimed variables to primed, and the primedones to unprimed. We write this as BR[p=p0;p0=p℄. The strit ounter-part of the relation R is given mathematially as R \ R�1. Thus, theBDD for the strit ounterpart is given bystrit(BR) = BR ^̂̂ :::(BR[p=p0;p0=p℄)
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8
pq
pq pqpq

p p0qq00 1Figure 2. An ordering on the models of the language fp; qg, and its BDD.Note that the swapping of the primed and unprimed variables willneessitate re-ordering the variables, and is therefore an expensive op-eration. This is the only instane of variable replaement in the pa-per whih does not respet the ordering of variables; all the otherreplaements an be performed in linear-time.The R-minimal elements of X are de�ned asminR(X) = fw 2 X j 8v 2 X vR<wgwhereR< is the strit ounterpart ofR. The BDD algorithm for minR(X),in terms of the BDDs BR; BX for R and X, an be written asmin(BR; BX) = ((888p: (BX !!!:::strit(BR)))[p=p0℄) ^̂̂ BXIf the relation R is known to be total, then the minimal set ofelements an be written more simply, and this permits an optimisationin the way we alulate the BDD for min. If R is total, thenminR(X) = fw 2 X j 8v 2 X wRvgand therefore the BDD for min need not use strit:min(BR; BX) = (888p0: (BX [p0=p℄!!! BR)) ^̂̂ BX2.4. Upper Bounds of BDD Size Based on CiruitImplementationsThe main theorem for proving upper bounds of the size of some BDDsthat appear in the following setions, proved in [18℄, is presented in thissetion.
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9Let � be an n-ary boolean funtion and suppose a logial iruitomputing � is given. This iruit will ontain a number m of bloksthat are either gates (binary or otherwise) or primary inputs (inputsare ounted as bloks with zero inputs and one output). Let a linearorder of the iruit be a numbering of the bloks from 1 to m, with theblok produing the primary output numbered last. Then, the forwardross setion at blok i is the total number of wires from an output ofa blok j suh that j < i to an input of a blok k suh that i � k.The forward width wf of the iruit (with respet to the linear orderhosen) is de�ned as the maximum forward ross setion for all bloks.Similarly, the reverse ross setion at blok i is the total number ofwires from an output of a blok j suh that j > i to an input of ablok k suh that i � k. The reverse width wr of the iruit (againwith respet to the linear order) is de�ned as the maximum reverseross setion at any blok. Then, the following theorem holds:THEOREM 1 ([18℄). If a iruit omputing funtion � has forwardwidth wf and reverse width wr for some linear order L, then there isa BDD representing funtion � of size bounded by n2wf2wr , where n isthe number of inputs of the iruit.Sine we will only deal with iruits that aept topologial orderingsof their bloks, that is, orderings with wr = 0, the above-mentionedbound beomes n2wf . Note that this bound an yield omplexitieshigher than linear when the forward width is some funtion of n, ratherthan just a onstant. Another point to note is that hanging the booleanbase, or even using onstant bloks of binary gates as the gates of theiruit mentioned above does not hange the order of magnitude of thebound, but hanges only linearly wf and wr.The numbering of the bloks whih is used to alulate wf and wrimplies an ordering on inputs and that gives us the ordering of thevariables in the BDD. 3. Belief Change3.1. Belief RevisionBelief revision refers to the proess of inorporating new knowledge inan agent's prior beliefs, even when the new information ontradits theprevious ones. Agents are said to be in an epistemi state, representingtheir beliefs and any other relevant epistemi information. The hangeof epistemi state in the light of new information is the phenomenonthat revision is supposed to explain.
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10 The seminal work in belief revision is that of Alhourr�on, G�ardenforsand Makinson (see, e.g., [9℄). They modelled epistemi states as sets offormulas losed under onsequene, and proposed a set of rationalitypostulates K1{K8 whih they argue any revision operator ought tosatisfy.Katsuno and Mendelzon [13℄ have studied the ase where the propo-sitional language is �nite. In that ase, epistemi states may be mod-elled as propositional formulas instead of onsequene-losed theories.This setting is rather simpler; sine we are interested in implementa-tions, and any implementation neessarily involves only �nitely manyatomi propositions, we adopt the setting of Katsuno and Mendelzon.The revision operator Æ : L � L ! L takes two formulas andreturns another formula. The formula � Æ  represents the epistemistate resulting from revising � with  ; intuitively, this is intended tobe  together with whatever `parts' of � an be onsistently retained.Katsuno and Mendelzon formulate a set of postulates R1{R6 whih,for �nite languages, are equivalent to the AGM postulates K1{K8.R1.  Æ � implies �.R2. If  ^ � is satis�able, then  Æ � �  ^ �.R3. If � is satis�able, then  Æ � is satis�able.R4. If  1 �  2 and �1 � �2, then  1 Æ �1 �  2 Æ �2.R5. ( Æ �) ^ � implies  Æ (� ^ �).R6. If ( Æ �) ^ � is satis�able, then  Æ (� ^ �) implies ( Æ �) ^ �.Critiism of the postulates lies out of the sope of this paper. Ourgoal is to investigate possible implementations of belief hange opera-tions; and we believe that eah appliation requires its own ontologyand, perhaps, its own set of postulates and strutures.The intention of the postulates is to enode minimal hange, and thisan be made preise by the following theorem. Consider a funtion thatassigns to eah formula  a total pre-order � on interpretations, thatis, a binary relation on the set of interpretations U that is transitive,reexive and total. This funtion is alled a faithful assignment if andonly if the following hold (where mod( ) is the set of models of  ):F1. If w; v 2 mod( ), then w < v does not hold.F2. If w 2 mod( ) and v =2 mod( ) then w < v holds.F3. If  � � then � =��.Then, Katsuno and Mendelzon prove the following representation the-orem:
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11THEOREM 2 ([14℄). A revision operator Æ satis�es onditions R1{R6if and only if there exists a faithful assignment that maps eah formula to a total pre-order � suh thatmod( Æ �) = min� (mod(�))3.2. Belief UpdateIn [15℄, Katsuno and Mendelzon make an important distintion on themeaning of some belief hange operators. They argued that not all beliefhanges are revisions, i.e. inorporation of new information about astati world. They identi�ed and haraterised with a set of postulatesand a representation theorem, the form of belief hange they all beliefupdate. This kind of belief hange aims to integrate new informationwith an agent's prior beliefs about a hanging world. In the spirit ofthe generi approah, they list a number of postulates U1{U8 that anyupdate operator 3 should satisfy [15℄.U1.  3� implies �.U2. If  implies �, then  3� �  .U3. If both  and � are satis�able, then  3� is satis�able.U4. If  1 �  2 and �1 � �2, then  13�1 �  23�2.U5. ( 3�) ^ � implies  3(� ^ �).U6. If  3�1 implies �2 and  3�2 implies �1, then  3�1 �  3�2.U7. If  is omplete then ( 3�1) ^ ( 3�2) implies  3(�1 _ �2).U8. ( 1 _  2)3� � ( 13�) _ ( 23�).In the ontext of belief updates, a funtion that maps eah modelw to a partial pre-order �w is alled a faithful assignment if it satis�esthe following ondition:� For any models w; v 2 U , if w 6= v then w <w v.Under this framework, the following representation theorem holds:THEOREM 3 ([15℄). An update operator 3 satis�es onditions U1{U8 if and only if there exists a faithful assignment that maps eahinterpretation w to a partial pre-order �w suh thatmod( 3�) = [w2mod( )min�w(mod(�))
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124. Implementing belief hange operators as BDD algorithmsWe saw in setion 2 that propositional formulas may be representedas BDDs, and that the apply algorithm an be used to implement thebinary operators ^, ! et, while the negate algorithm implements :.This setion is onerned with the implementation of revision operatorsand update operators.4.1. Revision defined by faithful assignmentTheorem 2 tells us how to ompute � Æ  , given a faithful assignment.To implement this de�nition, we represent relations on models as BDDsin the manner desribed in setion 2.3. Theorem 2 assumes a faithfulassignment whih, given a formula �, returns an ordering��. Therefore,we assume an operation fa taking a BDD over p, whih represents �,and returning a BDD over p;p0, representing ��.By the theorem, mod( Æ �) = min� (mod(�)). Therefore, givenBDDs B ; B� for formulas �; �, we an ompute the BDD for  Æ � asmin(fa(B ); B�)where the operator min on BDDs is desribed in setion 2 for totalrelations.Suppose that the number of propositional variables is n (in eahopy of the variables), the worst-ase time omplexity of the operationfa is given as jfaj and also, the size of the resulting BDD as jfa(B )j.By expanding the maros in the above formula we get:B� ^̂̂ 888p0: (B�[p0=p℄!!! fa(B ))An upper bound for the worst-ase omplexity of the revision an beomputed as follows:Operation Time Complexity Result SizeB�[p0=p℄ O(jB�j) O(jB�j)fa jfaj jfa(B )j888p0: (� !!! �) O(jB�j � jfa(B )j � 24n) O(2n)B�^̂̂ O(jB�j � 2n) O(2n)Thus, an upper bound of the omplexity of the whole operation is:O(maxfjfaj; jB�j � jfa(B )j � 24ng)This upper bound measure may not be indiative of the true situationbeause:
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13� Empirial evidene in the ontext of model heking indiates thatthe average-ase omplexity of these operations is muh lower thantheir worst ase, but it is very hard to formulate in a preise sensewhat exatly the average ase is.� This measure depends ruially on the omplexity of the BDDrepresentation of the ordering on models. All of the model-basedoperators proposed de�ne orderings on models that require atleast one quanti�ation (for examples see the following setions).Thus, di�erent spei� revision strategies will yield very di�erentonrete omplexities.In the following subsetions, we look at some spei� belief revisionoperators de�ned in the literature.4.2. BorgidaAn interpretation v an be thought as a set ontaining only the propo-sitional variables that hold in v. The symmetri set-di�erene v4w oftwo interpretations v and w, is the set ontaining all the propositionalvariables whose values di�er in v and in w. Given a formula � and aninterpretation v, the set of di�erenes of v and � an be de�ned as:di�(v; �) def= fv4w j w 2 mod(�)gBorgida introdued a revision operator in [2℄ that orders interpre-tations aording to the set-inlusion of symmetri set-di�erenes. Thede�nition of  Æ � has two main parts:� If  ^ � is onsistent, then  Æ � =  ^ � (R2).� Otherwise, w is a model of  Æ � if there is a model v of  , suhthat v4w 2 min�(di�(v; �))Borgida's revision is known to satisfy R1-R5 but not R6 (see [14℄). Assuh, it is not de�nable by a faithful assignment. Let us look how thisis implemented in BDDs.If  ^ � is inonsistent thenmod( Æ �) = fw j 9v: (v 2 mod( ) ^ v4w 2 min�(di�(v; �)))g= fw j w 2 mod(�) ^ 9v: (v 2 mod( ) ^8z: (z 2 mod(�)! v4z 6� v4w))g
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14 The symmetri set-di�erene of two interpretations an be expressedas a boolean operation (where (v4w)i is the i-th propositional variableof the symmetrial set-di�erene between v and w)(v4w)i = :(vi $ wi)Set-inlusion of symmetri set-di�erenes is, then, expressed asv4z � v4w i� n̂i=1:(vi $ zi)! :(vi $ wi)and onsequently, strit inlusion asv4z � v4w i�  n̂i=1:(vi $ zi)! :(vi $ wi)! ^: n̂i=1:(vi $ wi)! :(vi ! zi)!
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

v1 �11z1 �12w1 : : :: : : vn �n1zn �n2wn!11!12 !n2!n1 v4z 6� v4w^n1^n2Figure 3. Ciruit to deide v4z 6� v4w.A iruit to ompute v4z 6� v4w based on these equations is pre-sented in �gure 3, where � is the xor-gate and! the implies-gate. Wede�ne the following ordering on gates and inputs:v1; z1; �11; w1; �12; !11; !12;v2; z2; �21; w2; �22; !21; !22; ^21; ^22;...vn�1; zn�1; �n�11 ; wn�1; �n�12 ; !n�11 ; !n�12 ; ^n�11 ; ^n�12 ;vn; zn; �n1 ; wn; �n2 ; !n1 ; !n2 ; ^n1 ; ^n2 ; ^; :; ^; :It is easy to hek that the forward ross setion at eah gate orinput of the iruit is at most C where C is a onstant, that is, it doesnot depend in any way on n. Thus, by the theorem in setion 2.4, thereexists a BDD BR representing this iruit, i.e. the negation of the stritpart of the ordering, of size O(n).Assuming that the BDD BR has variables p;p0;p00 for w; v; z re-spetively, the BDD algorithm implementing Borgida's revision willbe:
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151. Compute B ^̂̂ B� and hek it for onsisteny. If it is onsistent,then this is also the result of the revision (overall omplexity isO(jB j � jB�j).2. Otherwise, the result will be:B� ^̂̂ 999p0: (B [p0=p℄ ^̂̂ 888p00: (B�[p00=p℄ !!! BR))Upper bounds for the omplexity of these operations are shownbelow: Operation Time Complexity Result SizeB�[p00=p℄ O(jB�j) O(jB�j)888p00: (� !!! �) O(jB�j � n � 26n) O(22n)B [p0=p℄ O(jB j) O(jB j)999p0: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)B� ^̂̂ � O(jB�j � 2n) O(2n)Therefore, the worst-ase time omplexity of Borgida's revision is atmost O(jB�j � n26n).4.3. SatohGiven two formulas  and �, the set of di�erenes of  and � is de�nedas di�( ; �) def= [v2mod( ) di�(v; �)The revision operator proposed by Satoh in [21℄ is de�ned in �rst-order logi. Its restrition to �nite propositional logi, as desribed in[14℄ is a \global" version of Borgida's revision. When revising  by �,instead of onsidering individually the models of  , Satoh's notion ofminimality relies on both  and � simultaneously. An interpretationw is a model of  Æ � if there exists a model v of  suh that v4wis a minimal element of di�( ; �). Satoh's revision is known to satisfyR1-R5 but not R6 (proved in [14℄).It is easy to express Satoh's revision as a BDD algorithm, usingmuh of the onstrution presented above for Borgida's operator. Theset of minimal pairs min�(di�( ; �)) an be expressed asmin�(di�( ; �)) = fv4w j v 2 mod( ) ^ w 2 mod(�) ^8x8y: (x 2 mod( ) ^ y 2 mod(�)! x4y 6� v4w)gTherefore the models of the revision are:mod( Æ �) = fw j w 2 mod(�) ^ 9v: (v 2 mod( ) ^8x8y: (x 2 mod( ) ^ y 2 mod(�)! x4y 6� v4w))g
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16 It is trivial to modify the iruit for Borgida's ordering to produeone that deides x4y 6� w4v. Therefore, there exists a BDD BR ofsize O(n) that represents this ordering. We assume that BR ontainsvariables p;p0;p00;p000 that orrespond to w; v; x; y respetively. Then,the BDD algorithm isB� ^̂̂ 999p0: (B [p0=p℄ ^̂̂ 888p00;p000: (B [p00=p℄ ^̂̂ B�[p000=p℄!!! BR))Operation Time Complexity Result SizeB [p00=p℄; B [p0=p℄ O(jB j) O(jB j)B�[p000=p℄ O(jB�j) O(jB�j)B [p00=p℄ ^̂̂ B�[p000=p℄ O(jB j � jB�j) O(jB j � jB�j)888p00;p000: (� !!! �) O(jB j � jB�j � n � 28n) O(22n)999p0: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)B� ^̂̂ � O(jB�j � 2n) O(2n)an upper bound for the worst-ase omplexity of whih is O(jB j � jB�j �n28n).4.4. DalalThe revision operator proposed in [7℄ takes the distane between twointerpretations to be the ardinality of their symmetri set-di�erene(also known as the Hamming distane):d(w; v) def= jw4vjwhere the j � j operator is set-ardinality. The distane of a formula  and an interpretation v to be:d( ; v) def= minfd(w; v) j w 2 mod( )gUsing this notion of distane, a faithful assignment an be de�ned asw � v i� d( ;w) � d( ; v)The indued ordering is learly total, reexive and transitive and thus,the operator is a revision by the representation theorem for revisions.The idea behind the BDD formulation of Dalal's operator omesfrom the onstrution of a iruit that, when given four interpreta-tions w, v, x and y in the form of binary vetors, deides whetherd(w; x) � d(v; y) by 0 the appropriate boolean value. Thus, in or-der to ompare jw4xj and jv4yj we need a way to ount how manypropositional variables are true in eah set-di�erene and ompare those
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0 0...0 S11S12S1k: : :: : :00 0 An1An2A11A12(v4y)1 (v4y)n S21S22(w4x)2 Sn1Sn2: : :: : :(w4x)1 (w4x)n
0...... : : :00 0 AnkA1k ...S2k ...Snk: : :: : :jw4xj � jv4yjFigure 4. Ciruit to deide jw4xj � jv4yj.ounts. These ounts will be binary numbers representing how many 1sour in those di�erenes. The maximum number of di�erenes possibleis obviously n, thus these binary numbers need only have k = dlog2 nebits.A onstrution made of n k-bit adders in sequene an be used todo the ounting of bits set to 1 in v4y (see left-half of �gure 4). BlokslabelledAij are full-adders. These bloks are simple binary iruits that,given two input bits a; b and a arry bit , they alulate the sum oand the produed arry bit 0:o = :(:(a$ b)$ )0 = (a ^ b) _ ( ^ :(a$ b))Eah olumn in the �rst-half of �gure 4 forms a k-bit adder. By onnet-ing zeros to all bits of the �rst argument exept the �rst one, where(v4y)i is onneted, we ensure that the i-th bit of the di�erene isadded to the seond argument, whih holds the results of the ountingso far.In order to ompare the ount we get from the left-half of �gure, weuse a struture made from subtraters Sij in order to ount down the 1sin w4x, seen in the right-half of �gure 4. Similar to the full-adder, theunit Sij is a boolean iruit that given inputs a; b and an input arry alulates the di�erene o and the produed arry bit 0:o = :(:(a$ b)$ )
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18 0 = (b ^ ) _ (:a ^ :(b$ ))If, while ounting down, the subtration produes a arry bit thenwe know that jw4xj > jv4yj. Thus, we preserve the existene ofa arry bit by taking the disjuntion of all arry bits produed bythe subtration stages and by inverting that value the iruit deidesjw4vj � jv4yj.In order to apply the theorem in setion 2.4, we de�ne an orderingover the bloks of the iruit:(v4y)1; A11; : : : ; A1k;...(v4y)n; An1 ; : : : ; Ank ;(w4x)1; S11 ; : : : ; S1k; _;...(w4x)n; Sn1 ; : : : ; Snk ; _; :It is easy to see that on eah blok, the forward ross setion is atmost k + C where C is a onstant and that the reverse ross setionis always zero. Thus, the forward width of the iruit is k +C and thebound given by the theorem is 4n2k+C = O(n2), beause k = dlog2 ne.3Therefore there exists a BDD of size O(n2) that represents jw4xj �jv4yj.In order to express Dalal's revision as an operation on BDDs, wehave to onstrut the BDD operation representing the faithful assign-ment. By its de�nition we have:w � v i� d( ;w) � d( ; v)i� 9x: (x 2 mod( ) ^ 8y: (y 2 mod( )! jw4xj � jv4yj))Sine Dalal's revision is known to satisfy R1-R6 (see [14℄) the abovefaithful assignment determines uniquely the revision operator. Assum-ing that the ordering is represented by a BDD BR with variablesp;p0;p00;p000 orresponding to w; v; x; y respetively, then the BDD al-gorithm for the faithful assignment is:999p000: (B [p000=p℄ ^̂̂ 888p0000: (B [p0000=p℄!!! BR))Operation Time Complexity Result SizeB [p0000=p℄; B [p000=p℄ O(jB j) O(jB j)888p0000: (� !!! �) O(jB j � n2 � 28n) O(23n)999p000: (� ^̂̂ �) O(jB j � 23n � 26n) O(22n)3 Several optimisations an be made on the iruit appearing in �gure 4, byreplaing bloks with known output with appropriate onstants. The forward widthof the iruit, however, does not hange.
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19Therefore, an upper bound for the worst-ase time omplexity of theBDD algorithm for the faithful assignment isO(jB j�29n). Thus, in viewof the result of setion 4.1, the derived upper bound for the worst-asetime omplexity of the revision is O(maxfjB j � 29n; jB�j � 22n � 24ng) =O(jB j � 29n).4.5. Update defined by faithful assignmentTheorem 3 tells us how to ompute �3 , given a faithful assignment forupdates. Instead of representing the faithful assignment as an operationfa from BDDs representing � to a BDD representing ��, as we did forrevisions, we represent the faithful assignment as a BDD over p;p0;p00.This possibility is available to us in the ase of updates, but not in thease of revisions, beause the faithful assignment is indexed by a modelin updates and by a set of models in revisions.B� is a BDD over p;p0;p00. Given values for p00, it would beome aBDD over p;p0, representing a simple (partial) ordering. For example,the expression 999p00: (B�[p00=p℄ ^̂̂ B�)returns the relation [w2mod(�)�w:That is not what we want, however. Theorem 3 asks us to omputemod( 3�) = [w2mod( )min�w(mod(�))B� an be fed its inputs in any order, and it is onvenient to manipulateits p;p0 parameters �rst. Using the de�nition of min is setion 2.3 forpartial orderings, we may alulate the BDDmin(B�; B�)whih, given p00 representing w, omputes min�w(mod( )). This BDDis still parameterised by p00, sine we need to take the union over allw 2 mod( ). The �nal answer for the BDD representing  3� in termsof the BDDs B�, B and B� is thereforeB� ^̂̂ 999p00: (B [p00=p℄ ^̂̂ min(B�; B�)):whih when expanded gives (where B 6< = :::(B� ^̂̂ :::B�[p0=p;p=p0℄))B� ^̂̂ 999p00: (B [p00=p℄ ^̂̂ 888p0:(B�[p0=p℄!!! B 6<))An upper bound for the omplexity of the double replaement isO(jB�j�n26n). The atual omplexity is probably muh lower, but a lower
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20bound would not hange the overall omplexity of the algorithm, om-puted below.Operation Time Complexity Result SizeB�[p0=p;p=p0℄ O(jB�j � n26n) O(23n)B 6< O(jB�j � 23n) O(23n)888p0: (� !!! �) O(jB�j � 23n � 26n) O(22n)999p00: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)Thus, an upper bound for the worst ase omplexity of update isO(jB�j � 29n).4.6. WinslettWinslett introdued an update operator in [24℄. The ordering usedin this operator is de�ned using the set-inlusion of symmetri set-di�erenes a �w b i� w4a � w4bwhih is, learly, a partial order and the mapping is a faithful assign-ment. As noted in [14℄, Winslett's operator oinides with Borgida'swhen  and � are inonsistent. In other words, in Winslett's updatethe seond step of the algorithm for Borgida's revision is always used,so our results in setion 4.2 arry over here unhanged.5. Fault DiagnosisIn this setion we present a formulation of fault diagnosis as a speialkind of belief revision, along with experimental results gathered from animplementation of that algorithm. Our goal is not to formulate a fully-edged theory for fault diagnosis, nor to prove that the best methodfor diagnosis is by belief revision. What we aim at is to demonstratethe BDD algorithms we have presented, in a medium-sized example.To that end, we formulate a method for fault diagnosis that worksin a well-studied lass of systems, ombinational boolean iruits, andinvestigate its omplexity in pratie.5.1. Fault Diagnosis of Boolean Combinational CiruitsPhysial systems an develop faults that make them deviate from theirspei�ations. Given a desription of a physial system and an ob-servation of the system (usually, an input-output observation) that isinonsistent with the spei�ation, the problem of fault diagnosis is todedue whih omponents of the system are faulty.
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21Sine we are interested in disovering whih parts of the system aremalfuntioning, the spei�ation must not be just of a funtional typebut must inlude the desription of atomi parts or omponents, thebehaviour of whih is given. When suh a omponent is faulty, then itsinput-output behaviour is not restrited in any way.Reiter approahed this problem from a ompletely abstrat pointof view in [20℄. In his formulation there is an abnormality prediateab(x) ranging over the set of omponents. When suh an abnormalityprediate is false for a omponent  then  must behave as spei�ed.So, for eah omponent  we have a rule:ab()! spe(; obs)where spe(; obs) is a prediate that is true if and only if the obser-vation obs omplies with the prede�ned behaviour of omponent . Weall these rules integrity onstraints of the system.In the same paper, Reiter points out that his formulation is stronglyrelated to dedution in default logi. As belief revision is known tohave strong links to nonmonotoni reasoning, many researhers haveproposed revision as a method of fault diagnosis (see, e.g., [24, 7℄).The basis of fault diagnosis as belief revision is that an observer ofthe system has two kinds of beliefs about the physial system beforeobserving any of its behaviour:� the integrity onstraints,� moreover, it is believed that no omponents are faulty.Now, suppose that a behaviour of the system is observed that is inon-sistent with the initial belief. Having hosen an appropriate revisionoperator, one an revise the initial belief with the observation, whileproteting the integrity onstraints. Protetion of the integrity on-straints means that the revision operator will maintain the truth of theintegrity onstraints and prefer giving up other beliefs while revising.The result of the revision should, then, imply whih omponents shouldbe faulty in order to explain the observed behaviour.Sine we are interested in implementations of belief hange in a�nite propositional language, a natural appliation is fault diagnosis ofombinational boolean iruits. Suh a iruit onsists of a �nite num-ber g of unary or binary gates.4 We de�ne nI propositional variablesIi orresponding to the primary inputs of the iruit (at most 2g).For eah gate i, we de�ne a propositional variable Ni, its normality4 The presented method an be easily generalised for gates of any (onstant) arityand of any (onstant) number of outputs.
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22prediate, as well as Oi, its output value5. The input(s) of eah gatewill either be primary input(s) or output(s) of other gates. The iruithas also nPO primary outputs, denoted as POi, whih form a subset ofthe output values Oi (at most g if no repetitions of results are allowed).Output values of gates not belonging to the set of primary outputs arealled intermediate results.Therefore, for a iruit of g gates we de�ne nI + 2g (at most 4g)propositional variables. However, not eah valuation of those nI + 2gvariables is a possible state the iruit an be found in; if, in somevaluation, the normality prediate of a gate is true then its behaviour isuniquely determined and thus, its output an only assume one value outof the two possible. The set of interpretations allowed under the spe-i�ation of the iruit is the set of valuations that satisfy its integrityonstraints IC def= ĝi=1Ni ! (Fi $ Oi)where Fi is a boolean expression de�ning the expeted output in termsof the inputs of gate i. The integrity onstraints for a iruit thatomputes :(I1 ^ I2), for example, areIC = (NAND ! (I1 ^ I2 $ OAND)) ^ (NNOT ! (:OAND $ ONOT))The initial belief will be the onjuntion of the integrity onstraintsand of the belief that all gates are not faulty :IB def= IC ^  ĝi=1Ni!An observation is a desription of observed primary input and primaryoutput valuesOBS def= nÎi=1(Ii or :Ii) ^ nPÔj=1(POj or :POj)Our goal is to de�ne a revision operator that given an initial beliefand an observation of the above forms, returns an epistemi state de-sribing whih gates if taken as faulty, explain the given observation. Ofourse, the returned formula need not indiate only one ombination offaulty gates; there ould be several ways in whih a faulty iruit anprodue a given output.We de�ne the revision operator using a suitable notion of minimality.Intuitively, we want to selet all those interpretations that are models5 Sine the gate may be faulty, its output value need not be uniquely determinedby its inputs. Thus we do need a separate propositional variable for its output value.
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23of the observed behaviour, while making the smallest hange to thepersistent information about the iruit, i.e., the normality prediates.Thus, a suitable notion of minimality is the set-inlusion of di�erenes,but restrited on normality prediates. We do not use a variant ofDalal's operator beause that would imply that we are only interestedin the minimum number of faults neessary to explain the observation.We hoose a variant of Borgida's operator to model this notion ofloseness. This variant is idential to Borgida's version, exept for theordering on interpretations. If x; y; z are interpretations, the orderingis de�ned as:x �z y i�  nÎi=1 Ii(x)$ Ii(y)! ^0�nPÔj=1 POj(x)$ POj(y)1A ^ ĝk=1:(Nk(z)$ Nk(x))! :(Nk(z)$ Nk(y))!where Ni(x) denotes the value of Ni at the interpretation x, and simi-larly for other propositional variables. Thus, for two interpretations tobe omparable, they should imply the same input-output behaviour,hene the �rst two onjunts of the above formula. Note that interme-diate results do not appear in the de�nition of the ordering, as they arenot observable. The third onjunt formalises our notion of minimalhanges; we are interested in the minimal set of gates (with respet toset-inlusion) that, when faulty, onord with the observation.Under this revision operator, protetion of integrity onstraints isahieved by revising our initial belief not just with the observation,but with the onjuntion IC ^OBS.The result of the revision will inlude information about the partiu-lar observation we revised with, in view of the axiom R2. In partiular,the values of primary inputs and outputs in the observation will beimplied by the resulting epistemi state. Sine in fault diagnosis we areonly interested in information about the normality prediates of theiruit, we need to eliminate from the resulting belief all knowledgeabout propositional variables other than normality prediates. We use(boolean) existential quanti�ation to eliminate all propositional vari-ables that arry irrelevant information from the result of the revision.This operation, alled elimination, is desribed in [13℄.5.2. BDD FormulationThe ordering and the negation of its strit ounterpart are easily on-strutible as iruits similar to the one presented in setion 4.2. Thus,
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24by the theorem in setion 2.4, the BDD B 6< representing 6< (where �is de�ned by the formula above) is of size O(nI + 2g) = O(g).The BDD BIC is, of ourse, dependent on the spei� iruit inquestion. Therefore we annot give a bound on its size. However, byusing the variable ordering I1; : : : ; InI ; N1; O1; : : : ; Ng; Og we ensure anempirially ompat representation of BIC.The BDD for the onjuntion of all normality prediates Ni anbe easily shown to have a size of O(g) irrespetive of the variableordering used. Thus the BDD for the initial belief BIB will be of sizeO(jBICj � g), by the apply algorithm. Similarly, the BDD BOBS forthe observation will have a size of O(g) and the onjuntion with theintegrity onstraints BIC ^̂̂ BOBS will be of size O(jBICj � g).Therefore, the models of the revision aremod(IB Æ (IC ^OBS)) = fw j w 2 mod(IC ^ OBS)^9v: (v 2 mod(IB) ^ 8z: (z 2 mod(IC ^ OBS)! z 6<v w))gand the models of the diagnosis are obtained by quantifying away allvariables exept normality prediates:mod(DIAG) = 9I1 : : : 9InI9O1 : : : 9Og:mod(IB Æ (IC ^ OBS))The BDD algorithm is:999phI1;:::;InI ;O1;:::;Ogi: ((BIC ^̂̂ BOBS)^̂̂999p0: (BIB[p0=p℄ ^̂̂ 888p00: ((BIC ^̂̂ BOBS)[p00=p℄ !!! B 6<)))An upper bound for the worst-ase time omplexity of whih isO(jBICj�g2224g).5.3. Implementation and Experimental ResultsAs mentioned earlier, belief hange operations are known to be veryexpensive in the worst ase. Sine the omplexities reported up tothis point onern only the worst-ase, and taking into aount thefat that the known bounds on BDD operations suh as quanti�ationare still not tight, we proeeded with a medium-sale implementationof the algorithm presented in the previous setion. Results regardingthe omplexity of that algorithm were gathered by trying diagnosisof random observations. Those results along with details about theimplementation are presented below.The implementation uses the BuDDy pakage for the manipulationand onstrution of BDDs [17℄. This pakage, as most of the pakagesavailable, o�ers heuristis for automatially re-ordering the variablesof BDDs in order to attain lower spae omplexities. This apability is
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25very important in an appliation for fault diagnosis on arbitrary ir-uits, sine the BDD for the integrity onstraints is of an unpreditablesize and an bene�t from automati re-ordering. However, having ho-sen a spei� iruit to perform our experiments on, an n-bit adder, wedid not make use of this feature.We have assembled a small olletion of fairly general tools thatan be used for diagnosis of any ombinational boolean iruit. Thehosen iruit we have tested, the n-bit adder, is a iruit that leads tolow omplexities of the BDDs involved in diagnosis. However, if we hadseleted a iruit that knowingly lead to exponential omplexities, thenthe average ase for diagnosis (and indeed, any ase) would be provablyexponential. The BDD for the integrity onstraints BIC, has linearomplexity for the n-bit adder. Using a standard design for adders,eah bit of the adder amounts to 5 gates, thus an upper bound forthe worst-ase omplexity of the fault-diagnosis algorithm on an n-bitadder is O(n32120n), in view of the result in the previous setion.We attempted two kinds of tests. In the �rst one, n-bit adders ofsuessively larger n were generated, and eah one was diagnosed witha set of uniformly distributed random observations. The number ofpossible observations for n bits is 23n. A onstant perentage of those23n observations were sampled and fed to the diagnosis algorithm.The spae omplexity of eah diagnosis was reorded and an averageomplexity for eah n was produed.The above-mentioned algorithm, when fed with an observation thatis onsistent with the integrity onstraints, does not revise the normal-ity prediates. In this speial ase, it an be easily proved that there isjust one model of IC^OBS, and that the algorithm exhibits a omplex-ity muh lower than in the worst-ase. However, the number of onsis-tent observations for an n-bit adder is 22n, thus the ratio of onsistentto all observations is 1=2n. Therefore, as n inreases, the probabilityof us sampling a onsistent observation dereases exponentially, thusinreasing the measured average omplexity.Unfortunately, sampling a �xed perentage of an exponentially sizedpopulation leads in exponential time taken for the tests. Indeed, at7 bits, diagnosing 10% of the total number of observations possibleamounts to running the diagnosis algorithm 209716 times, and for 8bits this number is multiplied by 8. Due to the exessive time taken forthe �xed-perentage tests, we ould only run them for up to 7 bits. Theresults for this test are shown below (spae omplexity is measured inBDD nodes produed):
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26 Bits Average Spae Number ofComplexity Samples1 234 12 886 73 1906 524 3229 4105 4861 32776 6804 262157 9052 209716In order to get an idea of the omplexities onerned in larger ir-uits, we tried a seond test by running our algorithm on 1000 samplesfor eah bit-size. Admittedly, this approah redues exponentially theauray of our averages in the number of bits. However, by runningthis test multiple times we have empirially veri�ed that the varianeof the results is not signi�ant.6 The average spae omplexity (in BDDnodes produed) and the average time omplexity (in ms) are shownin �gures 5 and 5 respetively.
0

100000

200000

300000

400000

500000

600000

0 10 20 30 40 50 60

Average Number of BDD Nodes Produced

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

Average Time (in ms)

Figure 5. Average number of BDD nodes produed and average time (in ms) spentper diagnosis in the number of bits.As with any empirial investigation, these results annot be takenas onlusive evidene of tratability or intratability. However, we diduse a nonlinear least squares method (Marquardt-Levenberg algorithm)to �t a number of lasses of funtions to the above urves. To our bestknowledge, the best �t was a quadrati funtion, being signi�antlybetter that exponential and sub-exponential non-polynomial ones. Inaddition, in the ase of spae omplexity, the resulting quadrati fun-tion from �tting the �rst or last 15 data points predits reasonably wellthe remaining 45.6 In addition, the ratio of standard deviation to average never exeeded 5% inthe ase of spae omplexity and 10% in the ase of time omplexity.
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27What has been demonstrated, we believe, is the pratiality of ourapproah, ontrary to the order of magnitude of the upper bounds al-ulated in the previous setions; for fault diagnosis, with a moderately-sized omputer system one an perform single runs of our algorithmon reasonably large iruits. In partiular, we have suessfully run ourprogram several times on adders of 1000 bits, with eah run taking 20minutes on average. Note that in the model presented above, a 1000-bitadder leads to a state-spae of 212000 interpretations.
6. Conlusions and Further WorkWe presented a formulation of a variety of belief hange operators on a�nite propositional language as algorithms on BDDs. Moreover, upperbounds for their worst-ase omplexities were alulated. These boundsdo not provide onlusive evidene for the eÆieny of the proposedmethods and an only do so when tight bounds of the worst-aseomplexity of BDD algorithms (espeially andExists) are proved.In the ontext of veri�ation, the use of BDDs has greatly ex-tended the size of systems that an be pratially veri�ed, in spiteof the worst-ase omplexity of model-heking (the problem of model-heking a CTL formula is PSPACE-omplete). This fat warranted usto investigate empirially the average-ase omplexities of the presentedalgorithms in a fault-diagnosis ase study. We found them to be muhbetter than their expeted worst ase.An obvious impediment to the appliability of the methods we havepresented is the limited expressive power of propositional logi. Asalready mentioned, BDD algorithms are routinely used in veri�ation,in whih the underlying language is CTL, a temporal modal logi. Ingeneral, many systems of modal logi give rise to possible appliationsof belief hange (onept revision in desription logis, feature integra-tion in temporal modal logis as belief update, knowledge revision inepistemi logis).Moreover, the expressivity of several modal logis seems to be a sat-isfatory ompromise between propositional and �rst-order logi, whileretaining several important harateristis suh as deidability. Thus,a natural ontinuation of our urrent work is the study of belief hangewith a modal logi as base language and in partiular the onnetionsof belief hange with the semantis of the underlying logi.
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