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hool of Computer S
ien
eUniversity of BirminghamBirmingham B15 2TTUKAbstra
t. While the theory of belief 
hange has attra
ted a lot of interest fromresear
hers, work on implementing belief 
hange and a
tually putting it to use inreal-world problems is still s
ar
e. In this paper, we present an implementationof propositional belief 
hange using Binary De
ision Diagrams. Upper 
omplexitybounds for the algorithm are presented and dis
ussed. The approa
h is presentedboth in the general 
ase, as well as on spe
i�
 belief 
hange operators from theliterature. In an e�ort to gain a better understanding of the empiri
al eÆ
ien
yof the algorithms involved, a fault diagnosis problem on 
ombinational 
ir
uits ispresented, implemented and evaluated.Keywords: belief revision, binary de
ision diagrams, fault diagnosis1. Introdu
tionWhen an agent a
quires information whi
h 
ontradi
ts its 
urrent be-liefs, it is obliged to give up some of its beliefs in order to a

ommodatethe new information and remain 
onsistent. The operation of 
onsis-tently in
orporating new information into a belief state by removingsome of the old beliefs is 
alled belief revision. The seminal work onbelief revision was done by Al
hourr�on, G�ardenfors and Makinson (see,e.g., [9℄). The AGM theory, as it is known, proposes a set K1{K8of rationality postulates whi
h any belief revision operator ought tosatisfy. More re
ently, a number of subtly di�erent forms of revisionhave been distinguished, su
h as update [15℄. While revision is used tomodel the evolution of belief about a stati
 world, update models thesame pro
ess in a 
hanging world.As well as work on rationality postulates, several authors have pre-sented spe
i�
 revision or update operators [23, 7, 24, 2, 21℄. There hasalso been work on appli
ations of belief revision beyond the modellingof arti�
ial agents. For example, appli
ations of belief revision in faultdiagnosis have been proposed [7, 24℄. We examine this appli
ation laterin this paper.In this paper we are 
on
erned with implementation of belief 
hangeoperators in a �nite, propositional language. An important de
ision inany implementation of belief 
hange 
on
erns the 
hoi
e of representa-
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2tion for belief states. Among the desiderata for su
h representations,one may list:Representational 
ompa
tness. For example, representing belief setsby formulas is usually more 
ompa
t than representing them as setsof models, sin
e for n atomi
 propositions there are 2n possiblemodels.Syntax independen
e. Two logi
ally-equivalent belief states shouldremain logi
ally-equivalent when they are revised by equivalentformulas. This property holds automati
ally of model-based rep-resentations of belief states, but does not ne
essarily hold if thebelief 
hange operator is de�ned on a formula-based representa-tion. While some resear
hers (e.g, [19℄) have argued that this is agood thing, or at least useful in some 
ases, we believe that syntax-dependen
e should be avoided unless di
tated by the nature of theproblem to solve.EÆ
ien
y. We aim for eÆ
ient algorithms implementing belief 
hange.However, the word \eÆ
ien
y" is used in a relative sense, ratherthan an absolute one. Che
king whether a formula is satis�ableis NP-
omplete, and the problem of belief 
hange is, in general,known to be harder than propositional satis�ability [8, 19, 16℄.Thus, a more pre
ise restatement of our aim is to provide methodsthat perform well in the \average" 
ase, while inevitably havingan intra
table worst-
ase 
omplexity.The possible models representation of belief states is often thoughtto be 
omputationally least tra
table (see, e.g., [10℄). However,Winslett's update operator, whi
h is based on a possible-modelsrepresentation [24℄, has been proved to have a linear 
omplexityin the number of models [11℄. Thus, a possible-models approa
h islikely to be as eÆ
ient as one 
an get in the worst-
ase. One maylook for ways of improving the average-
ase eÆ
ien
y.The goal of this paper is to explore implementations of belief 
hangeoperators on propositional logi
 by means of a data stru
ture known asthe Binary De
ision Diagram (BDD). BDDs are widely known be
auseof their use in model 
he
king, a hardware veri�
ation te
hnique whi
hworks by exhaustive state-spa
e exploration. In that 
ontext, theirusage has led to a dramati
 improvement in the eÆ
ien
y of model
he
king implementations, and therefore in the size of model that 
anrealisti
ally be explored [18, 6℄.The paper is stru
tured as follows. We introdu
e BDDs and theiroperations in the next se
tion. In se
tion 3, we review belief revision,
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3and in se
tion 4 we implement some belief revision operators in terms ofBDDs, studying their 
omplexity. Se
tion 5 is devoted to a substantialexample based on fault diagnosis, and our 
on
lusions are presented inse
tion 6. 2. Binary De
ision Diagrams2.1. Definitions and Basi
 ResultsBinary De
ision Diagrams (BDDs) are a 
ompa
t and empiri
ally ef-�
ient data stru
ture for representing formulas in propositional logi
.The de
ision tree for the formula x _ y is shown in �gure 1(a). The
y y10 1 1

x
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Figure 1. (a) The de
ision tree and (b) the BDD for the formula x_y. (
) The BDDfor the formula ((p _ q) ^ r) _ s.dotted lines denote the path to be taken when a node is false, andthe solid lines when it is true. The de
ision tree shows four paths,
orresponding to the four possible values of x and y, and the leavesshow the resulting truth value of the formula in those 
ases. De
isiontrees thus 
ode up the truth-table for the formula. They are not spa
e-eÆ
ient, having 2n+1�1 nodes when the number of atomi
 propositionsin the formula is n.The BDD for x_ y is shown in �gure 1(b). It is obtained by foldingtogether shared subtrees in the de
ision trees, and removing redundantde
ision nodes. BDDs 
an be mu
h more 
ompa
t than the 
orrespond-ing de
ision trees. For example, the BDD for ((p_ q)^ r)_ s, shown in�gure 1(
), 
ontains 6 nodes, while the 
orresponding tree 
ontains 31nodes. In the worst 
ase, BDDs 
an still have O(2n) nodes. However,BDDs have been extensively used in veri�
ation where they appear tobe a 
ompa
t representation in pra
ti
e.
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4 Both de
ision trees and BDDs assume a �xed ordering of the vari-ables into layers. The size of the de
ision tree is independent of thatordering, but the size of the BDD is not; the spa
e-e
onomy introdu
edby sharing subdiagrams 
an depend on the ordering of the variables.A BDD is fully redu
ed if it has no redundant de
ision points and noisomorphi
 subdiagrams. There is an eÆ
ient algorithm, 
alled redu
e,for redu
ing a de
ision tree or partly-redu
ed BDD into its fully-redu
edform. On
e redu
ed, BDDs are 
anoni
al : that means that there is aunique redu
ed BDD for a given formula with respe
t to a �xed variableordering. More detailed information about BDDs and their algorithms
an be found in [1, 6℄ or the book [12℄.2.2. Algorithms on Binary De
ision DiagramsAfter 
onverting a formula to a BDD, that BDD 
an be manipu-lated using several algorithms that implement logi
al operations. Someof these algorithms are presented below along with their 
omplexity
hara
teristi
s.Note that most of the algorithms presented below have an identi
alspa
e and time worst-
ase 
omplexity. Thus unless expli
itly stated,
omplexity will refer to both 
ases.2.2.1. Tautology, satis�ability and equivalen
e 
he
kingBe
ause of the 
anoni
ity of BDDs, it is easy to 
he
k whether a BDDrepresents a tautology, or an unsatis�able formula. Every tautology isrepresented by the same BDD, namely, the BDD with a single node,the terminal 1. Thus, tautology 
he
king is a 
onstant-time operation.In the same spirit, a formula is satis�able if its BDD representa-tion is not the terminal node 0. Again, this results in a 
onstant-timeoperation. It follows from these observations that the 
onversion ofa formula to BDD form is NP- and 
oNP-hard in the length of theformula. Consequently, sin
e it is widely believed that NP6=
oNP, it isprobably the 
ase that the problem of 
onverting a formula to a BDDis not a member of NP[
oNP.The 
anoni
ity property of BDDs implies that 
he
king if two for-mulas are equivalent by 
omparing their BDDs is very eÆ
ient. In BDDpa
kages like CUDD [22℄ or BuDDy [17℄, this 
an be done by pointer
omparison (and hen
e in 
onstant time).2.2.2. Conversion to binary de
ision diagramsRelated to the above observation on the 
omplexity of the 
onversion ofa formula to a BDD is the fa
t that the worst-
ase 
omplexity of a BDDis O(2n) where n is the number of variables in the formula. This o

urs
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5when the redu
tion o�ers only sub-exponential spa
e-e
onomy. How-ever, the variable ordering drasti
ally a�e
ts the amount of redu
tionpossible, so it is not always evident whether this exponential worst-
ase 
omplexity is due to the ordering or is inherent to the formularepresented. On the other hand, many formulas have been found to havevery 
ompa
t BDD representations by 
hoosing appropriate variableorderings (see [5℄).Fun
tion Class Spa
e ComplexityBest WorstSymmetri
1 O(n) O(n2)Integer Addition (any bit) O(n) O(2n)Integer Multipli
ation (middle bit) [4℄ O(2n) O(2n)Note that the 
omplexity measures used for BDDs depend on thenumber of variables and not on the length of the represented formula(whi
h is the usual 
omplexity measure in logi
). It makes sense to usethe number of variables rather than the length of the formula, be
auseof the 
anoni
ity of BDDs. For a given variable ordering, the spa
e-
omplexity of a BDD depends only on the number of atoms, and noton the length of the formula.An additional point about the limitations of BDDs is that �nd-ing an optimal variable ordering for a given formula, i.e. an orderingthat minimises the size of its BDD, is a 
oNP-
omplete problem (see[3℄). However, there are several heuristi
s whi
h perform quite well inpra
ti
e.2.2.3. The algorithms apply, negate and restri
tGiven two BDDs representing the formulas � and  (having j�j nodesand j j nodes respe
tively), together with a binary 
onne
tive �, thealgorithm apply 
omputes the BDD for �� . The worst-
ase 
omplex-ity of apply is O(j�j � j j) and it is known to be a tight bound, i.e. thereare formulas � and  su
h that their 
onjun
tion exhibits a 
omplexityof O(j�j � j j) [3℄.Given the BDD for �, the algorithm negate 
omputes the BDDfor :� by using apply and the ! operator: :� = � ! ?. Thus its
omplexity is O(j�j � 1) = O(j�j).21 Formulas whose truth value depends only on the number of atoms set to true,su
h as p$ q, are 
alled symmetri
.2 Note that negate 
ould be implemented as a 
onstant-time operation, by swap-ping the terminal nodes. However, for reasons of eÆ
ien
y, most BDD pa
kages use
sl-long.tex; 5/03/2001; 14:41; p.5



6 These two algorithms provide a way for 
onverting a formula to aBDD, without 
reating the de
ision tree and then redu
ing it to BDDform. The BDD representation of a propositional variable is a tree withthree nodes, the root labelled by the variable and the two terminalnodes, 1 and 0. Using these and the algorithms apply and negate, aformula 
an be re
ursively 
onverted to the equivalent BDD. Indeed,this is the only algorithm for 
onversion used in pra
ti
e, sin
e 
onvert-ing a formula to its de
ision tree is always an exponential operation inthe number of variables, whereas 
onversion using apply is expensiveonly in the worst 
ase.The result �[C=p℄ of the substitution of a variable p by a boolean
onstant C 
an be 
omputed with the algorithm restri
t. The worst-
ase 
omplexity is O(j�j) (see [3℄). As noted in the same paper, thealgorithm 
an be modi�ed to perform a spe
i�
 number of restri
tionssimultaneously without a�e
ting its 
omplexity.2.2.4. The algorithms exists and forallThe formulas 8p: � and 9p: � are de�ned as8p: � = �[>=p℄ ^ �[?=p℄9p: � = �[>=p℄ _ �[?=p℄The BDDs for 8p: � and 9p: � 
an be 
omputed from the BDD for � bythe algorithms apply and restri
t, with 
omplexity O(j�j2) (see [5℄).Conse
utive quanti�
ation over k variables using this algorithm resultsin an upper bound for the worst-
ase 
omplexity, of O(j�j2k).M
Millan, in [18℄, des
ribes the andExists algorithm, for 
omputingan operation that o

urs very often in model 
he
king and whi
h plays a
entral role in our formulation of propositional belief 
hange. Let � and be two BDDs. The algorithm 
omputes the 
onse
utive existentialquanti�
ation over a spe
i�ed ve
tor of variables, of the 
onjun
tion� ^  , but without expli
itly forming the BDD for it. An upper boundon the time 
omplexity of this algorithm is O(j�j � j j � 22n), where n isthe total number of variables appearing in � and  . However, intuitionand empiri
al eviden
e both suggest the existen
e of a smaller bound.The resulting BDD has a size bounded by the general worst-
ase ofthe result, i.e. O(2n�k), where k is the number of variables on whi
hwe quantify. M
Millan also proves that the 
omputation of the BDDexpressing an existential quanti�
ation over n variables is NP-
omplete,making unlikely the possibility of a polynomial algorithm.The universal quanti�
ation 
an be 
omputed by using the fa
tthat 8 � :9: and the algorithm negate, giving the same 
omplexity.the same terminal nodes for all stored BDDs, all of whi
h would be negated if theterminal nodes were to be swapped.
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7The dual algorithm to andExists, impliesForall, is derivable fromandExists and negate, having again the same 
omplexity bound.2.2.5. The algorithm repla
eAs we see later, we often need to repla
e some variables in a BDD byother variables, 
orresponding to substitution in logi
. This is a linear-time operation if the BDD resulting from the substitution obeys thevariable ordering 
hosen. If it does not, then re-ordering is ne
essaryand in general this 
an take exponential time.2.3. Expression syntax for BDDsWe use a bold-fa
e logi
al notation to denote the algorithms of thepre
eding se
tion, as summarised in the table below. These algorithmswill be used to des
ribe belief 
hange operators. We now present somederived algorithms whi
h will be useful for that purpose. These 
an bethought of as ma
ros.algorithm (with arguments) notationapply(B1; B2;!) B1!!! B2negate(B) :::Bexists(p; B) 999p: BandExists(p; B1; B2) 999p: (B1 ^̂̂ B2)repla
e(p;p0; B) B[p0=p℄We have seen how BDDs represent formulas by representing the set ofmodels that satisfy them. To implement some belief 
hange operators,we need to be able to represent relations on models as BDDs. A relation
an be thought of as a fun
tion whi
h, given two models, returns aboolean value. Therefore, it 
an be represented as a BDD over two
opies of the atomi
 propositions, whi
h we 
all unprimed and primed,and write as p;p0.For example, 
onsider the ordering � shown in �gure 2 over the fourmodels fpq; pq; pq; pqg of the language fp; qg. Its BDD is also shown inthe �gure. To determine whether m � m0, we supply the truth valuesp for m and p0 for m0 to the BDD and get a boolean value result.If BR is a BDD representing a relation R over unprimed and primedvariables, then the BDD for the inverse relation is obtained by simul-taneously renaming the unprimed variables to primed, and the primedones to unprimed. We write this as BR[p=p0;p0=p℄. The stri
t 
ounter-part of the relation R is given mathemati
ally as R \ R�1. Thus, theBDD for the stri
t 
ounterpart is given bystri
t(BR) = BR ^̂̂ :::(BR[p=p0;p0=p℄)
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8
pq
pq pqpq

p p0qq00 1Figure 2. An ordering on the models of the language fp; qg, and its BDD.Note that the swapping of the primed and unprimed variables willne
essitate re-ordering the variables, and is therefore an expensive op-eration. This is the only instan
e of variable repla
ement in the pa-per whi
h does not respe
t the ordering of variables; all the otherrepla
ements 
an be performed in linear-time.The R-minimal elements of X are de�ned asminR(X) = fw 2 X j 8v 2 X vR<wgwhereR< is the stri
t 
ounterpart ofR. The BDD algorithm for minR(X),in terms of the BDDs BR; BX for R and X, 
an be written asmin(BR; BX) = ((888p: (BX !!!:::stri
t(BR)))[p=p0℄) ^̂̂ BXIf the relation R is known to be total, then the minimal set ofelements 
an be written more simply, and this permits an optimisationin the way we 
al
ulate the BDD for min. If R is total, thenminR(X) = fw 2 X j 8v 2 X wRvgand therefore the BDD for min need not use stri
t:min(BR; BX) = (888p0: (BX [p0=p℄!!! BR)) ^̂̂ BX2.4. Upper Bounds of BDD Size Based on Cir
uitImplementationsThe main theorem for proving upper bounds of the size of some BDDsthat appear in the following se
tions, proved in [18℄, is presented in thisse
tion.
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9Let � be an n-ary boolean fun
tion and suppose a logi
al 
ir
uit
omputing � is given. This 
ir
uit will 
ontain a number m of blo
ksthat are either gates (binary or otherwise) or primary inputs (inputsare 
ounted as blo
ks with zero inputs and one output). Let a linearorder of the 
ir
uit be a numbering of the blo
ks from 1 to m, with theblo
k produ
ing the primary output numbered last. Then, the forward
ross se
tion at blo
k i is the total number of wires from an output ofa blo
k j su
h that j < i to an input of a blo
k k su
h that i � k.The forward width wf of the 
ir
uit (with respe
t to the linear order
hosen) is de�ned as the maximum forward 
ross se
tion for all blo
ks.Similarly, the reverse 
ross se
tion at blo
k i is the total number ofwires from an output of a blo
k j su
h that j > i to an input of ablo
k k su
h that i � k. The reverse width wr of the 
ir
uit (againwith respe
t to the linear order) is de�ned as the maximum reverse
ross se
tion at any blo
k. Then, the following theorem holds:THEOREM 1 ([18℄). If a 
ir
uit 
omputing fun
tion � has forwardwidth wf and reverse width wr for some linear order L, then there isa BDD representing fun
tion � of size bounded by n2wf2wr , where n isthe number of inputs of the 
ir
uit.Sin
e we will only deal with 
ir
uits that a

ept topologi
al orderingsof their blo
ks, that is, orderings with wr = 0, the above-mentionedbound be
omes n2wf . Note that this bound 
an yield 
omplexitieshigher than linear when the forward width is some fun
tion of n, ratherthan just a 
onstant. Another point to note is that 
hanging the booleanbase, or even using 
onstant blo
ks of binary gates as the gates of the
ir
uit mentioned above does not 
hange the order of magnitude of thebound, but 
hanges only linearly wf and wr.The numbering of the blo
ks whi
h is used to 
al
ulate wf and wrimplies an ordering on inputs and that gives us the ordering of thevariables in the BDD. 3. Belief Change3.1. Belief RevisionBelief revision refers to the pro
ess of in
orporating new knowledge inan agent's prior beliefs, even when the new information 
ontradi
ts theprevious ones. Agents are said to be in an epistemi
 state, representingtheir beliefs and any other relevant epistemi
 information. The 
hangeof epistemi
 state in the light of new information is the phenomenonthat revision is supposed to explain.
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10 The seminal work in belief revision is that of Al
hourr�on, G�ardenforsand Makinson (see, e.g., [9℄). They modelled epistemi
 states as sets offormulas 
losed under 
onsequen
e, and proposed a set of rationalitypostulates K1{K8 whi
h they argue any revision operator ought tosatisfy.Katsuno and Mendelzon [13℄ have studied the 
ase where the propo-sitional language is �nite. In that 
ase, epistemi
 states may be mod-elled as propositional formulas instead of 
onsequen
e-
losed theories.This setting is rather simpler; sin
e we are interested in implementa-tions, and any implementation ne
essarily involves only �nitely manyatomi
 propositions, we adopt the setting of Katsuno and Mendelzon.The revision operator Æ : L � L ! L takes two formulas andreturns another formula. The formula � Æ  represents the epistemi
state resulting from revising � with  ; intuitively, this is intended tobe  together with whatever `parts' of � 
an be 
onsistently retained.Katsuno and Mendelzon formulate a set of postulates R1{R6 whi
h,for �nite languages, are equivalent to the AGM postulates K1{K8.R1.  Æ � implies �.R2. If  ^ � is satis�able, then  Æ � �  ^ �.R3. If � is satis�able, then  Æ � is satis�able.R4. If  1 �  2 and �1 � �2, then  1 Æ �1 �  2 Æ �2.R5. ( Æ �) ^ � implies  Æ (� ^ �).R6. If ( Æ �) ^ � is satis�able, then  Æ (� ^ �) implies ( Æ �) ^ �.Criti
ism of the postulates lies out of the s
ope of this paper. Ourgoal is to investigate possible implementations of belief 
hange opera-tions; and we believe that ea
h appli
ation requires its own ontologyand, perhaps, its own set of postulates and stru
tures.The intention of the postulates is to en
ode minimal 
hange, and this
an be made pre
ise by the following theorem. Consider a fun
tion thatassigns to ea
h formula  a total pre-order � on interpretations, thatis, a binary relation on the set of interpretations U that is transitive,re
exive and total. This fun
tion is 
alled a faithful assignment if andonly if the following hold (where mod( ) is the set of models of  ):F1. If w; v 2 mod( ), then w < v does not hold.F2. If w 2 mod( ) and v =2 mod( ) then w < v holds.F3. If  � � then � =��.Then, Katsuno and Mendelzon prove the following representation the-orem:
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11THEOREM 2 ([14℄). A revision operator Æ satis�es 
onditions R1{R6if and only if there exists a faithful assignment that maps ea
h formula to a total pre-order � su
h thatmod( Æ �) = min� (mod(�))3.2. Belief UpdateIn [15℄, Katsuno and Mendelzon make an important distin
tion on themeaning of some belief 
hange operators. They argued that not all belief
hanges are revisions, i.e. in
orporation of new information about astati
 world. They identi�ed and 
hara
terised with a set of postulatesand a representation theorem, the form of belief 
hange they 
all beliefupdate. This kind of belief 
hange aims to integrate new informationwith an agent's prior beliefs about a 
hanging world. In the spirit ofthe generi
 approa
h, they list a number of postulates U1{U8 that anyupdate operator 3 should satisfy [15℄.U1.  3� implies �.U2. If  implies �, then  3� �  .U3. If both  and � are satis�able, then  3� is satis�able.U4. If  1 �  2 and �1 � �2, then  13�1 �  23�2.U5. ( 3�) ^ � implies  3(� ^ �).U6. If  3�1 implies �2 and  3�2 implies �1, then  3�1 �  3�2.U7. If  is 
omplete then ( 3�1) ^ ( 3�2) implies  3(�1 _ �2).U8. ( 1 _  2)3� � ( 13�) _ ( 23�).In the 
ontext of belief updates, a fun
tion that maps ea
h modelw to a partial pre-order �w is 
alled a faithful assignment if it satis�esthe following 
ondition:� For any models w; v 2 U , if w 6= v then w <w v.Under this framework, the following representation theorem holds:THEOREM 3 ([15℄). An update operator 3 satis�es 
onditions U1{U8 if and only if there exists a faithful assignment that maps ea
hinterpretation w to a partial pre-order �w su
h thatmod( 3�) = [w2mod( )min�w(mod(�))
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124. Implementing belief 
hange operators as BDD algorithmsWe saw in se
tion 2 that propositional formulas may be representedas BDDs, and that the apply algorithm 
an be used to implement thebinary operators ^, ! et
, while the negate algorithm implements :.This se
tion is 
on
erned with the implementation of revision operatorsand update operators.4.1. Revision defined by faithful assignmentTheorem 2 tells us how to 
ompute � Æ  , given a faithful assignment.To implement this de�nition, we represent relations on models as BDDsin the manner des
ribed in se
tion 2.3. Theorem 2 assumes a faithfulassignment whi
h, given a formula �, returns an ordering��. Therefore,we assume an operation fa taking a BDD over p, whi
h represents �,and returning a BDD over p;p0, representing ��.By the theorem, mod( Æ �) = min� (mod(�)). Therefore, givenBDDs B ; B� for formulas �; �, we 
an 
ompute the BDD for  Æ � asmin(fa(B ); B�)where the operator min on BDDs is des
ribed in se
tion 2 for totalrelations.Suppose that the number of propositional variables is n (in ea
h
opy of the variables), the worst-
ase time 
omplexity of the operationfa is given as jfaj and also, the size of the resulting BDD as jfa(B )j.By expanding the ma
ros in the above formula we get:B� ^̂̂ 888p0: (B�[p0=p℄!!! fa(B ))An upper bound for the worst-
ase 
omplexity of the revision 
an be
omputed as follows:Operation Time Complexity Result SizeB�[p0=p℄ O(jB�j) O(jB�j)fa jfaj jfa(B )j888p0: (� !!! �) O(jB�j � jfa(B )j � 24n) O(2n)B�^̂̂ O(jB�j � 2n) O(2n)Thus, an upper bound of the 
omplexity of the whole operation is:O(maxfjfaj; jB�j � jfa(B )j � 24ng)This upper bound measure may not be indi
ative of the true situationbe
ause:
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13� Empiri
al eviden
e in the 
ontext of model 
he
king indi
ates thatthe average-
ase 
omplexity of these operations is mu
h lower thantheir worst 
ase, but it is very hard to formulate in a pre
ise sensewhat exa
tly the average 
ase is.� This measure depends 
ru
ially on the 
omplexity of the BDDrepresentation of the ordering on models. All of the model-basedoperators proposed de�ne orderings on models that require atleast one quanti�
ation (for examples see the following se
tions).Thus, di�erent spe
i�
 revision strategies will yield very di�erent
on
rete 
omplexities.In the following subse
tions, we look at some spe
i�
 belief revisionoperators de�ned in the literature.4.2. BorgidaAn interpretation v 
an be thought as a set 
ontaining only the propo-sitional variables that hold in v. The symmetri
 set-di�eren
e v4w oftwo interpretations v and w, is the set 
ontaining all the propositionalvariables whose values di�er in v and in w. Given a formula � and aninterpretation v, the set of di�eren
es of v and � 
an be de�ned as:di�(v; �) def= fv4w j w 2 mod(�)gBorgida introdu
ed a revision operator in [2℄ that orders interpre-tations a

ording to the set-in
lusion of symmetri
 set-di�eren
es. Thede�nition of  Æ � has two main parts:� If  ^ � is 
onsistent, then  Æ � =  ^ � (R2).� Otherwise, w is a model of  Æ � if there is a model v of  , su
hthat v4w 2 min�(di�(v; �))Borgida's revision is known to satisfy R1-R5 but not R6 (see [14℄). Assu
h, it is not de�nable by a faithful assignment. Let us look how thisis implemented in BDDs.If  ^ � is in
onsistent thenmod( Æ �) = fw j 9v: (v 2 mod( ) ^ v4w 2 min�(di�(v; �)))g= fw j w 2 mod(�) ^ 9v: (v 2 mod( ) ^8z: (z 2 mod(�)! v4z 6� v4w))g
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14 The symmetri
 set-di�eren
e of two interpretations 
an be expressedas a boolean operation (where (v4w)i is the i-th propositional variableof the symmetri
al set-di�eren
e between v and w)(v4w)i = :(vi $ wi)Set-in
lusion of symmetri
 set-di�eren
es is, then, expressed asv4z � v4w i� n̂i=1:(vi $ zi)! :(vi $ wi)and 
onsequently, stri
t in
lusion asv4z � v4w i�  n̂i=1:(vi $ zi)! :(vi $ wi)! ^: n̂i=1:(vi $ wi)! :(vi ! zi)!
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v1 �11z1 �12w1 : : :: : : vn �n1zn �n2wn!11!12 !n2!n1 v4z 6� v4w^n1^n2Figure 3. Cir
uit to de
ide v4z 6� v4w.A 
ir
uit to 
ompute v4z 6� v4w based on these equations is pre-sented in �gure 3, where � is the xor-gate and! the implies-gate. Wede�ne the following ordering on gates and inputs:v1; z1; �11; w1; �12; !11; !12;v2; z2; �21; w2; �22; !21; !22; ^21; ^22;...vn�1; zn�1; �n�11 ; wn�1; �n�12 ; !n�11 ; !n�12 ; ^n�11 ; ^n�12 ;vn; zn; �n1 ; wn; �n2 ; !n1 ; !n2 ; ^n1 ; ^n2 ; ^; :; ^; :It is easy to 
he
k that the forward 
ross se
tion at ea
h gate orinput of the 
ir
uit is at most C where C is a 
onstant, that is, it doesnot depend in any way on n. Thus, by the theorem in se
tion 2.4, thereexists a BDD BR representing this 
ir
uit, i.e. the negation of the stri
tpart of the ordering, of size O(n).Assuming that the BDD BR has variables p;p0;p00 for w; v; z re-spe
tively, the BDD algorithm implementing Borgida's revision willbe:
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151. Compute B ^̂̂ B� and 
he
k it for 
onsisten
y. If it is 
onsistent,then this is also the result of the revision (overall 
omplexity isO(jB j � jB�j).2. Otherwise, the result will be:B� ^̂̂ 999p0: (B [p0=p℄ ^̂̂ 888p00: (B�[p00=p℄ !!! BR))Upper bounds for the 
omplexity of these operations are shownbelow: Operation Time Complexity Result SizeB�[p00=p℄ O(jB�j) O(jB�j)888p00: (� !!! �) O(jB�j � n � 26n) O(22n)B [p0=p℄ O(jB j) O(jB j)999p0: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)B� ^̂̂ � O(jB�j � 2n) O(2n)Therefore, the worst-
ase time 
omplexity of Borgida's revision is atmost O(jB�j � n26n).4.3. SatohGiven two formulas  and �, the set of di�eren
es of  and � is de�nedas di�( ; �) def= [v2mod( ) di�(v; �)The revision operator proposed by Satoh in [21℄ is de�ned in �rst-order logi
. Its restri
tion to �nite propositional logi
, as des
ribed in[14℄ is a \global" version of Borgida's revision. When revising  by �,instead of 
onsidering individually the models of  , Satoh's notion ofminimality relies on both  and � simultaneously. An interpretationw is a model of  Æ � if there exists a model v of  su
h that v4wis a minimal element of di�( ; �). Satoh's revision is known to satisfyR1-R5 but not R6 (proved in [14℄).It is easy to express Satoh's revision as a BDD algorithm, usingmu
h of the 
onstru
tion presented above for Borgida's operator. Theset of minimal pairs min�(di�( ; �)) 
an be expressed asmin�(di�( ; �)) = fv4w j v 2 mod( ) ^ w 2 mod(�) ^8x8y: (x 2 mod( ) ^ y 2 mod(�)! x4y 6� v4w)gTherefore the models of the revision are:mod( Æ �) = fw j w 2 mod(�) ^ 9v: (v 2 mod( ) ^8x8y: (x 2 mod( ) ^ y 2 mod(�)! x4y 6� v4w))g
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16 It is trivial to modify the 
ir
uit for Borgida's ordering to produ
eone that de
ides x4y 6� w4v. Therefore, there exists a BDD BR ofsize O(n) that represents this ordering. We assume that BR 
ontainsvariables p;p0;p00;p000 that 
orrespond to w; v; x; y respe
tively. Then,the BDD algorithm isB� ^̂̂ 999p0: (B [p0=p℄ ^̂̂ 888p00;p000: (B [p00=p℄ ^̂̂ B�[p000=p℄!!! BR))Operation Time Complexity Result SizeB [p00=p℄; B [p0=p℄ O(jB j) O(jB j)B�[p000=p℄ O(jB�j) O(jB�j)B [p00=p℄ ^̂̂ B�[p000=p℄ O(jB j � jB�j) O(jB j � jB�j)888p00;p000: (� !!! �) O(jB j � jB�j � n � 28n) O(22n)999p0: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)B� ^̂̂ � O(jB�j � 2n) O(2n)an upper bound for the worst-
ase 
omplexity of whi
h is O(jB j � jB�j �n28n).4.4. DalalThe revision operator proposed in [7℄ takes the distan
e between twointerpretations to be the 
ardinality of their symmetri
 set-di�eren
e(also known as the Hamming distan
e):d(w; v) def= jw4vjwhere the j � j operator is set-
ardinality. The distan
e of a formula  and an interpretation v to be:d( ; v) def= minfd(w; v) j w 2 mod( )gUsing this notion of distan
e, a faithful assignment 
an be de�ned asw � v i� d( ;w) � d( ; v)The indu
ed ordering is 
learly total, re
exive and transitive and thus,the operator is a revision by the representation theorem for revisions.The idea behind the BDD formulation of Dalal's operator 
omesfrom the 
onstru
tion of a 
ir
uit that, when given four interpreta-tions w, v, x and y in the form of binary ve
tors, de
ides whetherd(w; x) � d(v; y) by 0 the appropriate boolean value. Thus, in or-der to 
ompare jw4xj and jv4yj we need a way to 
ount how manypropositional variables are true in ea
h set-di�eren
e and 
ompare those
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0 0...0 S11S12S1k: : :: : :00 0 An1An2A11A12(v4y)1 (v4y)n S21S22(w4x)2 Sn1Sn2: : :: : :(w4x)1 (w4x)n
0...... : : :00 0 AnkA1k ...S2k ...Snk: : :: : :jw4xj � jv4yjFigure 4. Cir
uit to de
ide jw4xj � jv4yj.
ounts. These 
ounts will be binary numbers representing how many 1so

ur in those di�eren
es. The maximum number of di�eren
es possibleis obviously n, thus these binary numbers need only have k = dlog2 nebits.A 
onstru
tion made of n k-bit adders in sequen
e 
an be used todo the 
ounting of bits set to 1 in v4y (see left-half of �gure 4). Blo
kslabelledAij are full-adders. These blo
ks are simple binary 
ir
uits that,given two input bits a; b and a 
arry bit 
, they 
al
ulate the sum oand the produ
ed 
arry bit 
0:o = :(:(a$ b)$ 
)
0 = (a ^ b) _ (
 ^ :(a$ b))Ea
h 
olumn in the �rst-half of �gure 4 forms a k-bit adder. By 
onne
t-ing zeros to all bits of the �rst argument ex
ept the �rst one, where(v4y)i is 
onne
ted, we ensure that the i-th bit of the di�eren
e isadded to the se
ond argument, whi
h holds the results of the 
ountingso far.In order to 
ompare the 
ount we get from the left-half of �gure, weuse a stru
ture made from subtra
ters Sij in order to 
ount down the 1sin w4x, seen in the right-half of �gure 4. Similar to the full-adder, theunit Sij is a boolean 
ir
uit that given inputs a; b and an input 
arry 

al
ulates the di�eren
e o and the produ
ed 
arry bit 
0:o = :(:(a$ b)$ 
)
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18 
0 = (b ^ 
) _ (:a ^ :(b$ 
))If, while 
ounting down, the subtra
tion produ
es a 
arry bit thenwe know that jw4xj > jv4yj. Thus, we preserve the existen
e ofa 
arry bit by taking the disjun
tion of all 
arry bits produ
ed bythe subtra
tion stages and by inverting that value the 
ir
uit de
idesjw4vj � jv4yj.In order to apply the theorem in se
tion 2.4, we de�ne an orderingover the blo
ks of the 
ir
uit:(v4y)1; A11; : : : ; A1k;...(v4y)n; An1 ; : : : ; Ank ;(w4x)1; S11 ; : : : ; S1k; _;...(w4x)n; Sn1 ; : : : ; Snk ; _; :It is easy to see that on ea
h blo
k, the forward 
ross se
tion is atmost k + C where C is a 
onstant and that the reverse 
ross se
tionis always zero. Thus, the forward width of the 
ir
uit is k +C and thebound given by the theorem is 4n2k+C = O(n2), be
ause k = dlog2 ne.3Therefore there exists a BDD of size O(n2) that represents jw4xj �jv4yj.In order to express Dalal's revision as an operation on BDDs, wehave to 
onstru
t the BDD operation representing the faithful assign-ment. By its de�nition we have:w � v i� d( ;w) � d( ; v)i� 9x: (x 2 mod( ) ^ 8y: (y 2 mod( )! jw4xj � jv4yj))Sin
e Dalal's revision is known to satisfy R1-R6 (see [14℄) the abovefaithful assignment determines uniquely the revision operator. Assum-ing that the ordering is represented by a BDD BR with variablesp;p0;p00;p000 
orresponding to w; v; x; y respe
tively, then the BDD al-gorithm for the faithful assignment is:999p000: (B [p000=p℄ ^̂̂ 888p0000: (B [p0000=p℄!!! BR))Operation Time Complexity Result SizeB [p0000=p℄; B [p000=p℄ O(jB j) O(jB j)888p0000: (� !!! �) O(jB j � n2 � 28n) O(23n)999p000: (� ^̂̂ �) O(jB j � 23n � 26n) O(22n)3 Several optimisations 
an be made on the 
ir
uit appearing in �gure 4, byrepla
ing blo
ks with known output with appropriate 
onstants. The forward widthof the 
ir
uit, however, does not 
hange.
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19Therefore, an upper bound for the worst-
ase time 
omplexity of theBDD algorithm for the faithful assignment isO(jB j�29n). Thus, in viewof the result of se
tion 4.1, the derived upper bound for the worst-
asetime 
omplexity of the revision is O(maxfjB j � 29n; jB�j � 22n � 24ng) =O(jB j � 29n).4.5. Update defined by faithful assignmentTheorem 3 tells us how to 
ompute �3 , given a faithful assignment forupdates. Instead of representing the faithful assignment as an operationfa from BDDs representing � to a BDD representing ��, as we did forrevisions, we represent the faithful assignment as a BDD over p;p0;p00.This possibility is available to us in the 
ase of updates, but not in the
ase of revisions, be
ause the faithful assignment is indexed by a modelin updates and by a set of models in revisions.B� is a BDD over p;p0;p00. Given values for p00, it would be
ome aBDD over p;p0, representing a simple (partial) ordering. For example,the expression 999p00: (B�[p00=p℄ ^̂̂ B�)returns the relation [w2mod(�)�w:That is not what we want, however. Theorem 3 asks us to 
omputemod( 3�) = [w2mod( )min�w(mod(�))B� 
an be fed its inputs in any order, and it is 
onvenient to manipulateits p;p0 parameters �rst. Using the de�nition of min is se
tion 2.3 forpartial orderings, we may 
al
ulate the BDDmin(B�; B�)whi
h, given p00 representing w, 
omputes min�w(mod( )). This BDDis still parameterised by p00, sin
e we need to take the union over allw 2 mod( ). The �nal answer for the BDD representing  3� in termsof the BDDs B�, B and B� is thereforeB� ^̂̂ 999p00: (B [p00=p℄ ^̂̂ min(B�; B�)):whi
h when expanded gives (where B 6< = :::(B� ^̂̂ :::B�[p0=p;p=p0℄))B� ^̂̂ 999p00: (B [p00=p℄ ^̂̂ 888p0:(B�[p0=p℄!!! B 6<))An upper bound for the 
omplexity of the double repla
ement isO(jB�j�n26n). The a
tual 
omplexity is probably mu
h lower, but a lower
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20bound would not 
hange the overall 
omplexity of the algorithm, 
om-puted below.Operation Time Complexity Result SizeB�[p0=p;p=p0℄ O(jB�j � n26n) O(23n)B 6< O(jB�j � 23n) O(23n)888p0: (� !!! �) O(jB�j � 23n � 26n) O(22n)999p00: (� ^̂̂ �) O(jB j � 22n � 24n) O(2n)Thus, an upper bound for the worst 
ase 
omplexity of update isO(jB�j � 29n).4.6. WinslettWinslett introdu
ed an update operator in [24℄. The ordering usedin this operator is de�ned using the set-in
lusion of symmetri
 set-di�eren
es a �w b i� w4a � w4bwhi
h is, 
learly, a partial order and the mapping is a faithful assign-ment. As noted in [14℄, Winslett's operator 
oin
ides with Borgida'swhen  and � are in
onsistent. In other words, in Winslett's updatethe se
ond step of the algorithm for Borgida's revision is always used,so our results in se
tion 4.2 
arry over here un
hanged.5. Fault DiagnosisIn this se
tion we present a formulation of fault diagnosis as a spe
ialkind of belief revision, along with experimental results gathered from animplementation of that algorithm. Our goal is not to formulate a fully-
edged theory for fault diagnosis, nor to prove that the best methodfor diagnosis is by belief revision. What we aim at is to demonstratethe BDD algorithms we have presented, in a medium-sized example.To that end, we formulate a method for fault diagnosis that worksin a well-studied 
lass of systems, 
ombinational boolean 
ir
uits, andinvestigate its 
omplexity in pra
ti
e.5.1. Fault Diagnosis of Boolean Combinational Cir
uitsPhysi
al systems 
an develop faults that make them deviate from theirspe
i�
ations. Given a des
ription of a physi
al system and an ob-servation of the system (usually, an input-output observation) that isin
onsistent with the spe
i�
ation, the problem of fault diagnosis is todedu
e whi
h 
omponents of the system are faulty.
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21Sin
e we are interested in dis
overing whi
h parts of the system aremalfun
tioning, the spe
i�
ation must not be just of a fun
tional typebut must in
lude the des
ription of atomi
 parts or 
omponents, thebehaviour of whi
h is given. When su
h a 
omponent is faulty, then itsinput-output behaviour is not restri
ted in any way.Reiter approa
hed this problem from a 
ompletely abstra
t pointof view in [20℄. In his formulation there is an abnormality predi
ateab(x) ranging over the set of 
omponents. When su
h an abnormalitypredi
ate is false for a 
omponent 
 then 
 must behave as spe
i�ed.So, for ea
h 
omponent 
 we have a rule:ab(
)! spe
(
; obs)where spe
(
; obs) is a predi
ate that is true if and only if the obser-vation obs 
omplies with the prede�ned behaviour of 
omponent 
. We
all these rules integrity 
onstraints of the system.In the same paper, Reiter points out that his formulation is stronglyrelated to dedu
tion in default logi
. As belief revision is known tohave strong links to nonmonotoni
 reasoning, many resear
hers haveproposed revision as a method of fault diagnosis (see, e.g., [24, 7℄).The basis of fault diagnosis as belief revision is that an observer ofthe system has two kinds of beliefs about the physi
al system beforeobserving any of its behaviour:� the integrity 
onstraints,� moreover, it is believed that no 
omponents are faulty.Now, suppose that a behaviour of the system is observed that is in
on-sistent with the initial belief. Having 
hosen an appropriate revisionoperator, one 
an revise the initial belief with the observation, whileprote
ting the integrity 
onstraints. Prote
tion of the integrity 
on-straints means that the revision operator will maintain the truth of theintegrity 
onstraints and prefer giving up other beliefs while revising.The result of the revision should, then, imply whi
h 
omponents shouldbe faulty in order to explain the observed behaviour.Sin
e we are interested in implementations of belief 
hange in a�nite propositional language, a natural appli
ation is fault diagnosis of
ombinational boolean 
ir
uits. Su
h a 
ir
uit 
onsists of a �nite num-ber g of unary or binary gates.4 We de�ne nI propositional variablesIi 
orresponding to the primary inputs of the 
ir
uit (at most 2g).For ea
h gate i, we de�ne a propositional variable Ni, its normality4 The presented method 
an be easily generalised for gates of any (
onstant) arityand of any (
onstant) number of outputs.
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22predi
ate, as well as Oi, its output value5. The input(s) of ea
h gatewill either be primary input(s) or output(s) of other gates. The 
ir
uithas also nPO primary outputs, denoted as POi, whi
h form a subset ofthe output values Oi (at most g if no repetitions of results are allowed).Output values of gates not belonging to the set of primary outputs are
alled intermediate results.Therefore, for a 
ir
uit of g gates we de�ne nI + 2g (at most 4g)propositional variables. However, not ea
h valuation of those nI + 2gvariables is a possible state the 
ir
uit 
an be found in; if, in somevaluation, the normality predi
ate of a gate is true then its behaviour isuniquely determined and thus, its output 
an only assume one value outof the two possible. The set of interpretations allowed under the spe
-i�
ation of the 
ir
uit is the set of valuations that satisfy its integrity
onstraints IC def= ĝi=1Ni ! (Fi $ Oi)where Fi is a boolean expression de�ning the expe
ted output in termsof the inputs of gate i. The integrity 
onstraints for a 
ir
uit that
omputes :(I1 ^ I2), for example, areIC = (NAND ! (I1 ^ I2 $ OAND)) ^ (NNOT ! (:OAND $ ONOT))The initial belief will be the 
onjun
tion of the integrity 
onstraintsand of the belief that all gates are not faulty :IB def= IC ^  ĝi=1Ni!An observation is a des
ription of observed primary input and primaryoutput valuesOBS def= nÎi=1(Ii or :Ii) ^ nPÔj=1(POj or :POj)Our goal is to de�ne a revision operator that given an initial beliefand an observation of the above forms, returns an epistemi
 state de-s
ribing whi
h gates if taken as faulty, explain the given observation. Of
ourse, the returned formula need not indi
ate only one 
ombination offaulty gates; there 
ould be several ways in whi
h a faulty 
ir
uit 
anprodu
e a given output.We de�ne the revision operator using a suitable notion of minimality.Intuitively, we want to sele
t all those interpretations that are models5 Sin
e the gate may be faulty, its output value need not be uniquely determinedby its inputs. Thus we do need a separate propositional variable for its output value.
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23of the observed behaviour, while making the smallest 
hange to thepersistent information about the 
ir
uit, i.e., the normality predi
ates.Thus, a suitable notion of minimality is the set-in
lusion of di�eren
es,but restri
ted on normality predi
ates. We do not use a variant ofDalal's operator be
ause that would imply that we are only interestedin the minimum number of faults ne
essary to explain the observation.We 
hoose a variant of Borgida's operator to model this notion of
loseness. This variant is identi
al to Borgida's version, ex
ept for theordering on interpretations. If x; y; z are interpretations, the orderingis de�ned as:x �z y i�  nÎi=1 Ii(x)$ Ii(y)! ^0�nPÔj=1 POj(x)$ POj(y)1A ^ ĝk=1:(Nk(z)$ Nk(x))! :(Nk(z)$ Nk(y))!where Ni(x) denotes the value of Ni at the interpretation x, and simi-larly for other propositional variables. Thus, for two interpretations tobe 
omparable, they should imply the same input-output behaviour,hen
e the �rst two 
onjun
ts of the above formula. Note that interme-diate results do not appear in the de�nition of the ordering, as they arenot observable. The third 
onjun
t formalises our notion of minimal
hanges; we are interested in the minimal set of gates (with respe
t toset-in
lusion) that, when faulty, 
on
ord with the observation.Under this revision operator, prote
tion of integrity 
onstraints isa
hieved by revising our initial belief not just with the observation,but with the 
onjun
tion IC ^OBS.The result of the revision will in
lude information about the parti
u-lar observation we revised with, in view of the axiom R2. In parti
ular,the values of primary inputs and outputs in the observation will beimplied by the resulting epistemi
 state. Sin
e in fault diagnosis we areonly interested in information about the normality predi
ates of the
ir
uit, we need to eliminate from the resulting belief all knowledgeabout propositional variables other than normality predi
ates. We use(boolean) existential quanti�
ation to eliminate all propositional vari-ables that 
arry irrelevant information from the result of the revision.This operation, 
alled elimination, is des
ribed in [13℄.5.2. BDD FormulationThe ordering and the negation of its stri
t 
ounterpart are easily 
on-stru
tible as 
ir
uits similar to the one presented in se
tion 4.2. Thus,
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24by the theorem in se
tion 2.4, the BDD B 6< representing 6< (where �is de�ned by the formula above) is of size O(nI + 2g) = O(g).The BDD BIC is, of 
ourse, dependent on the spe
i�
 
ir
uit inquestion. Therefore we 
annot give a bound on its size. However, byusing the variable ordering I1; : : : ; InI ; N1; O1; : : : ; Ng; Og we ensure anempiri
ally 
ompa
t representation of BIC.The BDD for the 
onjun
tion of all normality predi
ates Ni 
anbe easily shown to have a size of O(g) irrespe
tive of the variableordering used. Thus the BDD for the initial belief BIB will be of sizeO(jBICj � g), by the apply algorithm. Similarly, the BDD BOBS forthe observation will have a size of O(g) and the 
onjun
tion with theintegrity 
onstraints BIC ^̂̂ BOBS will be of size O(jBICj � g).Therefore, the models of the revision aremod(IB Æ (IC ^OBS)) = fw j w 2 mod(IC ^ OBS)^9v: (v 2 mod(IB) ^ 8z: (z 2 mod(IC ^ OBS)! z 6<v w))gand the models of the diagnosis are obtained by quantifying away allvariables ex
ept normality predi
ates:mod(DIAG) = 9I1 : : : 9InI9O1 : : : 9Og:mod(IB Æ (IC ^ OBS))The BDD algorithm is:999phI1;:::;InI ;O1;:::;Ogi: ((BIC ^̂̂ BOBS)^̂̂999p0: (BIB[p0=p℄ ^̂̂ 888p00: ((BIC ^̂̂ BOBS)[p00=p℄ !!! B 6<)))An upper bound for the worst-
ase time 
omplexity of whi
h isO(jBICj�g2224g).5.3. Implementation and Experimental ResultsAs mentioned earlier, belief 
hange operations are known to be veryexpensive in the worst 
ase. Sin
e the 
omplexities reported up tothis point 
on
ern only the worst-
ase, and taking into a

ount thefa
t that the known bounds on BDD operations su
h as quanti�
ationare still not tight, we pro
eeded with a medium-s
ale implementationof the algorithm presented in the previous se
tion. Results regardingthe 
omplexity of that algorithm were gathered by trying diagnosisof random observations. Those results along with details about theimplementation are presented below.The implementation uses the BuDDy pa
kage for the manipulationand 
onstru
tion of BDDs [17℄. This pa
kage, as most of the pa
kagesavailable, o�ers heuristi
s for automati
ally re-ordering the variablesof BDDs in order to attain lower spa
e 
omplexities. This 
apability is
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25very important in an appli
ation for fault diagnosis on arbitrary 
ir-
uits, sin
e the BDD for the integrity 
onstraints is of an unpredi
tablesize and 
an bene�t from automati
 re-ordering. However, having 
ho-sen a spe
i�
 
ir
uit to perform our experiments on, an n-bit adder, wedid not make use of this feature.We have assembled a small 
olle
tion of fairly general tools that
an be used for diagnosis of any 
ombinational boolean 
ir
uit. The
hosen 
ir
uit we have tested, the n-bit adder, is a 
ir
uit that leads tolow 
omplexities of the BDDs involved in diagnosis. However, if we hadsele
ted a 
ir
uit that knowingly lead to exponential 
omplexities, thenthe average 
ase for diagnosis (and indeed, any 
ase) would be provablyexponential. The BDD for the integrity 
onstraints BIC, has linear
omplexity for the n-bit adder. Using a standard design for adders,ea
h bit of the adder amounts to 5 gates, thus an upper bound forthe worst-
ase 
omplexity of the fault-diagnosis algorithm on an n-bitadder is O(n32120n), in view of the result in the previous se
tion.We attempted two kinds of tests. In the �rst one, n-bit adders ofsu

essively larger n were generated, and ea
h one was diagnosed witha set of uniformly distributed random observations. The number ofpossible observations for n bits is 23n. A 
onstant per
entage of those23n observations were sampled and fed to the diagnosis algorithm.The spa
e 
omplexity of ea
h diagnosis was re
orded and an average
omplexity for ea
h n was produ
ed.The above-mentioned algorithm, when fed with an observation thatis 
onsistent with the integrity 
onstraints, does not revise the normal-ity predi
ates. In this spe
ial 
ase, it 
an be easily proved that there isjust one model of IC^OBS, and that the algorithm exhibits a 
omplex-ity mu
h lower than in the worst-
ase. However, the number of 
onsis-tent observations for an n-bit adder is 22n, thus the ratio of 
onsistentto all observations is 1=2n. Therefore, as n in
reases, the probabilityof us sampling a 
onsistent observation de
reases exponentially, thusin
reasing the measured average 
omplexity.Unfortunately, sampling a �xed per
entage of an exponentially sizedpopulation leads in exponential time taken for the tests. Indeed, at7 bits, diagnosing 10% of the total number of observations possibleamounts to running the diagnosis algorithm 209716 times, and for 8bits this number is multiplied by 8. Due to the ex
essive time taken forthe �xed-per
entage tests, we 
ould only run them for up to 7 bits. Theresults for this test are shown below (spa
e 
omplexity is measured inBDD nodes produ
ed):
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26 Bits Average Spa
e Number ofComplexity Samples1 234 12 886 73 1906 524 3229 4105 4861 32776 6804 262157 9052 209716In order to get an idea of the 
omplexities 
on
erned in larger 
ir-
uits, we tried a se
ond test by running our algorithm on 1000 samplesfor ea
h bit-size. Admittedly, this approa
h redu
es exponentially thea

ura
y of our averages in the number of bits. However, by runningthis test multiple times we have empiri
ally veri�ed that the varian
eof the results is not signi�
ant.6 The average spa
e 
omplexity (in BDDnodes produ
ed) and the average time 
omplexity (in ms) are shownin �gures 5 and 5 respe
tively.
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Figure 5. Average number of BDD nodes produ
ed and average time (in ms) spentper diagnosis in the number of bits.As with any empiri
al investigation, these results 
annot be takenas 
on
lusive eviden
e of tra
tability or intra
tability. However, we diduse a nonlinear least squares method (Marquardt-Levenberg algorithm)to �t a number of 
lasses of fun
tions to the above 
urves. To our bestknowledge, the best �t was a quadrati
 fun
tion, being signi�
antlybetter that exponential and sub-exponential non-polynomial ones. Inaddition, in the 
ase of spa
e 
omplexity, the resulting quadrati
 fun
-tion from �tting the �rst or last 15 data points predi
ts reasonably wellthe remaining 45.6 In addition, the ratio of standard deviation to average never ex
eeded 5% inthe 
ase of spa
e 
omplexity and 10% in the 
ase of time 
omplexity.
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27What has been demonstrated, we believe, is the pra
ti
ality of ourapproa
h, 
ontrary to the order of magnitude of the upper bounds 
al-
ulated in the previous se
tions; for fault diagnosis, with a moderately-sized 
omputer system one 
an perform single runs of our algorithmon reasonably large 
ir
uits. In parti
ular, we have su

essfully run ourprogram several times on adders of 1000 bits, with ea
h run taking 20minutes on average. Note that in the model presented above, a 1000-bitadder leads to a state-spa
e of 212000 interpretations.
6. Con
lusions and Further WorkWe presented a formulation of a variety of belief 
hange operators on a�nite propositional language as algorithms on BDDs. Moreover, upperbounds for their worst-
ase 
omplexities were 
al
ulated. These boundsdo not provide 
on
lusive eviden
e for the eÆ
ien
y of the proposedmethods and 
an only do so when tight bounds of the worst-
ase
omplexity of BDD algorithms (espe
ially andExists) are proved.In the 
ontext of veri�
ation, the use of BDDs has greatly ex-tended the size of systems that 
an be pra
ti
ally veri�ed, in spiteof the worst-
ase 
omplexity of model-
he
king (the problem of model-
he
king a CTL formula is PSPACE-
omplete). This fa
t warranted usto investigate empiri
ally the average-
ase 
omplexities of the presentedalgorithms in a fault-diagnosis 
ase study. We found them to be mu
hbetter than their expe
ted worst 
ase.An obvious impediment to the appli
ability of the methods we havepresented is the limited expressive power of propositional logi
. Asalready mentioned, BDD algorithms are routinely used in veri�
ation,in whi
h the underlying language is CTL, a temporal modal logi
. Ingeneral, many systems of modal logi
 give rise to possible appli
ationsof belief 
hange (
on
ept revision in des
ription logi
s, feature integra-tion in temporal modal logi
s as belief update, knowledge revision inepistemi
 logi
s).Moreover, the expressivity of several modal logi
s seems to be a sat-isfa
tory 
ompromise between propositional and �rst-order logi
, whileretaining several important 
hara
teristi
s su
h as de
idability. Thus,a natural 
ontinuation of our 
urrent work is the study of belief 
hangewith a modal logi
 as base language and in parti
ular the 
onne
tionsof belief 
hange with the semanti
s of the underlying logi
.
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