
Agents and Roles: Re�nement in

Alternating-Time Temporal Logic

Mark Ryan1 and Pierre-Yves Schobbens2

1 School of Computer Science
University of Birmingham
Birmingham B15 2TT, UK
urlwww.cs.bham.ac.uk/~mdr
M.D.Ryan@cs.bham.ac.uk

2 Institut d'Informatique
Facult�es Universitaires de Namur

Rue Grandgagnage 21
5000 Namur, Belgium

www.info.fundp.ac.be/~pys

pys@info.fundp.ac.be

Abstract. We present a notion of re�nement between agent-oriented
systems de�ned using alternating-time temporal logic (ATL). The re-
�nement relation provides a framework for de�ning roles in a society of
interacting agents, and formalising a relation of conformance between
agents and roles. The re�nement relation also allows us to construct
abstractions in order to make veri�cation more tractable.

1 Introduction

A distributed system may be seen as a collection of agents interacting together.
This horizonal decomposition of a system should be integrated with a verti-
cal decomposition, in which we re�ne abstract descriptions of agents into more
concrete ones during the course of the system development. The abstract de-
scriptions can be thought of as roles, which are ful�lled by the concrete agents.

Verifying that a set of agents ful�lls its role must be done in the context of the
other agents. This idea has lead to the assume/guarantee paradigm: the speci-
�cation of an agent guarantees its behaviour will be correct, assuming that its
environment (formed in part by other agents) is correct. Our goal is to integrate
this idea with a framework for agent re�nement.

To formalise these intuitions, we propose to use Alternating-time Temporal
Logic [3] (ATL), which allows us to describe precisely the properties of the
di�erent agents involved in a system, and the strategies they have for achieving
their goals. ATL is a branching temporal logic based on game theory. It contains
the usual temporal operators (next, always, until) plus cooperation modalities
hhAii, where A is a set of players (also called agents). This modality quanti�es
over the set of behaviours. The formula hhAii� means that the agents in A have



2 Ryan / Schobbens

a collective strategy to enforce �, whatever the choices of the other agents. ATL
generalises CTL, and similarly ATL* generalises CTL*, and �-ATL generalises
the �-calculus. These logics can be model-checked by generalising the techniques
of CTL, often with the same complexity as their CTL counterpart.

We motivate re�nement between agent-oriented systems. Our aim is to present
a framework which provides

{ A method for constructing systems by assembling components. The system
is speci�ed as a collection of roles, and the component agents are shown to
conform to the roles.

{ A method for verifying agents eÆciently, by abstracting their environment
(similar to [6], but generalising from LTL to ATL). An agent is veri�ed
under the guarantees made by the roles of its environment. This addresses
the state explosion problem, since it is simpler to verify against the roles of
the environment than against the agents implementing the roles.

We de�ne a very general notion of re�nement between alternating-time tran-
sition systems (ATS, the models of ATL), which allows splitting or coalescing
sets of agents so that a role may be ful�lled by several agents, or more gen-
erally several roles ful�lled by several agents. As such, our re�nement relation
generalises that of [2]. As well as providing a framework for describing agents
and the roles they conform to, the re�nement relation can be used to construct
abstractions that allow us to verify systems eÆciently in the manner of Cadence
SMV [6].

Our work could be extended to other logics which have been developed for
modelling cooperation among agents, such as Wooldridge's [11, 12], which builds
upon that of Werner [10] and Singh [9]. We chose ATL because of its closeness
to CTL, the existence of a linear-time model checking algorithm for it, and its
associated model checker Mocha [1].

Outline. In section 2 we present a motivating example. Next, in section 3 we
recall the basic concepts of ATL and ATL* and their semantics on ATSs. Sec-
tion 4 de�nes re�nement and shows some of its properties, and continues the
development of the example. Finally in section 5 we discuss some directions for
future work.

2 Re�nement between agents: example

The sliding-window protocol (SWP) is a communications protocol designed to
guarantee communication over an unreliable channel. The channel may loose,
duplicate, and re-order messages. We assume, however, that the channel is not
completely unreasonable; thus,

{ Although it might loose some messages, it does not loose all of them. More
precisely, if a given message is sent often enough, it will eventually get
through.



Agents and Roles 3

{ Although it might re-order messages, the degree to which it re-orders is
bounded. The channel will not swap a given message with other messages
more than N times.

The agents involved in the abstract speci�cation of the SWP are depicted in
Figure 1. Here is a very abstract account of the SWP. The message to be sent is

sender

channel

receiver

channel

Fig. 1. Roles for the sliding-window protocol

split into packets, and the packets are passed in order to the sender. The sender's
job is to send the packets to the receiver, over the unreliable channels. In order
to cope with the de�ciencies of the channels, the sender may send individual
packets multiple times, until an acknowledgment is received from the receiver.
Since the acknowledgments are also sent along an unreliable channel, they might
need to be sent several times too. In order to cope with re-ordering, the sender
labels messages with numbers consecutively chosen from the set f0; : : : ;Mg,
where M > N . When all the numbers are used up, the sender starts again
from 0. The sender maintains an interval [i; i+w], known as its window, of size
w < N . Initially i = 0. The sender non-deterministically picks a packet whose
sequence number is in the window, and sends it. It records any acknowledgments
it receives; when it has received an acknowledgment for the ith message, it may
advance its window by incrementing i. The receiver, whose job is to assemble the
incoming message and send out acknowledgments, may be described in similar
abstract terms.

This account is highly non-deterministic; it does not specify what order the
sender should send the packets in its window, or what order the receiver should
send the acknowledgments; this is ineÆcient. It allows the sender to resend mes-
sages which have already been acknowledged, which is wasteful. A more concrete
speci�cation of the SWP is given in [5], where the sender is split into three pro-
cesses: the trans, which sends the packets initially and in order; the ack-recv,
which records which messages have been acknowledged, and the re-trans, which
re-transmits packets for which an acknowledgment has not been received before
a given timeout. The reciever is also split into several components, as shown in
Figure 2. The agents trans, ack-rcvr, and re-trans jointly play the role of sender,
and accept and ack-send jointly play the role of receiver.

When proving properties of the concrete agents, we assume only the guar-
antees made by the roles of the other agents. This is a weaker assumption than
the guarantees actually provided by the other agents, but it is leads to more
eÆcient veri�cation. Indeed, in a multi-layered example, while proving the prop-



4 Ryan / Schobbens

sender receiver

trans ack-rcvr re-trans ack-send accept

Fig. 2. Agents and Roles for the sliding-window protocol

erties of one agent we would assume the guarantees of the other agents in the
most abstract layer possible.

3 Alternating-time temporal logic

To make these intuitions precise, we formulate them in terms of Alternating-time
Temporal Logic (ATL) [3]. ATL is based on CTL. Let us �rst recall a few facts
about CTL. CTL [4] is a branching-time temporal logic in which we can ex-
press properties of reactive systems. For example, properties of cache-coherence
protocols [7], telephone systems [8], and communication protocols have been ex-
pressed in CTL. One problem with CTL is that it does not distinguish between
di�erent sources of non-determinism. In a telephone system, for example, the
di�erent sources include individual users, the environment, and internal non-
determinism in the telephone exchange. CTL provides the A quanti�er to talk
about all paths, and the E quanti�er to assert the existence of a path. A means
that, no matter how the non-determinism is resolved,  will be true of the result-
ing path. E asserts that, for at least one way of resolving the non-determinism,
 will hold. But because CTL does not distinguish between di�erent types of
non-determinism, the A quanti�er is often too strong, and the E quanti�er too
weak. For example, if we want to say about a telephone system that user i can
converse with user j, CTL allows us to write the formulas A3talking(i; j) and
E3talking(i; j). The �rst one says that in all paths, somewhere along the path
there is a state in which i is talking to j, and is clearly much stronger than the
intention. The second formula says that there is a path along which i is even-
tually talking j. This formula is weaker than the intention, because to obtain
that path we may have to make choices on behalf of all the components of the
system that behave non-deterministically. What we wanted to say is that users
i and j can make their non-deterministic choices in such a way that, no matter
how the other users or the system or the environment behaves, all the resulting
paths will eventually have a state in which i is talking j. These subtle di�erences
in expressing the properties we want to check can be captured accurately with
ATL.

Alternating-time temporal logic (ATL) [3] generalises CTL by introducing
agents, which represent di�erent sources of non-determinism. In ATL the A and
E path quanti�ers are replaced by a path quanti�er hhAii, indexed by a subset A



Agents and Roles 5

of the set of agents. The formula hhAii means that the agents in A can resolve
their non-deterministic choices such that, no matter how the other agents resolve
their choices, the resulting paths satisfy  . We can express the property that
user i has the power, or capability, of talking to j by the ATL formula1

hhiii3talking(i,j).

We read hhAii as saying that the agents in A can, by cooperating together, force
the system to execute a path satisfying  . If A is the empty set of agents, hhAii 
says that the system will execute a path satisfying  without the cooperation
of any agents at all; in other words, hh;ii is equivalent to A in CTL. Dually,
hh�ii (where � is the entire set of agents) is a weak assertion, saying that if
all the agents conspire together they may enforce  , which is equivalent to E 
in CTL.

3.1 ATL and ATL*

Let P be a set of atomic propositions and � a set of agents. The syntax of ATL
is given by

� ::= p j > j :�1 j �1 _ �2 j hhAii[�1 U �2] j hhAii2�1 j hhAii
�1

where p 2 P and A � �. We use the usual abbreviations for !, ^ in terms of
:, _. The operator hh ii is a path quanti�er, and 
 (next), 2 (always) and U
(until) are temporal operators. The logic ATL is similar to the branching-time
logic CTL, except that path quanti�ers are parameterised by sets of agents.
As in CTL, we write hhAii3� for hhAii[> U �], and we de�ne the weak-until:
hhAii[� W  ] = :[[A]][: U (:� ^ : )].

While the formula hhAii means that the agents in A can cooperate to make
 true (they can \enforce"  ), the dual formula [[A]] means that the agents
in A cannot cooperate to make  false (they cannot \avoid"  ). The formulas
[[A]]3�, [[A]]2�, and [[A]]
� stand for :hhAii2:�, :hhAii3:�, and :hhAii
:�.

The CTL path quanti�ers A (all paths) and E (some path) can be recovered
in ATL as hh;ii and hh�ii. The logic ATL* generalises ATL in the same way
that CTL* generalises CTL, namely by allowing path quanti�ers and temporal
operators to be nested arbitrarily.

For a subset A � � of agents, the fragment hhAii-ATL of ATL consists of
ATL formulas whose only modality is hhAii, and that does not occur within the
scope of a negation. The hhAii-ATL* fragment of ATL* is de�ned similarly.

3.2 Alternating transitions systems

Whereas the semantics of CTL is given in terms of transition systems, the se-
mantics of ATL is given in terms of alternating transition systems (ATSs). An
ATS S over a set of atomic propositions P and a set of agents � is composed of

1 We write hhiii instead of hhfigii .



6 Ryan / Schobbens

(Q; �; Æ; I; o), where Q is a set of states and � : Q! 2P maps each state to the
set of propositions that are true in it, and

Æ : Q�� ! 22
Q

is a transition function which maps a state and an agent to a non-empty set of
choices, where each choice is a non-empty set of possible next states. If the system
is in a state q, each agent a chooses a set Qa 2 Æ(q; a); the system will move to a
state which is in

T
a2� Qa. We require that the system is non-blocking and that

the agents together choose a unique next state; that is, for every q and every
tuple (Qa)a2� of choices Qa 2 Æ(q; a), we require that

T
a2� Qa is a singleton.

Similarly, the initial state is speci�ed by I : � ! 22
Q

. I maps each agent to a
set of choices. The agents together choose a single initial state: for each tuple
(Qa)a2� of choices Qa 2 I(a), we require that

T
a2� Qa is a singleton.

In the sequel, we will consider ATS of a particular form: the choices of the
agents are expressed by choosing the value of their variables. This is also the
choice made in the language Mocha [1]. We therefore stipulate a function o :
P ! � that, for each propositional variable, gives its owner. We de�ne Pa =
fp 2 P j o(p) = ag to designate the propositional variables belonging to agent
a, and PA = fp 2 P j o(p) 2 Ag to a group A. The choices of an agent thus
determine the value of its variables, and let the other vary freely:

8a 2 �; q 2 Q;Qa 2 Æ(q; a);8X � P6=a; 9q 2 Qa : �(q) \ P6=a = X

where P6=a = fp 2 P jo(p) 6= ag. A signature is de�ned as this function o, together
with its domain P and codomain �.

For two states q and q0, we say that q0 is a successor of q if, for each a 2 �,
there exists Q0 2 Æ(q; a) such that q0 2 Q0. We write Æ(q) for the set of successors
of q; thus,

Æ(q) =
\
a2�

[
Q2Æ(q;a)

Q

A computation of S is an in�nite sequence � = q0; q1; q2 : : : of states such
that (for each i) qi+1 is a successor of qi. We write �[0; i] for the �nite pre-
�x q0; q1; q2; : : : ; qi.

Often, we are interested in the cooperation of a subset A � � of agents.
Given A, we de�ne Æ(q; A) = f

T
a2AQa j Qa 2 Æ(q; a)g. Intuitively, when the

system is in state q, the agents in A can choose a set T 2 Æ(q; A) such that, no
matter what the other agents do, the next state of the system is in T . Note that
Æ(q; fag) is just Æ(q; a), and Æ(q;�) is the set of singleton successors of q.

Example 1 ([3]). Consider a system with two agents \user" u and \telephone
exchange" e. The user may lift the handset, represented as assigning value true to
the boolean variable \o�hook". The exchange may then send a tone, represented
by assigning value true to the boolean variable \tone". Initially, both variables
are false. Clearly, obtaining a tone requires collaboration of both agents.



Agents and Roles 7

We model this as an ATS S = (Q; �; Æ; I) over the agents � = fu; eg and
propositions P = fo�hook,toneg. Let Q = f00; 01; 10; 11g. 00 is the state in
which both are false, 01 the state in which \o�hook" is false and \tone" is true,
etc. (thus, �(00) = ;, �(01) = ftoneg, etc.). The transition function Æ and initial
states I are as indicated in the �gure.

Æ(q; a) u e

00 ff00; 01g; f10; 11gg ff00; 10gg
10 ff10; 11gg ff00; 10g; f01; 11gg
01 ff00; 01g; f10; 11gg ff01; 11gg
11 ff10; 11gg ff01; 11gg

I ff00; 01gg ff00; 10gg

Fig. 3. The transition function of the ATS.

3.3 Semantics

The semantics of ATL uses the notion of strategy. A strategy for an agent a 2 �
is a mapping fa : Q+ ! 2Q such that fa(� � q) 2 Æ(q; a) with � 2 Q�. In other
words, the strategy is a recipe for a to make its choices. Given a state q, a set
A of agents, and a family FA = ffa j a 2 Ag of strategies, the outcomes of FA
from q are the set out(q; FA) of all computations from q where agents in A follow
their strategies, that is,

out(q0; FA) = f� = q0; q1; q2; � � � j 8i; qi+1 2 Æ(qi) \
�\
a2A

fa(�[0; i])
�
g:

If A = ;, then out(q; FA) is the set of all computations, while if A = � then it
consists of precisely one computation.

The semantics of ATL* is as CTL*, with the addition of:

{ q � hhAii if there exists a set FA of strategies, one for each agent in A, such
that for all computations � 2 out(q; FA) we have � �  .

Remark 1. To help understand the ideas of ATL, we state below some validities,
and surprising non-validities.

1. If A � B, then hhAii ! hhBii , and [[B]] ! [[A]] . Intuitively, anything
that A can enforce can also be enforced by a superset B; and if anything
that B is powerless to prevent cannot be prevented by a subset of B.

2. In CTL*, A distributes over ^. But in general in ATL*, hhAii( 1 ^  2) only
implies (hhAii 1) ^ (hhAii 2). The �rst formula asserts that agents A can
enforce  1 ^  2, while the second is weaker, asserting that A has a way to
enforce  1 and another, possibly incompatible, way to enforce  2. Similarly,



8 Ryan / Schobbens

hhAii( 1 _  2) and hhAii 1 _ hhAii 2 are di�erent (for A 6= �). The �rst
one asserts that agents A can enforce a set of paths each of which satis�es
 1_ 2, but which of the two is true along a particular path might be chosen
by other agents. This is weaker than the second formula, which asserts that
A can guarantee that all paths satisfy  1, or A can guarantee that all paths
satisfy  2.

4 Re�nement of agents

In this section, we de�ne re�nement between ATSs. As illustrated by the example
of section 2, a re�nement chooses a particular set of agents to re�ne, and may
abstract the complement set. The formal de�nition of re�nement is split into
two parts. Signature re�nement deals with the symbols in the vocabulary. Next,
ATS re�nement extends a signature re�nement, and deals with behaviours.

De�nition 1. Let � and �0 be disjoint sets of agents with variables P and
P 0 respectively. A signature re�nement from A � � to A0 � �0 is: a relation
f � � � �0 between agents in both societies, and a relation g � P � P 0, such
that:

{ f links agents in A to agents in A0, and agents outside A to agents outside
A0. To de�ne this formally, we extend f to sets of agents in the usual way:
f(B) = fa0 j 9a 2 Bf(a; a0)g and f�1(B0) = fa j 9a0 2 B0f(a; a0)g. A set
of agents B 2 � corresponds to B0 2 �0 i� B0 = f(B) and f�1(B0) = B.
Note that some sets of agents will not have a correspondent. We require that
A corresponds to A0 and �A to �A0 (where �A = � nA and �A0 = �0 nA0).

{ g respects ownership: g(p; p0) implies f(o(p); o(p0)). Additionally, the more
detailed description of the component should at least include the variables
required in its role, thus g is a function from PA = fp j o(p) 2 Ag, and
conversely, g�1 is a function on P �A0 .

Example [continued from section 2]. A = fsenderg � � = fsender; receiverg.
A0 = ftrans, ack-rcvr, re-transg � �0 = ftrans, ack-rcvr, re-trans, receiverg.
This re�nes the sender. In this case, f is shown as the left three arrows of �gure
2, together with the pair (receiver, receiver).

Signature re�nements have the following properties:

Theorem 1. 1. The identity is a signature re�nement;
2. Signature re�nements compose: if (f1; g1) is a signature re�nement from

A1 � �1 to A2 � �2, and (f2; g2) is a signature re�nement from A2 � �2

to A3 � �3, then (f1 Æ f2; g1 Æ g2) is a signature re�nement from A1 � �1

to A3 � �3.

Given such a signature re�nement, we can now consider how to translate
formulae. Not all formulae can be translated: they may involve agents or variables
that have no correspondent. The translation T along f; g of a formula is thus:



Agents and Roles 9

T (p) = g(p) assuming g is functional on p; T (hhAii�) = hhf(A)iiT (�) assuming
f(A) corresponds to A; and the other logical operators translate unchanged. If
the assumptions above are not ful�lled, the formula cannot be translated.

A re�nement between signatures can sometimes be extended to a re�nement
between ATS S = (�;Q; �; Æ; I) and S0 = (�0; Q0; �0; Æ0; I 0). We then say that
the agents A0 are conformant to the role A.

De�nition 2. Let S = (�;Q; �; Æ; I) and S0 = (�0; Q0; �0; Æ0; I 0) be ATSs. An
ATS re�nement r extending a signature re�nement s = (f; g) from A � � to
A0 � �0 is a triple (H;C;D), where:

1. H � Q � Q0 is a relation between states such that corresponding variables
have the same value, formally: if H(q; q0); g(v; v0), then v 2 �(q) i� v0 2
�0(q0);

2. C : H ! Æ0(q0; A0) ! Æ(q; A): C gives for any pair (q; q0) in the relation
H and for any choice possible for the component A0 in q0, a corresponding
choice for the role A in q;

3. conversely D : H ! Æ(q; �A)! Æ0(q0; �A0);

such that 8(q; q0) 2 H;8T 2 Æ(q; �A);8R0 2 Æ0(q0; A0) : (T \ C(q; q0)(R0)) �
(D(q; q0)(T ) \ R0) � H.

H relates states in the abstract system with those of the re�ned system. The
intuition for C and D is this: any choices A0 makes in the re�ned system must
correspond to choices A makes in the original system. C maps A0's choices to A's
choices. The environment goes the other way; in S0 it is more abstract, soD maps
�A's choices to �A0's choices. The `such that' part of the de�nition guarantees that,
after these choices have been resolved, the two systems are again in H-related
states. Note that since T and C(q; q0)(R) together de�ne the choices of all agents,
their intersection is a singleton, and similarly for D(q; q0)(T ) \ R.

If the agents A of the abstract system S are viewed as a role, then this
de�nition ensures that the agents A0 of S0 conform to that role. Note that again
the notion of conformance goes in opposite directions for the system and for its
environment.

4.1 Some properties of the re�nement relation

Our de�nition is similar to the de�nition of alternating re�nement in [2]. How-
ever, our de�nition is more general than theirs, since it allows the agents and the
variables to be di�erent in the two systems. Moreover, our de�nition is stricter
than theirs, in the sense that in the case that the agents and variables are the
same in the two systems, our de�nition implies their one. This is formalised as
follows:

Remark 2. If r = (f; g;H;C;D) is an ATS re�nement from S = (�;Q; �; Æ; I)
over P to S0 = (�0; Q0; �0; Æ0; I 0) over P 0 and � = �0, P = P 0, and f; g are
identity, then S � �A S

0 in the sense of [2]. The converse does not hold.



10 Ryan / Schobbens

Proof. The de�nition of S � �A S0 is that there exists H � Q � Q0 such that
H(q; q0) implies �(q) = �0(q0) and 8T 2 Æ(q; �A) 9T 0 2 Æ0(q0; �A)8R0 2 Æ0(q0; A) 9R 2
Æ(q; A) (T \R)�(T 0\R0) � H . Suppose (f; g;H;C;D is an ATS re�nement from
S to S0. To prove S � �A S0, we set: T 0 = D(q; q0)(T ) and R = C(q; q0)(R0). As R
may depend on T as well as R0 in the de�nition of S � �A S0 , while C(q; q0)(R0)
depends on R0 but not on T in ours, the converse does not hold.

This di�erence between our de�nition and that of [2] has important conse-
quences. Our de�nition has properties which their one does not have (such as
Theorem 4 below), and the converse is also true. We discuss this further at the
end of this section.

Now ATS re�nements have the properties:

Theorem 2. 1. The identity is an ATS re�nement;
2. ATS re�nements compose vertically: if r1 = (f1; g1; H1; C1; D1) is a ATS

S1 ! S2 re�nement from A1 � �1 to A2 � �2, and r2 = (f2; g2; H2; C2; D2)
is a S2 ! S3 re�nement from A2 � �2 to A3 � �3, then there is a S1 ! S3
re�nement r3 from A1 to A3, which may also be written r1; r2, given by
(f1Æf2; g1Æg2; H1ÆH2; C1ÆC2; D1ÆD2), where Æ is the relation composition:
H1 ÆH2 = f(q1; q3) j 9q2(q1; q2) 2 H1 ^ (q2; q3) 2 H2g.

3. If r = (f; g;H;C;D) is an ATS S1 ! S2 re�nement from A1 � �1 to
A2 � �2, then r

�1 = (f�1; g�1; H�1; C 0; D0) is an S2 ! S1 re�nement from
�A2 to �A1, where C

0; D0 are de�ned by: C 0(q2; q1) = D(q1; q2) and D
0(q2; q1) =

C(q1; q2). Note that S � �A S0 does not imply S0 �A S.

Theorem 3. If there is an ATS re�nement from A � � to A0 � �0, then any
translatable hhA0ii; [[ �A0]]-ATL formula valid on the ATS S0 is also valid on S

when translated; conversely, any translatable hh �Aii; [[A]]-ATL formula valid on S
is also valid on S0 when translated.

Proof. Use remark 2 and theorem 6 of [2].

4.2 Horizontal composition of re�nements

We use the re�nement from A � � to A0 � �0 when we want to prove that the
agents in A0 satisfy the role A. The agents in A0 are more concrete than those
in A. As already noted, the de�nition of re�nement means that the agents in �A0

may be more abstract than those in �A.
Now suppose we have two re�nements, r1 = (f1; g1; H1; C1; D1) and r2 =

(f2; g2; H2; C2; D2), such that r1 is an S ! S1 re�nement from A � � to A1 �
�1, and a S ! S2 re�nement from B � � to B2 � �2. Re�nement r1 re�nes
the agents in A, and r2 re�nes those in B. We would like to be able to put
these re�nements together, to form a re�nement on A [B. This would allow us
to implement the roles A and B independently, and verify the implementations
independently. Putting the re�nements together means that we obtain a correct
re�nement of A [ B with no additional veri�cation. Recall that r1 re�nes A,
but may abstract B; and r2, which re�nes B, may abstract A. Therefore, the



Agents and Roles 11

composition of r1 and r2, noted r1kr2 in Figure 4, has to combine the re�nement
of A by r1 and the re�nement of B by r2. We stipulate that A \ B is empty, in
order to avoid the possibility that these re�nements are incompatible on their
common part.

S0

S

A1; B2[( �A\ �B)

S1 A1; �A1

r1

�1

r01

B2; �B2
S2

�2

B2; A1[( �A\ �B)

B; �BA; �A A[B; �A\ �B

A1[B2; �A\ �B

r1kr2

r2

r02

�0 = A1[B2[( �A\ �B)

Fig. 4. Horizontal composition of re�nements.

Example [continued]. Let S be the abstract description of the sliding-window
protocol (SWP), having agents � = fsender, receiver, channel1, channel2g. We
decide to implement the sender and the receiver separately (Figure 5). The
set A = fsenderg is implemented as A1 = ftrans, ack-rcvr, re-transg. In this
example, �A1 = �A = fchannel1, channel2, receiverg. We check that this imple-
mentation, S1, is a re�nement of S from A to A1.

The receiver is also implemented. B2 = freceiverg is re�ned into B0
2 =

faccept, ack-sendg.



12 Ryan / Schobbens

channel

receiver

channel

channel

receiver

channel

channel

channel

sender

sender

trans

ack-rcvr

re-trans
ack-send

accept

Fig. 5. Independently implementing the sender and the receiver.

In the general framework of Figure 4 and Theorem 4 below, �A1 is allowed
to be an abstraction of �A. This is useful for model checing, because S1 will be
more abstract and so checking the re�nement will be computationally cheaper.

Theorem 4. ATS re�nements compose horizontally: if r1 = (f1; g1; H1; C1; D1)
is an S ! S1 re�nement from A � � to A1 � �1, and r2 = (f2; g2; H2; C2; D2)
is an S ! S2 re�nement from B � � to B2 � �2 such that A \ B = ;, then
we can build r, also noted r1kr2, an S ! S0 re�nement from A [ B � � to
A1 [ B2 � �0, such that there are re�nements:

1. r01, an S1 ! S0 re�nement from �A1 � �1 to B2 [ ( �A \ �B) � �0, and
2. r02, an S2 ! S0 re�nement from �B2 � �2 to A1 [ ( �A \ �B) � �0,

and any other such S ! S0 re�nement r0 from A [ B to C can be decomposed
through r: there is r00 such that r0 = r; r00. The situation is shown in �gure 4.

Example [continued]. This shows that the two implementations can be put to-
gether, and that the result re�nes the original speci�cation. Moreover, we do
not have to check this (which would be computationally expensive, because of
the size of S0); we simply check the re�nements r1 and r2, and the theorem
guarantees the re�nement r1kr2.

Proof. We construct S0 = (�0; Q0; �0; Æ0; I 0) and the S ! S0 re�nement r =
(f; g;H;C;D):



Agents and Roles 13

{ �0 = A1 [B2 [ ( �A \ �B)
{ Q0 = f(q; q1; q2) j H1(q1; q) ^H2(q2; q)g
{ v 2 �0(q; q1; q2) if o(v) 2 A1 and v 2 �1(q1); or o(v) 2 B2 and v 2 �2(q2); or
o(v) 2 �A \ �B and v 2 �(q).

{ Æ0(a; (q; q1; q2)) =8>>>>>><
>>>>>>:

fC1(q; q1)(T1)� T1 �D2(q; q2)(C1(q; q1)(T1)) \Q0 j T1 2 Æ1(a; q1)g
if a 2 A1

fC2(q; q2)(T2)�D1(q; q1)(C2(q; q2)(T2)� T2 \Q0 j T2 2 Æ2(a; q2)g
if a 2 B2

fT �D1(q; q1)(T )�D2(q; q2)(T ) \Q0 j T 2 Æ(q; a)g
if a 2 �A \ �B

{ f(a; a0) if a 2 A and f1(a; a
0); or a 2 B and f2(a; a

0); or a 2 �A \ �B and
a = a0.

{ g(v; v0) if o(v) 2 A and g1(v; v
0); or o(v) 2 B and g2(v; v

0); or o(v) 2 �A \ �B
and v = v0.

{ H(q0; (q; q1; q2)), q = q0

{ C(q; (q; q1; q2))(T � T1 � T2) = T

{ D(q; (q; q1; q2))(T ) = T �D1(q; q1)(T )�D2(q; q2)(T )

It is straightforward to prove that S0 is an ATS (the main part of which is to
show that Æ0(�0; q) is a singleton). We prove that r : S ! S0 is a re�nement:

1. f links A [B � � to C 0 = A1 [ B2 � �0.
2. g respects ownership: if g(v; v0) then, for instance, o(v) 2 A and g1(v; v

0);
the second conjunct implies f1(o(v); o(v

0)), which together with o(v) 2 A

implies f(o(v); o(v0))
3. g is functional on PA[B , since g1 is functional on PA and g2 functional on
PB .

4. We show H(q0; (q; q1; q2)) and g(v; v0) imply v 2 �(q0) i� v0 2 �0(q; q1; q2).
Since H(q0; (q; q1; q2)), q = q0. Now we distinguish between the usual three
cases: o(v) may be in A, B, or �A\ �B. For example, if o(v) 2 A then g(v; v0) im-
plies g1(v; v

0), therefore o0(v0) 2 A1. Since (q; q1; q2) 2 Q0, H1(q; q1). There-
fore, v 2 �(q0) i� v0 2 �1(q1). The other cases are similar.

5. Finally, we need to show that if H(q; (q; q1; q2)), T 2 Æ(q; A [ B), R 2
Æ0((q; q1; q2); �A\ �B), then (T\C(q; (q; q1; q2))(R))�(D(q; (q; q1; q2))(T )\R) �
H . Note that T =

T
a2A[B Qa for some choices Qa 2 Æ(q; a), a 2 A [ B,

and R =
T
a2 �A\ �B(Qa �D1(q; q1)(Qa)�D2(q; q2)(Qa)) \Q

0, for again some
choices Qa 2 Æ(q; a), a 2 �A \ �B. Let us �x these choices of Qa, a 2 �0.
Suppose (s; (s0; s1; s2) 2 (T \C(q; (q; q1; q2))(R))� (D(q; (q; q1; q2))(T )\R).
Then fsg =

T
a2�0 Qa and f(s0; s1; s2)g =

T
a2�0(Qa � D1(q; q1)(Qa) �

D2(q; q2)(Qa)) \Q0. Therefore, s = s0.

The re�nement r01 : S1 ! S0 is given by

{ f 01 � �0 ��1 given by: f 01(a
0; a1) i� a1 = a0 2 A1; or a1 62 A1 and a0 2 B2

and (a1; a
0) 2 f2 Æ f1; or a1 62 A1 and a

0 2 �A \ �B and (a1; a
0) 2 f1.

{ H 0
1(q

0
1; (q; q1; q2)), q1 = q01



14 Ryan / Schobbens

{ C 0
1(q1; (q; q1; q2))(T1) = C1(q1; q)(T1)� T1 �D2(q; q2)(C1(q1; q)(T1))

{ D0
1(q1; (q; q1; q2))(T � T1 � T2) = T1.

The re�nement r02 : S
0 ! S2 is de�ned similarly, and we must again check that

r1 and r2 are a re�nement (omitted).
Finally, we show that any other such S ! S0 re�nement r0 from A [B to C

can be decomposed through r: there is r00 such that r0 = r; r00: . . .

This property is not enjoyed by the re�nement relation of [2], as the follow-
ing example shows. Let S = (�;Q; �; Æ; I) over P be given by: � = fa; bg, Q =
f00; 01; 10; 11g, P = fx; yg, �(01) = fyg, etc, and Æ(a; q) = ff00; 01g; f10; 11gg
and Æ(b; q) = ff00; 10g; f01; 11gg (note: they are independent of q). Let S1 be
given by:�1 = �,Q1 = Q, and Æ1(a; q) = ff00; 11gg, Æ1(b; q) = ff00; 10g; f01; 11gg.
Let S2 be given by: �2 = �, Q2 = Q, and Æ2(a; q) = ff00; 01g; f10; 11gg,
Æ2(b; q) = ff01; 10gg.

Note that S1 �b S and S2 �a S. However it is not possible to construct an
S0 incorporating the choices of both S1 and S2, because S1 insists that x = y

while S2 insists that x 6= y.
There is no re�nement from S to S1, or from S to S2, and therefore this

counter-example does not apply to our de�nition.

5 Conclusions

Our re�nement framework allows the system developer to implement di�erent
agents of a system independently. The results can be put together automatically
to form an implementation of the whole. This guaranteed interoperability: in the
example, any implementation of the sender is compatible with any implementa-
tion of the receiver.

Showing that the rolesA and B may be re�ned independently is an important
step in building a re�nement calculus suitable for making abstractions to address
the state explosion problem in ATL model checking. We intend to continue this
work by eÆciently computing re�nements and developing examples.

A counterexample shows that our result about compositional re�nements
does not work for the re�nement relation of [2], suggesting that our de�nition is
more natural. However, their de�nition precisely characterises ATL formulas, as
they show.

Acknowledgments. We are grateful to an anonymous referee for pointing out
relevant literature.

References

1. R. Alur, H. Anand, R. Grosu, F. Ivancic, M. Kang, M. McDougall, B.-Y. Wang,
L. de Alfaro, T. Henzinger, B. Horowitz, R. Majumdar, F. Mang, C. Meyer,
M. Minea, S. Qadeer, S. Rajamani, and J.-F. Raskin. Mocha User Manual. Uni-
versity of California, Berkeley. www.eecs.berkeley.edu/~mocha.



Agents and Roles 15

2. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating re�nement re-
lations. In D. Sangiorgi and R. de Simone, editors, CONCUR 98: Concurrency
Theory, Lecture Notes in Computer Science 1466, pages 163{178. Springer-Verlag,
1998.

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
pages 100{109. IEEE Computer Society Press, 1997.

4. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In D. Kozen, editor, Logic of Programs Workshop, number
131 in LNCS. Springer Verlag, 1981.

5. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1990.
6. K. McMillan. The SMV language. Available from www-cad.eecs.berkeley.edu/-

~kenmcmil, June 1998.
7. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
8. M. C. Plath and M. D. Ryan. Feature integration using a feature construct. Science

of Computer Programming, 2001. In print.
9. M. P. Singh. Group ability and structure. In Y. Demazeau and J.-P. M�uller,

editors, Decentralised AI 2, pages 127{146. Elsevier, 1991.
10. E. Werner. What can agents do together: A semantics of co-operative ability. In

Proc. ECAI 90, pages 694{701, 1990.
11. M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems.

PhD thesis, UMIST, Manchester, 1992.
12. M. Wooldridge and M. Fisher. A �rst-order branching time logic of multi-agent

systems. In Proceedings of the Tenth European Conference on AI (ECAI-92),
Vienna, Austria, 1992.


