Feature integration using a feature construct'

Malte Plath and Mark Ryan

School of Computer Science, University of Birmingham, Birmingham B15 2TT,
UK,
http://www.cs.bham.ac.uk/{ mcp, “mdr}

Abstract

A feature is a unit of functionality that may be added to (or omitted from) a system.
Examples of features are plug-ins for software packages or additional services offered
by telecommunications providers. Many features override the default behaviour of
the system, which may lead to unforeseen behaviour of the system; this is known
as feature interaction.

We propose a feature construct for defining features, and use it to provide a plug-
and-play framework for exploring feature interactions. Our approach to the feature
interaction problem has the following characteristics:

e Features are treated as first-class objects during the development phase;

e A method is given for integrating a feature into a system description.
It allows features to override existing behaviour of the system being
developed;

e A prototype tool has been developed for performing the integration;

e Interactions between features may be witnessed.

In principle, our approach is quite general and need not be tied to any particular
system description language. In this paper, however, we develop the approach in
the context of the SMV model checking system.

We describe two case studies in detail: a lift system and a telephone system.

Key words: features, feature interaction, model checking

! Financial support from the EU through Esprit working groups ASPIRE (22704)
and FIREworks (23531), and from British Telecommunications PLC and the
Nuffield Foundation in the UK is gratefully acknowledged.

Preprint submitted to Elsevier Preprint 19 December 1999

1 Introduction

The concept of feature has emerged in the telecommunications industry as a
way of describing optional services to which telephone users may subscribe.
Features offered by telephone companies include Call Forwarding, Automatic
Call Back, and Voice Mail. Features are not restricted to telephone systems,
however. Any part or aspect of a specification which the user perceives as
having a self-contained functional role is a feature. For example, a printer
may exhibit such features as: ability to understand PostScript; Ethernet card;
serial interface; ability to print double-sided; and others. Thinking in terms of
features is important to the user, who often understands a complex system as
a basic system plus a number of features. It is also an increasingly common
way of designing products.

A significant motivation for the feature construct introduced in this paper is
the concept of feature interaction. When several features are integrated on top
of a base system, they may interfere with each other, or interact in ways which
are hard to predict. This problem has been dubbed the feature interaction
problem in the literature on telecommunications. A series of workshops is
dedicated to feature interaction ([11], [3], [4], [8] and [17]).

Examples of feature interactions in telecommunications systems are:

e “Call Forward on Busy” and “Voice Mail on Busy”: both these features
try to take control of a second (incoming) call to the subscriber. This is
inconsistent, so one cannot allow both features to be active on the same
phone.

e The “Ring Back When Free” (RBWF) attempts to set up a call for the
subscriber to a callee whose line is engaged as soon as the line becomes free.
The interaction of RBWF and “Call Forward Unconditional” (CFU) leads
to consistent, but potentially undesirable behaviour:

x requests RBWF from y, then CFU to z.
z will be notified when y becomes available.
However, it was x who requested the notification.

Just as features are not restricted to telecommunication systems, the feature
interaction problem can be observed in other contexts as well. To mention but
a few examples, system extensions for Windows and Mac OS, packages for
GNU Emacs and I¥TEX styles may not work as intended when loaded in the
wrong order, or in some cases not be compatible at all. These ‘interactions’
can usually be traced down to the fact that two ‘features’ manipulate the
same entities in the base system, and in doing so violate some underlying
assumptions about these entities that the other ‘features’ rely on. An example
of interfering INTEX packages are german.sty and amstex.sty (when loaded

in this order): when amstex.sty applies its changes, it is not aware of the
alterations which german. sty has made, leading to undesirable results. In this
case, luckily, reversing the loading order solves the problem, since german.sty
was written to respect amstex.sty.

Feature interaction seems unavoidable if the features we allow are reasonably
powerful. When a feature adds conceptually new information to a system or
the data it works on, other features may be subverted. For example, if ‘Call
Waiting’ introduces a new state? into the telephone system, for which none of
the other features have been prepared, their actions may not have the desired
effect. But that is the central point of features: they may add functionality
to a system which was not conceived when the system was designed. Thus
feature interaction will occur in any sufficiently flexible system.

But feature interaction is not always a bad thing take the second example
above: x may be forwarding her calls to her mobile phone, in which case
the indicated behaviour is desirable. (In this case x and z refer to the same
person.) In cases when it is clear that the result of a feature interaction is
undesirable, or detrimental to the operation of the whole system, we often use
the term feature interference to stress this fact.

Since there is no way of avoiding feature interaction short of rigidly restricting
the set of potential features, it is desirable to analyse potential interactions as
early as possible in the life-cycle of a new feature, and to interleave all steps
in the development of new services with further analysis.

Our approach addresses the early stages of specification, and enables the spec-
ifier to identify problems with little more than the requirements to work from.
That is to say, given a model of the basic system, the features are easy to
specify, to add, and to remove or to re-specify, should interferences with other
features arise.

We model the basic system and its features as different textual units, and in-
tegrate the features into the basic system, producing an extended system. We
check for interactions by verifying the extended system. This approach works
in principle with any modelling language and verification method. In this pa-
per, however, we ‘instantiate’ the approach by working with the SMV model
checker developed at Carnegie Mellon University [6,19]. SMV can automati-
cally check whether a system description satisfies its specification, expressed
as a temporal logic formula. It does so by exhaustive state enumeration. A
short introduction to SMV is provided in section 2.

We extend the SMV language with a new construct for describing features.

2 For the situation when a call arrives at an engaged phone: the new caller will not
get the busy tone, and the call can be completed.

We have built a tool called SFT (“SMV Feature Integrator”) which compiles
descriptions in this extended language into pure SMV, ready for verification
by the SMV model checker. We present details of this extension and the inte-
gration process in the remainder of the paper, along with two substantial case
studies of feature integration. This paper extends and completes two previous
papers [21,22].

The structure of this paper is as follows: in the following section we give a short
introduction to the SMV language. In section 3 we describe the ideas behind
our approach. This is followed by an explanation of the feature construct for
SMV in section 4. Sections 5 and 6 are devoted to our two case studies, the lift
system and the telephone system, respectively. The files for these case stud-
ies can be found at http://www.cs.bham.ac.uk/ "mdr/features/SFI-demo/.
We conclude our paper by summing up our experiences with this approach in
section 7.

2 A short introduction to SMV

Knowledge about SMV? is required in order to understand our feature con-
struct, our tool SFI, and the case studies presented in this paper. We apologise
for leaving this exposition of SMV very sketchy and refer the interested reader
to [6,19] for a more detailed account. SMV is a verification tool which takes
as input

e a system description in the SMV language, and
e some formulas in the temporal logic CTL (Computation Tree Logic).

It produces as output the statement ‘true’ or ‘false’ for each of the formulas,
according to whether the system description satisfies the formula or not. In
symbols we write S |= ¢ if the system S satisfies the formula ¢, and S }£ ¢ if
¢ does not hold for S. In the case that the formula is not satisfied, SMV also
produces a trace showing circumstances in which the formula is false.

The SMV description language is essentially a high-level syntax for describ-
ing finite state automata. It provides modularisation, and synchronous and
asynchronous composition. The behaviour of the environment is modelled by
non-determinism. An SMV system description declares the state variables,

3 Until 1998 there was just one SMV, but now there are three. CMU SMV [19] is
the original one, developed by Ken McMillan, and is the one we use in this paper.
NuSMV is a re-implementation being developed in Trento [5], and is aimed at
being customisable and extensible. Cadence SMV is an entirely new model checker
focussed on compositional systems. It is also developed by Ken McMillan, and its
description language resembles but much extends the original SMV [18].

their initial values and the next values in terms of the current and next values
of the state variables as long as this does not lead to circular dependencies.

SMV works with unlabelled automata and has no message passing. Hence
all synchronisation has to be by explicit references to current and next val-
ues. While this keeps the syntax simple, it does sometimes make writing the
description slightly cumbersome.

1: MODULE main

2: VAR

3 request : boolean;

4 state : {ready,busy};
5: ASSIGN
6
7
8
9

init (state)
next (state)

ready;
case

state = ready & request : busy;
1 : {ready,busy};

10: esac;

11: SPEC AG(request -> AF state = busy)

Fig. 1. A system description for SMV

Figure 1 shows one of the examples distributed with the SMV system. (The
line numbers are not part of the code.) This piece of code defines an automaton
with four states ({0, 1} x {ready, busy}). There are transitions from every state
to every state, except for the state (1,ready) from which only transitions
to (1,busy) and (0,busy) are allowed. The initial states are (1,ready) and
(0, ready).

Generally, a model description for SMV consists of a list of modules with
parameters. Each module may contain variable declarations (VAR), macro def-
initions (DEFINE), assignments (ASSIGN), and properties (SPEC) to be checked
of the module.

Possible types for variables are boolean ({0,1}), enumerations (e.g. state),
finite ranges of integers, or arrays of these types. For declared variables (as
opposed to DEFINEd ones, which are merely macros) we may assign the ini-
tial value (e.g. line 6) and the next value (e.g. lines 7-10), or alternatively,
the current value. The expressions that are assigned to variables may be non-
deterministic as in line 9: if state is not ready or request is 0, the next value
of state can be either ready or busy. (Since request is not determined at all
by the description, it too will assume values non-deterministically.) Note that
case statements are evaluated top to bottom, so the result is the expression
from first branch whose condition evaluates to true. It is important to bear in
mind that all assignments are evaluated in parallel (although there is also a
mechanism for asynchronous (interleaving) composition of modules).

A special kind of variable declaration is the instantiation of a module, as in
“landingButl : button(lift.floor=1 & lift.door=open);” (cf. figure 3
in section 5). This is interpreted as a declaration of all local variables (includ-
ing DEFINEd identifiers) of that module, prefixed with the name of the newly
declared variable, together with the assignments or macro-definitions within
that module. In this example, the module button has a local variable pressed,
so the declaration above implicitly declares 1landingBut1l.pressed. The for-
mal parameters are replaced by the actual parameters as in a call-by-name
language.

It is possible to assert fairness constraints on the model (cf. figure 9, page 24).
In the presence of such fairness constraints, only executions are considered
along which these constraints are true infinitely often.

After defining a system in the SMV language, we formulate the properties to
be verified in the temporal logic CTL (marked by the keyword SPEC, e.g. line
11). The propositional atoms for these formulas are the boolean variables and
the equations over the variables and constants of the system.

Given a set P of propositional atoms, CTL formulas are given by the following
syntax:

¢u=p| T [=¢| oA
AX¢ |EX¢ | AGo |EGo | AF¢ | EF¢ | A[p1 U] | E[¢ Ugy].

where p € P. The other boolean operators (V, —, <>, 1) are defined in terms
of A, = in the usual way. In SMV| logical or is written as |, and as &, and not
as !; truth (T) is represented by 1 and falsity (L) by 0.

Notice that CTL temporal operators come in pairs. The first of the pair is
one of A and E. A means ‘along all paths’ (inevitably), and E means ‘along
at least one path’ (possibly). The second one of the pair is X, F, G, or U,
meaning ‘neXt state’, ‘some Future state’, ‘all future states (Globally)’, and
Until respectively. Notice that U is binary. The pair of operators in E[¢; Ugy],
for example, is EU. Further details of CTL are widely available in the papers
by E. Clarke and others [6,19], and also in the forthcoming introductory text
[14].

Two useful derived connectives are AW and EW | which use the ‘weak until’
connective W, which is similar to U, but ¢;W¢ps does not require that ¢o
eventually becomes true if ¢; is indefinitely true. One defines A[p; Ws] as
—E[=¢$;U~(¢:1 V ¢2)], and E[¢p1 W] as E[¢1Ug,| V EGe:.

3 Features and feature integration

In this section we describe how an existing system can be extended and altered
to provide new functionality. The new functionality will be given in the form
of features that are integrated into the system. In this sense every feature can
be seen as a packet of functionality. We can also see it as a transformation
of the old system to a new one which offers different functionality. Formally
we distinguish between these aspects by calling the transformation feature
integration.

The general idea of our approach is to describe features formally as units
of functionality which can be understood without detailed knowledge of the
base system. These are then automatically integrated into the system, and
the resulting extended system is verified. We do not assume any particular
architecture of the base system in question, and (theoretically) as much or as
little as one wants can be modelled. To make model checking viable, however,
the system should be modelled in a rather abstract way, in order to keep the
state space to a reasonable size. Since our approach aims at exposing logical
interactions, i.e. interactions which are inherent in the specification and quite
independent of the implementation (e.g. inconsistencies), this is not necessarily
a shortcoming, for at a high level of abstraction the logical interactions may
become more visible.

A feature description can be seen as a prescription for extending and changing
the basic system. A feature description can usually be applied to different
system descriptions, reflecting the fact that most features are quite generic,
and only their implementations for different systems need to be adjusted to
the precise underlying system.

The main aim of our approach of extending a specification and verification
language with a feature construct is to provide a ‘plug-and-play’ system for
experimenting with features and witnessing their interactions. Features can
override existing behaviour of the base system in a tightly controlled way.

In this paper, we apply our approach to the SMV modelling language and
verification tool [6,19]. We extend the SMV language with a feature construct,
thus making features self-contained textual units. These are integrated into
the system description automatically by our tool, SFT (“SMV Feature Inte-
grator”), and the resulting system can then be validated with the SMV model
checker. We believe our approach is quite general, however. Elsewhere [23] we
have applied it to the model checker SPIN [13] and its language Promela. We
are also developing a feature construct for CSP [12], using the model checker
FDR2 [10].

SMYV is well-suited to this approach for the following reasons:

e The SMV language is designed and optimised for concurrent, reactive sys-
tems, such as the telephone system.

e The SMV language is expressive yet compact. [ts compactness means that
the feature construct is compact too, and feature integration is relatively
straight forward.

e The SMV tool can check temporal properties of systems described using the
SMV language. This enables rapid development of rigorous and accurate
examples.

Our concept of feature makes it a special case of superimposition [16]. A
superimposition is a syntactic device for adding extra code to a given program,
usually to make it better behaved with respect to other concurrently running
programs. In the classic example of superimposition, extra code is added to
enable processes to respond to interrogations from a supervisory process about
whether they are awaiting further input, and this enables smooth termination
of the system.

The superimposition construct proposed in [16] is suited to imperative lan-
guages, and therefore cannot be used directly for SMV. In imperative lan-
guages data and control flow are explicit, and the superimposition construct
works by modifying them. For a declarative language like SMV data and con-
trol flow are implicit. An SMV program essentially is just a set of assignments
to state variables. Hence, state variables and assignments are the entities which
a superimposition or feature construct for SMV has to be based on. In the
following section we will show how this is done.

4 The feature construct for SMV

We present an extension of the SMV syntax for describing features. We also
show how model descriptions written in the extended SMV can be compiled
into pure SMV, thus giving semantics to the feature construct. We will illus-
trate its use with some examples in the following two sections.

A formal specification of the syntax of the feature construct is given in figure 2.
There are three main sections of the feature construct, introduced by the
keywords REQUIRE, INTRODUCE and CHANGE.

The REQUIRE section stipulates what entities are required to be present in the
base program in order for the feature to be applicable. A collection of modules
and variables in modules may be specified there. All old modules and variables
that are used in the INTRODUCE and CHANGE sections should be REQUIREd, and
their absence will lead to an error.

FEATURE feature-name
[REQUIRE
{ MODULE module-name | (parameter-list) |
VAR wvariable-declarations }x

]

[INTRODUCE
{ MODULE module-name
[VAR variable-declarations |
[ASSIGN assignments |
[DEFINE definitions |
[{ SPEC formula }x] }x

]

[CHANGE
{ MODULE module-name
[IF condition THEN |
[IMPOSE assignments
| TREAT vary = expry [, ...vary, = expry |

]

END

where: | stands for ‘optional’
| | | stands for ‘one of’

[
[
{ }* stands for ‘several’

Fig. 2. The syntax of the feature construct

The INTRODUCE section states what new modules or new variables within old
modules are introduced by the integration of the feature into a program.
DEFINE and ASSIGN clauses may also be given, and CTL formulas in SPEC
clauses may be given. These are textually added to the SMV text at integrate-
time.

The CHANGE section specifies how the feature changes the behaviour of the
system wrt. the original state variables. It gives a number of TREAT or IMPOSE
clauses, which may be guarded by a condition. This is where the behaviour of
the original system is altered.

Integrating a feature. Given an SMV text representing the base system,
and a feature description, our integration tool SFI does the following:

e [t checks that the REQUIREd entities are present in the base system, and
reports an error if they are not.

e [t inserts text for the new modules or variables declared in the INTRODUCE
section.

e For CHANGEs of the form
IF cond THEN TREAT z = expr
it replaces all right-hand-side occurrences of x by
case
cond : expr;
1 S
esac
This means that whenever x is read, the value returned is not x’s value, but
the value of this expression. Thus, when cond is true, the value returned is
expr. In short, when cond is true, we treat x as if it had the value given by
expr. Note that we require expr to be deterministic because x may occur
in conditions in case statements, and SMV requires such conditions to be
deterministic.
e For CHANGEs of the form
IF cond THEN IMPOSE z := expr;

In assignments x := oldexpr or next(x) := oldexpr, it replaces oldexpr
by
case
cond : expr;
1 . oldexpr;
esac

Whereas TREAT just deals with expressions reading the value of x, i.e. oc-
currences of x on the right-hand-side of an assignment to another variable,
IMPOSE deals with assignments to the variable z. It has the effect that, when
cond is true, x is assigned the value of expr; but when cond is false, x is
assigned the value that it would have been assigned in the original program.
In an IMPOSE statement, expr may be non-deterministic.

e For CHANGEs that are not guarded by IF cond THEN, the case statements
are of course omitted, and the variable, or respectively, the expression (z or
oldexpr, respectively) are replaced directly by the new expression (expr).

The feature integration is deemed successful if the following are true:

e The modules and variables stipulated in the REQUIRE section were present
in the base program; and

e After the textual substitutions have been performed, the resulting program
satisfies the CTL formulas in the INTRODUCE section of the feature.

Notice that one cannot expect the CTL formulas of the base system to hold,
since the feature was introduced to alter the behaviour of the system.

The semantics of TREAT and IMPOSE can also be given directly in terms of the
automaton, rather than in terms of the SMV text. This is mainly of theoretical
interest and we omit it for the sake of brevity; a detailed account can be found
in [20].

10

Integration of multiple features. When several features are integrated
in succession, the question arises whether and how the order of integration
matters. From the explanations above, it is clear that the order of integration
does matter in general. The details of how the features affect each other are
quite complicated however. As a rule of thumb, one can assume that features
which are integrated [ater take precedence over features integrated previously.

In the next two sections, we explore feature integration in the context of our
case studies. This will illustrate the effect of integrating features in different
orders.

Detecting feature interaction. We view a feature as comprising two com-
ponents: the feature implementation and the feature requirements. In the fol-
lowing we write (F, ¢) for a feature. In practice it is usually more useful to
state the requirements as several formulas. The formula ¢ then stands for a
specific property one would like to verify of the system. When we integrate a
feature (F, ¢) into a base system S, to yield a new system S + F', we want to
test the following:

e S+ F |= ¢: Feature F' has been successfully integrated.

o (S+ F))+ F, | ¢y: Feature F, can be integrated into the extended system
S+ F.

e (S+ Fy)+ Fy = ¢1: Feature Fy does not violate the requirements of F.

Of course these tests will not necessarily succeed. For the remainder of this
section, we shall however assume that all features are correct wrt. the base
system, i.e., S+ F = ¢ for any feature (F,¢). Then we can observe feature
interaction in the following forms:

e Type I: (S+ Fy)+ Fy i ¢o:
Earlier feature breaks later one.

o Type II: (S+ Fi) + F» # ¢
Later feature breaks earlier one.

e Typelll: S,S+ F1, S+ F, = but (S + F) + F, |~ -
(where 1) is a property of the base system.)
Features combine to break system.

e Type IV: 3¢.(S + Fy) + F5 = ¢ but (S + Fy) + Fy [~ ¢:
(where ¢ is a property of S, F; or F5)
Features do not commute.

Note that these types of interactions do not represent a disjoint classification;
two features may exhibit several types of interaction. Obviously, for commut-
ing features, a Type I interaction for integration of F; and then F; corresponds
to a Type II interaction for the reverse order of integration, and vice versa.

11

We will come back to this classification in the analysis of our case studies.

5 Case study 1: the lift system
5.1 The basic lift system

As a first case study, we have analysed a lift system and its features. For
the base system we have adapted the lift system description written by Mark
Berry [2]. The SMV code for a single lift travelling between 5 floors is given
in figures 3 to 5. It consists of about 120 lines of SMV code.

The module main (figure 3) declares five instances (one for each landing) of
the module button (passing to each one as argument the conditions under
which that button should cancel itself). It also declares one instance of 1ift,
to which it passes two parameters: *

e the next landing — in the current direction of travel — at which there was a
request for the lift,
e and whether there is a landing request.

The 1ift module (figure 4) declares the variables floor, door and direction
as well as a further 5 buttons, this time those inside the lift. The algorithm
it uses to decide which floor to visit next is the one called “Single Button
Collective Control” (SBCC) from [1]: the lift travels in its current direction
answering all lift and landing calls until no more exist in the current direction;
then it reverses direction, and repeats. Actually the conditions under which it
reverses direction are slightly more complicated, as can be seen by inspecting
the code for next (direction) in figure 4: if the lift is idle, it maintains the
same direction as it had before, but if it is at the top or bottom of its shaft it
changes direction to down and up respectively; otherwise, as stated, it reverses
direction if there are no calls remaining to be served in the current direction.
The final ‘1:direction’ means that if none of the preceding conditions are
true, then the value returned by the case statement is simply the old value
of direction. Notice that the SBCC algorithm stipulates only one button on
each landing, rather than the conventional two. Passengers press the button,
but they are not guaranteed that the lift will be willing to go in the direction
they wish to travel.

By inspecting the button module (figure 5), one finds that its variable pressed
is set to false if the reset parameter is true; otherwise, if it was pressed before,
it persists in that state; otherwise, it non-deterministically becomes true or

4 Recall that the parameters are treated in a call-by-name fashion.

12

MODULE main

VAR
landingBut1 : button ((lift.floor= ;
landingBut2 : button ((lift.floor=2) & (lift.door=open));

1) & (lift.door=open))
2))
landingBut3 : button ((lift.floor=3) & (lift.door=open))
4))
5))

& (lift.door=open
& (lift.door=open

landingBut4 : button ((lift.floor=
landingBut5 : button ((lift.floor=

lift : lift (landing_call, no_call);

DEFI NE
landing_call =
case
lift.direction = down :
case
landingBut5.pressed & lift.floor>4 : 5;
landingBut4.pressed & lift.floor>3 : 4;
landingBut3.pressed & lift.floor>2 : 3;
landingBut2.pressed & lift.floor>1 : 2;
landingBut1.pressed 1
1 :0;
esac;
lift.direction =up :
case
landingButl.pressed & lift.floor<2 : 1;
landingBut2.pressed & lift.floor<3 : 2;
landingBut3.pressed & lift.floor<4 : 3;
landingBut4.pressed & lift.floor<5 : 4;
landingBut5.pressed . 5;
1 . 0;
esac;
esac;
no_call . = (landingButl.pressed &
llandingBut2.pressed &
llandingBut3.pressed &
llandingBut4.pressed &
llandingBut5.pressed);

Fig. 3. The SMV code for the module main in the lift system.

false. This non-determinism is to model the fact that a user may come along
and press the button at any time. In common with most actual lift systems,
the user may not un-press the button; once pressed, it remains pressed until
the conditions to reset it arise inside the lift system.

5.1.1 Properties for the basic lift system.

Before any features are added, we may use SMV to check basic properties of
the lift system. For example, the following CTL® specification in the module
> To enhance the readability of the specifications we present them in a meta-
notation, using variables and quantifiers which SMV does not allow. Translating
this into pure SMV notation is purely mechanical, though. In these examples, any
free variables are universally quantified. For example, if we expand the above spec-
ification to pure SMV, we obtain the conjunction of the formulas:

AG (landingButl.pressed -> AF (lift.floor=1 & lift.door=open))
through

AG (landingButb.pressed -> AF (lift.floor=5 & lift.door=open))

13

MODUL E lift (landing_call, no_call)

VAR
floor :{1,2,3,4,5}
door : {open,closed};

direction : {up,down};

liftBut5 : button (floor=5 & door=open);
liftBut4 : button (floor=4 & door=open);
liftBut3 : button (floor=3 & door=open);
liftBut2 : button (floor=2 & door=open);
liftButl : button (floor=1 & door=open);

DEFI NE

idle : = (no_call & !liftButl.pressed & !liftBut2.pressed &
lliftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);

lift_call 1=
case

direction = down :
case
liftBut5.pressed & floor>4 :
liftBut4.pressed & floor>3 :
liftBut3.pressed & floor>2 :
liftBut2.pressed & floor>1 :
liftButl.pressed 11
1 :0;
esac;

NwRhOA

direction = up

case
liftButl.pressed & floor<2 :
liftBut2.pressed & floor<3 :
liftBut3.pressed & floor<4 :
liftBut4.pressed & floor<5 :
liftBut5.pressed :5;
1 1 0;

esac;

hroONER

esac;

ASSI GN
door : = case
floor=lift_call : open;
floor=landing_call : open;
1 : closed,;
esac;
i nit (floor) 1=1;
next (floor) .= case
door=open : floor;
lift_call=0 & landing_call=0 : floor;
direction=up & floor<5 : floor +1;
direction=down & floor>1 : floor -1,
1 : floor;
esac;
i ni t (direction) : = down;
next (direction) .= case
idle : direction;
floor =5 :down;
floor=1 :up;
lift_call=0 & landing_call=0 & direction=down : up;
lift_call=0 & landing_call=0 & direction=up : down;
1 : direction;
esac;

Fig. 4. The SMV code for the module 1ift in the lift system.

main is satisfied: pressing a landing button guarantees that the lift will arrive
at that landing and open its doors, i.e.:

AG (landingButi.pressed
-> AF (1lift.floor=: & 1lift.door=open)).

14

MODULE button (reset)
VAR
pressed : bool ean;
ASSI GN
i nit (pressed) 1=0;
next (pressed) 1= case
reset :0;
pressed :1;
1 :{0,1};
esac;

Fig. 5. The SMV code for the module button in the lift system.

These are some properties that we have verified for the base lift system and for
its extensions with features. The results of our verifications are summarised
in table 1. (The numbers in the table refer to the numbering in this list.)

(1) Pressing a landing button guarantees that the lift will arrive at that
landing and open its doors:
AG (landingBut:.pressed
-> AF (lift.floor=: & lift.door=open))
(2) If a button inside the lift is pressed, the lift will eventually arrive at the
corresponding floor.
AG (1liftButi.pressed -> AF (floor=: & door=open))
(3) The lift will not change its direction while there are calls in the direction
it is travelling.
One formula for upwards travel,
AG Vi < j. (floor=¢ & liftButj.pressed & direction=up
-> A[direction=up U floor=j])
. and one formula for downwards travel, for ¢ > j:
AG Vi > j. (floor=; & liftButj.pressed & direction=down
-> A[direction=up U floor=j])
(4) 1If the door closes, it may remain closed.
'AG (door=closed -> AF door=open)
(5) The lift may remain idle with its doors closed at floor i.
EF (floor=:i & door=closed & idle)
AG (floor=: & door=closed & idle
-> EG (floor=: & door=closed))
(The first formula states that the lift can actually get into a state satis-
fying the premise of the second formula.)
(6) The lift may stop at floors 2, 3, and 4 for landing calls when travelling
upwards:
Vie {2,3,4}. 'AG ((floor=i & !liftButi.pressed
& direction=up) -> door=closed)
(7) The lift may stop at floors 2, 3, and 4 for landing calls when travelling
downwards:
Vi e {2,3,4}. 'AG ((floor=i & !liftButi.pressed
& direction=down) -> door=closed)

15

One can think of many more properties to check for a lift system. For this
paper, we have omitted all safety properties, and have concentrated on a
selection of properties that are characteristic of the SBCC algorithm, namely
those that concern guarantee of service (or absence thereof).

5.2 Features of the lift system

The following features of the lift system were described using our feature con-
struct, and then integrated into the base system using the feature integrator:

Parking. When a lift is idle, it goes to a specified floor (typically the ground
floor) and opens its doors. This is because the next request is anticipated
to be at the specified floor. The parking floor may be different at different
times of the day, anticipating upwards-travelling passengers in the morning
and downwards-travelling passengers in the evening.

Lift—%—full. When the lift detects that it is more than two-thirds full, it does
not stop in response to landing calls, since it is unlikely to be able to accept
more passengers. Instead, it gives priority to passengers already inside the
lift, as serving them will help reduce its load.

Overloaded. When the lift is overloaded, the doors will not close. Some
passengers must get out.

Empty. When the lift is empty, it cancels any calls which have been made
inside the lift. Such calls were made by passengers who changed their mind
and exited the lift early, or by practical jokers who pressed lots of buttons
and then got out.

Executive Floor. The lift gives priority to calls from the executive floor.

By way of illustration, we give the code for the parking feature in figure 6.
The parking feature introduces the specification ((12) in table 1)

AG Vi # 1. 'EG(floor=:; & door=closed)

which says that the lift will not remain idle indefinitely at any floor other than
floor 1. (In figure 6 we give only the instance for i = 4.)

The other features mentioned introduce other specifications; these are listed
below.

5.2.1 Properties for the featured lift system.
In addition to the generic properties for the base system, we check some re-

quirements for each feature. The results for these properties can also be found
in table 1. (Again the numbering in the table corresponds to the numbers in

16

FEATURE park

REQUI RE
MODULEmain —- require all landing buttons
VAR
landingButl.pressed : bool ean; landingBut2.pressed : bool ean;
landingBut3.pressed : bool ean; landingBut4.pressed : bool ean;
landingBut5.pressed : bool ean;
MODULEIift —- require all lift buttons and the variable floor
VAR
floor :{1,2,3,4,5};
liftButl.pressed : bool ean; liftBut2.pressed : bool ean;
liftBut3.pressed : bool ean; liftBut4.pressed : bool ean;
liftBut5.pressed : bool ean;

| NTRODUCE

MODULEIift == no new variables introduced
SPEC-- lift parks at floor 1:

AG (floor=4 & idle —> E [idle U floor=1])
SPEC-- lift cannot park at floor 3:

AG (IEG(floor=3 & door=closed))

CHANGE

MODULEmain

| Fllift.floor=1 &

I(landingButl.pressed | lift.liftButl.pressed |
landingBut2.pressed | lift.liftBut2.pressed |
landingBut3.pressed | lift.liftBut3.pressed |
landingBut4.pressed | lift.liftBut4.pressed |
landingBut5.pressed | lift.liftBut5.pressed)

THEN TREAT landingButl.pressed = 1
END

Fig. 6. The code for the Parking feature
this list.)

We derived these requirements from the (natural language) description of the
features and translated them into CTL as directly as possible.

(8) Empty:
The lift will not arrive empty at a floor unless the button on that landing
was pressed.
AG (lift.floor=: & lift.door=open & lift.empty
-> landingButi.pressed)
(9) Empty: (in MODULE 1ift)
The lift will honour requests from within the lift as long as it is not empty.
AG Vi. (1iftButi.pressed & !'empty)
-> AF ((floor=: & door=open) | empty)
(10) Overloaded: (in MODULE 1ift)
The doors of the lift cannot be closed when the lift is overloaded.
'EF (overload & door=closed)
(11) Overloaded: (in MODULE 1ift)
The lift will not move while it is overloaded.
AG (floor=i & overload -> A[floor=i W 'overload])
(12) Parking: (in MODULE 1ift)
The lift will not remain idle indefinitely at any floor other than floor 1.
AG Vi # 1. 'EG(floor=:; & door=closed)

(13) Lift-2-full: (in MODULE 1ift)

17

Car calls have precedence when the lift is % full (indicated by the flag
tt-full).
AG Vi # 7. ((tt-full
& liftBut:.pressed & !1iftButj.pressed)
-> A [!'(floor=; & door=open)
U ((floor=: & door=open)
| 'tt-full | liftButj.pressed)])
(14) Executive Floor:
The lift will answer requests from the executive floor (1ift.ef).
AG (lift.ef=:
-> A[(landingButi.pressed -> AF(lift.floor=i))
W lift.ef=; 1)

5.8 Feature interactions in the lift system

Our method provides a framework to plug these different features into the lift
system, and by examining the result, to witness feature interactions. The SFI
tool integrates one or more of the features, in a given order, into the base
system. The result of our experimentation with the features for the lift system
is summarised in table 1.

Each row represents a combination of the base system and some features, and
each column represents a property which SMV has checked against the relevant
systems. The first row is the unfeatured lift system; rows 2-6 represent the
base system with just one feature, and the remaining rows represent the base
system with two features. The order in which two features are added matters
in general. In those cases where exactly the same specifications are satisfied,
we write F} * Fy and list just one ordering, otherwise we write F + Fy. (Thus,
inspection of the table reveals that the only features which do not commute
are Lif ,—g—full and Executive Floor: a type IV interaction.)

The properties, represented by columns in the table, are divided into two
groups. Properties 1-7, to the left of the double line, are properties which
apply to any lift system, featured or not. We can see which properties are
broken by the addition of various features.

To the right of the double line are properties 8-14 which are designed to test
the integration of specific features. Whenever there is a cross in the right-
hand part of the table, we have detected some kind of feature interference. A
requirement of one of the features is not satisfied in the presence of the other
feature. This initial diagnosis has to be followed by a closer look at the features
and the property concerned to find out the reasons (and the seriousness) of
the interference.

18

Table 1
Feature interactions for the lift system

Property (see sections 5.1.1 and 5.2.1)
Feature(s) 11234 |5 |67 8|9 |1011|12]13|14
no features VIVIVIVIVIVIVI——|——]—|—|—
Fnpty Vi< xlvivivivivivi- ||
Overloaded X | x| x| VIVIVIVI—|—|VIVI—]|—|—
Parking VIiVIVIVIXIVIV i
Lift-2-full xIvIivIivIivIivIivIi—|—|—]—]—|Vv]|—
Exec. Floor X x|VIVIVIVIVI——|—]|—|—|—1|V
Overloaded
* Empty x| x| x|v|v|vIv]x|x|v|v
Parking
* Empty VIiXIx|IVIix|IVIVIVIYV i
Lift-2-full
* Empty x| x| x|v|v|v|iv]|v]v x
Exec. Floor
* Empty x| x| x|v|v|v|v] V]~ v
Parking
* Overloaded X | x| x| VIx|VIV NARVARY
Lift-2-full
* Overloaded X | x| x| VIVIVIVI—|— Vi—1] x| —
Exec. Floor
* Overloaded X | x| x|VIVIVIV v x
Lift-2-full
* Parking xIVvIVIVI¥IVIVI—|—|—1—1VIV|—
Exec. Floor
* Parking I x|VIVIVIVIVI—|—|—|—|VI]|—|V
Exec. Floor
+ Lift-2-full x| x| VIVIVIVIVI—|—|—|—|—|Vv]|x
Lift-2-full
+ Exec. Floor | x | x [/ |V IX|VIVI]—|—|—|—]|—] x| %
V/: property holds; x: property does not hold; : property not applicable

We can see that most feature interferences are of type I or II (¢f. page 11),
respectively, depending on the order of integration. Only combination Lif —%—
full + Executive Floor produces a type III interaction. As mentioned above

these features also exhibit a type IV interaction.

For example, in the line “Overloaded + Empty” we can see that one of the
violated properties is about guaranteed service for the lift with the “Empty”

19

feature. Obviously this cannot be expected to hold for an overloaded lift since
we already know that the “Overloaded” feature can block the lift. (Service
will still be guaranteed as long as overload is not true, but we omitted this
property from the table.)

The reason for the second violation of a property of “Empty” by integrating
“Overloaded” is quite different. Here the violation stems as much from the
way we coded the property in CTL (AG (lift.floor=i & lift.door=open
& lift.empty -> landingButi.pressed)) as from the way the system and
the features were coded. Essentially, in the base system, the lift would never
stay at the same floor with its doors open for more than one step; and the
buttons are reset when in that step. (Cf. property 5 in section 5.1.) With the
“Overloaded” feature however it can happen that the lift is forced to keep its
doors open the premise of the implication holds, but the button has been
reset (landingButi.pressed = false).

We see that the violation occurs when both the flag overload and empty
are true.® Obviously, in reality a lift can never be overloaded and empty
at the same time, but our verification software and the feature integrator
cannot know that. One possible solution would be to alter the features to take
account of this constraint. However, this would contravene the modularity
and independence of the features, so the best solution is to design another
feature that implements the constraint, by either setting overload to false
when empty is true or vice versa.

6 Case study 2: the telephone system

Our second case study is a simple version of the Plain Old Telephone System
(POTS). Features we have modelled for integration into our model of POTS
include:

Call Waiting (CW) When the subscriber is engaged in a call, and there is
a second incoming call, the subscriber is notified and the second call is put
on hold. The subscriber can switch between the two calls at will. A caller
will hear an announcement while her call is on hold.

Call Forward Unconditional (CFU) All calls to the subscriber’s phone
are diverted to another phone.

Call Forward on Busy (CFB) All calls to the subscriber’s phone are di-
verted to another phone, if and when the subscriber’s line is busy.

6 The trace that SMV produces demonstrates this. A little reasoning shows that
an interference is inevitable when overload = empty = 1.

20

Call Forward on No Reply (CFNR) All calls to the subscriber’s phone
which are not answered after a certain amount of time, are diverted to
another phone.

Ring Back When Free (RBWF) If the user gets the busy-tone on call-
ing another line, she can choose to activate RBWF, which will attempt to
establish a connection with that line as soon as it becomes idle.

Terminating Call Screening (TCS) This feature inhibits calls to the sub-
scriber’s phone from any number on the screening list chosen by the sub-
scriber. The caller will hear an announcement to the effect that her call is
being rejected.

Originating Call Screening (OCS) This feature inhibits calls from the
subscriber’s phone to any number from a set chosen by the subscriber. Any
attempt to ring such a number will yield an announcement.

Automatic Call Back (ACB) This feature records the number of the last
caller to the subscriber’s phone, which the subscriber can choose to ring
directly, without dialling the number.

6.1 The base system (POTS)

We have built an SMV description of a network of four synchronous phones.
The behaviour of each phone is given by the finite automaton shown in figure 7,
plus one variable, dialled, for each phone which indicates the phone to which
it is connected (or to which it is trying to connect). Initially the phone is in
state idle; from there, it may move to ringing (if someone rings it) or to
dialt (if someone lifts the handset). Dialt, ringingt, and busyt abbreviate
dial-tone, ringing-tone, and busy-tone, respectively. Talking represents the
state where the phone is connected in a conversation which it initiated, while
talked means that the conversation was initiated by someone else. Ended
means that the party to which the phone was connected has hung up.

The variable dialled determines the other copy of the phone automaton
with which these transitions have to synchronise. User input is simulated by
non-determinism: the number to be dialled is non-deterministically chosen,
and when there is more than one transition from a state, one is chosen non-
deterministically. If a transition has to synchronise with a transition in another
phone (indicated by a dotted line in the diagram), it can only be chosen if the
other phone chooses the corresponding transition. In detail, the transitions
are synchronised as follows:

21

(o
ringingt

4

trying

DN, .
o D

(Dotted lines indicate synchronising transitions.)

Fig. 7. The automaton for a single phone.

trying — ringingt ~ with idle — ringing
ringingt — idle with ringing — idle
ringingt — talking with ringing — talked
talking — idle with talked — ended

talking — ended with talking — idle.

Part of the code for the phone module can be seen in figures 8 and 9. In this
piece of code one can also see how the synchronisation mechanism helps to
avoid the race condition arising when several phones try to contact the same
line at the same time. (In SMV we do this by using the next operator on the
right hand side of an assignment.)

As it turned out, this model quickly grew too large to verify when we added
features, since every phone was extended with the features. Therefore we pro-
ceeded to a reduced model with only two complete phones, and one termi-
nating and one originating phone (thus, still four in total). In the diagram
(figure 7), the left hand side represents the originating line, and the right
hand side the terminating line, both including the states idle and ended.
Additionally, each feature was only added to one of the (complete) phones.
A positive side-effect of this differentiation is that one can distinguish the
interactions according to how features are distributed over the system.

For the features we modelled, we argue that the reduced model still exhibits
all possible interactions of two feature instances if we go through all relevant
combinations.

First we argue that four (complete) phones are sufficient. Each feature deals
with at most three parties, and each phone can only originate one call (we

22

MODULEphone (X,B,C,D,p)

-- parameters: the 4 numbers, and the array of phones

- X'is our own number

VAR
dialled : {0,1,2,3,4};

st : {idle,dialt,trying,busyt,ringingt,talking,ringing, talked,ended};

ASSI &N
i ni t(dialled) := 0;
next (dialled) := case
next (st=idle) 0;
dialled =0 & next (st)=trying : {1,2,3,4};
1 dialled;
esac;
i nit(st):=idle;
next (st) := case
st=idle :
case

p[B].st=trying & p[B].dialled=X &
p[C].st=trying & p[C].dialled=X &
p[D].st=trying & p[D].dialled=X &
1 : {idle,dialt};
esac;

st=ringing :
case
p[B].st=ringingt & p[B].dialled=X &
p[C].st=ringingt & p[C].dialled=X &
p[D].st=ringingt & p[D].dialled=X &
1

esac;
st=dialt : {dialt,trying};
st=busyt : {idle,busyt};

st=trying :
case
dialled=B & p[B].st=idle
& ((p[C].st=trying & p[C].dialled=B)—>
& ((p[D].st=trying & p[D].dialled=B)—>
dialled=C & p[C].st=idle
& ((p[B].st=trying & p[B].dialled=C)—>
& ((p[D].st=trying & p[D].dialled=C)->
dialled=D & p[D].st=idle
& ((p[B].st=trying & p[B].dialled=D)->

next (p[B].st=ringingt) : ringing;
next (p[C].st=ringingt) : ringing;
next (p[D].st=ringingt) : ringing;

next (p[B].st)=idle : idle;
next (p[C].st)=idle : idle;
next (p[D].st)=idle : idle;

: {ringing,talked};

next (p[C].st)=busyt)
next (p[D].st)=busyt) :ringingt;

next (p[B].st)=busyt)
next (p[D].st)=busyt) :ringingt;

next (p[B].st)=busyt)
next (p[C].st)=busyt) :ringingt;

& ((p[C].st=trying & p[C].dialled=D)->
1

:busyt;
esac;
st=ringingt :
case
dialled=B & next (p[B].st)=talked : talking;
dialled=C & next (p[C].st)=talked : talking;
dialled=D & next (p[D].st)=talked : talking;
1 : {ringingt,idle};
esac;

Fig. 8. The SMV code for the phone system. (1/2)

did not model Three Way Calling). Therefore a second feature may be added
on any type of phone: one that is affected by the first feature in some way, or
one that is not connected to it in any way. This gives rise to all interesting
behaviours.

The main premise for our reasoning is that the effects of a feature are localised,
i.e. only those phones which participate in a call affected by an instance of
the feature, exhibit altered behaviour. We will use the term configuration to
describe such a set of phones. To parties outside a configuration, the phones
within the configuration behave as usual.” A direct consequence of this as-

" Should this not be the case (wrt. the properties we check), it would be detected
when we test for successful integration of the feature: the feature would affect the
operation of the network as seen by third parties, that have nothing to do with the
feature instance or its subscriber.

23

st=talked :
case

p[B].st=talking & p[B].dialled=X & next (p[B].st)=idle : ended;
p[C].st=talking & p[C].dialled=X & next (p[C].st)=idle : ended;
p[D].st=talking & p[D].dialled=X & next (p[D].st)=idle : ended,;
1 : {idle,talked};

esac;

st=talking :

case
dialled=B & p[B].st=talked & next (p[B].st)=idle : ended;
dialled=C & p[C].st=talked & next (p[C].st)=idle : ended;
dialled=D & p[D].st=talked & next (p[D].st)=idle : ended;
1 : {idle talking};

esac;

st=ended : {ended,idle};
esac;

-- Fairness constraints to ensure that a phone does not remain in a state
—- indefinitely. A phone may still alternate between, eg, idle and dialt.
FAI RNESS !st=idle

FAI RNESS !st=dialt

FAI RNESS Ist=trying

FAI RNESS !st=busyt

FAI RNESS !st=ringingt

FAI RNESS !st=talking

FAI RNESS !st=ringing

FAI RNESS !st=talked

FAI RNESS !st=ended

MODULEmain

VAR
ph[1] : phone (1,2,3,4,ph)
ph[2] : phone (2,1,3,4,ph)
ph[3] : phone (3,1,2,4,ph);
ph[4] : phone (4,1,2,3,ph)

Fig. 9. The SMV code for the phone system. (2/2)

sumption is that we only need to look at overlapping configurations when
checking combinations of features. In essence, we are taking some of the choice
away from the model checker, and in turn we need to ensure that we test all
relevant cases. Checking different ways of overlapping will in general happen
through the model checking process.

For the features we modelled in our case study, configurations comprise one,
two or three phones. Only Call Waiting affects three phones, since the Call
Forwarding features operate by re-routing the call — the forwarding phone is
cut out of the configuration as soon as it diverts the call, and we are left with
two phones in a standard call situation. In fact, the forwarding phone only
provides the number to forward to. It does not have any new transitions to
deal with forwarding, that functionality resides entirely in the phone which
originated the call.

From this it is clear that overlapping configurations in a system with only two
feature instances (from the set of features we consider) contain at most four
distinct phones.

The argument for the soundness of the abstraction is more difficult, and de-
pends on the fact that any phone can only originate one call, among others.
Here we have to look at the particular features in more detail and determine
what “roles” the phones in a configuration can take.

24

To illustrate this type of reasoning we look at Call Waiting.

Call Waiting has up to three distinct “roles”: the subscriber, the party that
the subscriber called, and a (subsequent) caller to the subscriber.® Obviously,
the non-subscriber roles can be filled by the truncated phones, so that we still
have a full phone to apply any other feature to. (Of course, this phone may
also become part of a Call Waiting configuration.) This phone with its feature
instance may now exercise the behaviour wrt. all possible roles in the Call
Waiting configuration. Similar arguments apply for other features; however,
they are simpler since Call Waiting is the only feature that affects up to three
phones at once.

6.2 Integrating features into the telephone system

As an illustration of the feature construct we show the Ring Back When Free
feature in figure 10. When looking at this example the reader should keep
in mind that this code was written with the goal to run it through a model
checker — and that the syntax which SMV accepts is rather limited. So for
efficiency reasons, RBWF will only store one number at a time, and we do not
allow cancelling RBWF once it is activated, until a call between the subscribed
phone and the phone with the stored number has been established.

The REQUIRE section states that the feature needs a MODULE phone with at
least the named parameters, and within that module, variables dialled and
st are required, and the domain of dialled has to include at least the values
0 through 4, and that of st the values idle, trying, busyt, talking and
talked.

The code given in the INTRODUCE section declares two new variables, rbwf-use
and rbwf-number, and defines which number to store in rbwf-number, and un-
der which conditions RBWF may be activated (rbwf-use=1) and deactivated
(rbwf-use=0).

Finally, in the CHANGE section we define how the new variables interact with
those of the base system. For the RBWF feature, the CHANGE section states
that when both the subscriber’s phone and the phone whose number was
stored are idle, the subscriber’s phone should try to connect to the phone
with the stored number.

We do not model the subscriber’s phone ringing to alert her to the fact that
the RBWF call is being attempted, although this would not be difficult; in
fact this could be implemented as another feature. It would, however, slow

8 If both calls are incoming calls, the situation is symmetrical and there are only
two distinct roles.

25

FEATURErbwf —- Ring Back When Free

REQUI RE
MODUL Ephone(X,B,C,D,p) —- req'd parameters: our number and those of the
VAR -— other phones, and the array of phones

dialled : {0,1,2,3,4};
st :{idle,trying,busyt talking,talked};

| NTRODUCE
MODULEphone
VAR
rbwf-number : {0,1,2,3,4}; -- to store the number we're trying to reach
rowf-use : bool ean; —- true if RBWF activated
ASSI GN
i ni t (rbwf-number) := 0;
next (rbwf-number) :=
case
rbwf-number=0 -- don't allow changing the stored number
& st=busyt & rbwf-use : dialled;
Irbwf-use : 0 -~ reset stored number on deactivation
1 : rbwf-number;
esac;
i ni t(rbwf-use) :=0;
next (rowf-use) :=
case
rbwf-use —- only deactivate if call established (either way)
&((dialled=rbwf-number & st=talking)
|(st=talked
&(rbwf-number=B & p[B].st=talking & p[B].dialled=X)
&(rbwf-number=C & p[C].st=talking & p[C].dialled=X)
&(rbwf-number=D & p[D].st=talking & p[D].dialled=X))) : 0;
Irbwf-use & st=busyt : {0,1}; —- may activate RBWF on busy-tone
1:rbwf-use; —- otherwise, keep same value
esac;

CHANGE
MODULEphone

| F(rbwf-use & st=idle - if RBWF is active and our phone is idle
&((rbwf-number=B & p[B].st=idle) -- and the stored phone is idle,
|(rowf-number=C & p[C].st=idle) -- try to connect to it
|(rowf-number=D & p[D].st=idle)))

THEN | MPCSE next (dialled) := rbwf-number;

next (st) := trying;

END

Fig. 10. The code for the Ring Back When Free feature

down the model checking significantly, as we would have to introduce another
variable to indicate the special ringing.

Apart from the generic properties of the phone system listed in the next section
(6.2.1), we also want to verify that the base system with the feature actually
behaves as the feature specification demands. For example, in the case of
RWBF we also require the following (omitted in figure 10):

e If RBWF is active, the stored number will be dialled as soon as possible (as
long as RBWF is active).
AG ((ph[:].rbwf-use & ph[:].rbwf-number=j)
-> A[(ph[i].st=idle & ph[j].st=idle
-> AX ph[i].dialled=j)
W !'ph[i].rbwf-use 1)
e The stored number is reset when a call to the stored number is completed.

26

AG Vi # j. ((ph[i].rbwf-number=j
& phli].st=talking & ph[i].dialled=j)
-> AF ph[:] .rbwf-number=0)
The stored number is also reset when the target party calls.
AG Vi # j. ((ph[i].rbwf-number=; & ph[i].st=talked
& ph[j].dialled=i & ph[j].st=talking)
-> AF ph[:] .rbwf-number=0)
e RBWF is deactivated when a call to the stored number is completed.
AG Vi # j. ((ph[7].rbwf-number=j
& phl[i].st=talking & ph[i].dialled=j)
-> AF ph[i].rbwf-use=0)
RBWF is also deactivated when the target party calls.
AG Vi # j. ((ph[:].rbwf-number=; & ph[:].st=talked
& ph[j].dialled=i & ph[j].st=talking)
-> AF ph[:] .rbwf-use=0)

As expected the base system plus the Ring Back When Free feature satisfies
these specifications. After all, these were the requirements for the feature.
We also found that RBWEF does not violate any of the properties that we
stipulated for the base system. (See table 3, and the following section.)

6.2.1 Properties of the basic phone system.

These are the properties that we have verified for the base system. (Again we
use the meta-notation introduced on page 13.)

To save space, we have omitted from table 3 some more technical properties,
but also these rather intuitive properties of the base system:

e The correct phone will ring: if phone 7 is trying to contact phone j and
consequently gets the ringing-tone, then phone 7 must be ringing.
AG ((phl[i].st=trying & ph[i].dialled=j)
-> AX (ph[7].st=ringingt -> phl[j].st=ringing))
e Phone i can be talked to; and if it is being talked to, there has to be another
phone talking to it.
EF phl[i].st=talked
AG (phl[i].st=talked
<-> Jj.(ph[j].st=talking & ph[j].dialled=:))
e Phone 7 can be ringing; and if it is ringing, there has to be another phone
that has dialled it and is getting the ringing-tone.
EF ph[:].st=ringing
AG (ph[7].st=ringing
<-> Jj.(ph[j].st=ringingt & phl[j].dialled=i))

The results for the following properties are given in table 3:

27

(1)
(2)

Any phone may call any other phone.
AG Vi +# j. EF (ph[il.st=talking & ph[i].dialled=j)
If phone 7 is talking to phone 7, the call will eventually end; and this will
be by one party hanging up (st=idle) and the other party still off-hook
(st=ended). (This holds only with “weak” fairness, which ensures that a
phone cannot remain in the same state indefinitely.)
AG ((ph[i].dialled=j & phl[i].st=talking)
-> AF ((ph[i].st=idle & ph[j].st=ended) |
(ph[j].st=idle & ph[i].st=ended)))
When a phone is in state trying, it will always get ringing-tone or busy-
tone in the next step.
AG (ph[i].st=trying
-> AX (ph[7].st=ringingt | ph[i].st=busyt))
A list of SPECs stating that if a phone is talking, the dialled phone must
be talked to.
AG (ph[7].st=talking & ph[i].dialled=j
-> ph[j].st=talked)
Never can two phones be talking to the same third phone.
AG Vi # j. ! (ph[i].st=talking & ph[:].dialled=k &
ph[j].st=talking & ph[j].dialled=k)
The dialled number cannot change without replacing the hand-set. (This
only holds with “weak” fairness, otherwise one has to use the ‘weak until’
connective, Cf. page 6.)
AG ((ph[i].dialled=j & ph[i].st=trying)
-> (A[phl[i].dialled=j U ph[i].st=idle]))

6.2.2 Properties for the featured phone system.

We derived the following requirements from the description of the services
that these features implement and verified them for the respective features.
For lack of space we only give one or two properties for each feature and omit
some of the more technical properties that we verified.

(7)

Call Forwarding Unconditional:
If a forwarding number is given, the phone will never ring. (The forward-
ing number is chosen at random at initialisation but does not change
after that.)

AG ('ph[i].cfu-forw=0

-> AG !(ph[i].st in {ringing,talked}))

Call Forwarding on Busy:
If the subscriber’s phone is busy, incoming calls will terminate at the
phone with the forwarding number. (Again, the forwarding number re-
mains fixed.)

28

(9)

(10)

(11)

(13)

AG Vi # j # k. ((ph[i].cfb-forw=j & !phli].st=idle
& ph[k].dialled=i & ph[k].st=trying)
-> AF(ph[k].dialled=j & ph[k].st in {busyt,ringingt}
& (ph[k].st=ringingt -> ph[j].st=ringing)))
Call Waiting:
If there are two calls to the subscribers phone, exactly one party will hear
the ‘onhold’-message. (In other words, at most one party will hear the
‘onhold’-message at any given time.)
AG Vi # j # k. (ph[i].st=talking & ph[i].dialled=k &
ph[j].st=talking & ph[j].dialled=k
-> (ph[i].cw-msg <-> !ph[j].cw-msg))
Call Waiting:
The ‘active’ party is never on hold. (In the Call Waiting feature, dialled
holds the value of the party which the subscriber is currently talking to.)
AG (!ph[i].dialled=0 -> !ph[i].onhold=ph[:i].dialled)
Ring Back When Free:
If Ring Back When Free is activated, call completion will be attempted
when possible, i.e., whenever both phones are idle.
AG ((ph[:].rbwf-use & phl[:i].rbwf-number=;)
-> A[(ph[i].st=idle & ph[j].st=idle
-> AX ph[i].dialled=j)
W !'ph[i].rbwf-use 1)
Ring Back When Free:
The stored number will be reset when a call between the subscriber and
the phone with the stored number is established. One formula for calls
initiated by the subscriber and one for incoming calls. (These two could
be rolled into one.)
AG ((ph[:].rbwf-number=;j & phl:].st=talking
& phl:].dialled=j) -> AF ph[:].rbwf-number=0)
AG (ph[7] .rbwf-number=j & ph[:].st=talked &
ph[j].dialled=i & ph[j].st=talking
=> AF phl[:] .rbwf-number=0)
Terminating Call Screening:
Calls from numbers on the screening list (array tcs) are never accepted.
AG (ph[i].tcs[y]
-> AG !(ph[y].dialled=i
& phljl.st in {ringingt,talked}))
Originating Call Screening:
Calls to numbers on the screening list (array ocs) never succeed.
AG (ph[i].ocs[y]
-> AG !(ph[z].dialled=y
& phl[il.st in {ringingt,talking}))

29

6.3 More features for the telephone system

So far we have only verified the correct operation of a single feature added
to the base system. More interesting with view to feature interaction is the
question if adding other features leads to violations of the specifications which
the base system plus RBWF satisfies, or of specifications which are satisfied
by the base system plus the respective other features.

For example, when we added RBWF to POTS+CFB, the only properties that
were not preserved, were already violated by CFB on its own:

e lines calling the CFB subscriber do not have to go immediately from state
trying to state busyt or ringingt because the diversion takes one execu-
tion step;

e the dialled number may change without replacing the hand-set when it is
updated by the forwarding feature.

The same was true when we added the features in the opposite order (first
CFB, then RBWF) and irrespective of whether the same phone subscribed to
both of these features or they were activated for two different phones.? This
leads us to the conclusion that Call Forwarding on Busy and Ring Back When
Free do not interfere with each other, at least with respect to our specification
of the system.

With other features, however, RBWF is not always so well behaved. When
we added RBWF to POTS+CW, we found that that RBWF did not respect
the specifications introduced for CW (Type II interaction): this combination
of features violated a requirement for CW (property (9) in section 6.2.2). The
violated property states, that when there are two callers to a CW subscriber,
exactly one of them is on hold at any given time.

AG (ph[2].st=talking & ph[2].dialled=1 &
ph[3] .st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg))

where ph[1] is the phone subscribing to CW and the flag cw-msg indicates
whether the respective phone is on hold. The trace that SMV produces as a
counter-example shows up the following behaviour:

(1) ph[1] tries to ring ph[4] when ph[4] is busy, and ph[1] activates
RBWEF;
(2) ph[1] then calls ph[2] (successfully);

9 The latter result was omitted from table 3.

30

(3) using CW, ph[1] accepts an incoming call from ph[3], which is put on
hold;

(4) finally ph[1] hangs up on ph[2], while the call from ph[3] is on hold
and ph[4] is idle.

(5) At this moment RBWF takes action: RBWF assumes that ph[1] is now
idle and ready to complete the call to ph[4], while, in fact, CW should
let the subscriber know that she still has a call on hold.

At first sight the trace that SMV produced looked rather pathological, but
that is just because a counter-example has to be a “worst case” scenario. CW
may still work correctly as may be checked by

EG (ph[2].st=talking & ph[2].dialled=1 &
ph[3].st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg))

which turns out to be true. However, this only happens when RBWF is not
activated, as can be verified by checking

EG ((ph[2].st=talking & ph[2].dialled=1 &
ph[3].st=talking & ph[3].dialled=1
-> (ph[2].cw-msg <-> !ph[3].cw-msg)) -> rbwf-use=0)

which also holds.

If, on the other hand, we integrate RBWF first and then CW, the system
violates the RBWF requirements (Type IT), namely that call completion will
be attempted whenever both the subscriber’s phone and the phone which
RBWEF should monitor become idle. This is in a sense symmetrical to the
above interference, since now CW overrides RBWF when both features are
activated.

Table 2
Interferences between features for the phone system
Cw CFU | CFB | RBWF | RBWF! | TCS | OCS

CW v v | IL IV Vv v | I
CFU I, IV v Vv Vv Vv Vv
CFB LILIV [IL IV | — Vv Vv II II
RBWF II, IV Vv Vv Vv Vv Vv
RBWF' | v | v | v | v v | v
TCS I, v Vv 1 Vv Vv — Vv
0CS I Vv I i i i

31

Table 2 indicates interferences between features for the phone system. A tick
denotes that there is no interference, i.e. that both features work correctly
together and it does not matter in what order they are integrated. When
that is not the case, the table gives the types of interaction that we observed,
according to the classification in 4. The superscripted numbers have the same
meanings as in Table 3 and are explained below.

Table 3 summarises our experimental findings. Again, rows and columns re-
present feature combinations and properties respectively. A ‘+’ between two
features indicates that the order they are integrated into the system matters,
i.e. different properties are satisfied by the two different orderings; while a
‘«” indicates that the order does not matter. In these tables, all features are
subscribed to by the same phone, unless stated otherwise (see below). The
following notes interpret the superscripted numbers:

! Ring Back When Free subscribed to by a different phone.

2 Call forwarding on Busy/Unconditional subscribed to by two phones.

3 Call Screening subscribed to by two phones.

* This is clearly an artifact, generated by the fact that Call Waiting stores
the currently active party in dialled, regardless whether that line is the
originating or terminating line of the current connection. Hence OCS will
interrupt a Call Waiting call that was established by a call from a phone on
the screening list to the OCS subscriber.

It is obvious from Table 3 that the interactions of Call Forwarding features
with Call Screening features we could detect were determined by our decision
not to model call legs. Had we modelled call legs, the combination of a Call
Forwarding feature with a Call Screening feature would have violated the Call
Screening property, since the extra call leg would interfer with determining
the originator and terminator of a call, which is essential for screening the
call.

7 Conclusions

Our approach to the feature-interaction problem gives features the status of
first-class citizens; we could think of this as feature orientation. In concrete
terms, this means that features are compact textual units in a specification
or program, and that they are as independent as possible of the base system
description, and features are independent of one another. In this way, we de-
velop a framework for plug-and-play features: features can be added, removed,
re-ordered or re-designed in order to explore and resolve feature interactions.

The feature construct is most useful when the base system is not written in a
‘feature ready’ way. When one is dealing with a ‘feature ready’ specification

32

Table 3
Feature interactions for the telephone system

Property (see sections 6.2.1 and 6.2.2)
Feature(s) 123456 7][8|9 |10]11]12
POTS VIVIVIVIV]V
CwW VIixXix | x| x| x|—|—|VIV]|—]|—
CFU X |V xX|VIVI]IX]|V
CFB VIiVIxX|VIV]X Vv
RBWF VIVIVIVIVIVI | V|V
TCS x| VIVIVIVIV
0Cs < vIivivivivi-l-1 -
CW + CFU X | X | x| x| x|x|+ NERva
CFU + CW X | x| x| x| x| x|V —|VIx]|—]—
CW + CFB VIixXIx|VIxIx|—|IVIVIV]—]—
CFB + CW Vx| x| V] x| x X | v/ | %
CW+RBWF | /| X | X |X|X|X|[|—|—| X |[V]|V]V
RBWF + CW || /| x| x| x| x|x|—|—|VI|V|X*x]|V
CW * RBWF! | /| x | x | x| x| x NERVERVERV
CW + TCS X | x| x| x| x|x{|—|—|VIVI]|—]—
TCS + CW VIixX x| x| x| x|—|—|VIV]|—]|—
CW * OCS X | x| x| x| x|x x4y
CFU + CFB X|IVIXIVIVIXIVIVI—]—]|—]—
CFB + CFU X|IVIX|IVIVIX|IVIxX|—]—]|—]|—
RBWF *CFU || x |V | x|V |V]I X |V NARY;
TCS * CFU? x|VIx|VIVI¥XIV]—]—|—|—|—
OCS * CFU? x| VIxIVIVIxIV]I—|—]—|—|—
RBWF *CFB |/ |V | X |V |V] % Vv NARY;
TCS * CFB? x|VIx|VIVIX|—|x]|—|—|—|—
OCS * CFB? x| VIxX|IVIVIx]|—|x|—|—|—]—
TCS*RBWF? | x |V |V IVIV]V NARY;
OCS *RBWF? || x | V| VIVIVIVI—|—|—1—1 V|V

33

(e.g. the “Intelligent Network” architecture for telephony [15]), this specifica-
tion already defines the entities which can be manipulated by features and
interfaces for these manipulations. Moreover the integration process is dic-
tated by the architecture. Hence, in such a context, a feature construct would
merely provide a uniform notation for features but would not add further
modularisation.

The specifier of a feature needs a good understanding of the base system in
order to make the feature operate correctly since the features are quite de-
pendent on the underlying system. However, when designing a feature, the
developer does not need to know about all other features that can be added
to the system. With a feature construct, feature integration and interaction de-
tection are completely automatic. Interferences between features are detected
by model checking, and illustrated with traces, which help the developer to
resolve the interferences.

The combination of feature integration and model checking has proved to be
very useful. However, like all model checking applications, it suffers from the
state space explosion problem. To overcome the state space explosion we were
forced to use a rather abstract model. Due to the level of abstraction we chose,
we missed some anticipated interactions, while on the other hand detecting
some spurious interactions.

Our experiences with SMV as the underlying language were mixed. While
SMV’s compact language made it easy to define the feature construct and
feature integration and the feature construct proved easy to use, we did find
it not expressive enough for some purposes. Especially the restrictions on the
usage of arrays and the lack of primitives for synchronisation and communica-
tion were cumbersome. On the other hand, the simplicity of SMV resulted in
a small and simple feature construct, much simpler than our proposed feature
construct for Promela [23].

Choosing SMV also meant that we were committed to the verification of prop-
erties stated in a logic, rather than testing processes for bisimulation or re-
finement, or checking generic properties such as deadlock-freedom. On the
one hand, property based verification has the drawback that one might miss
relevant aspects of the system; on the other hand, for most systems there
is no general property that is not subject to changes by features. (The only
generally desirable properties are probably deadlock- and livelock-freedom.)
As a further development, one might want to automatically deduce some in-
teresting properties from the feature implementation, such as checks that a
feature’s triggering conditions can actually arise in the system. An extension
of this would be to check for overlaps in the conditions of various features, but
we haven’t explored that direction, yet.

34

Another positive result of defining a feature construct and the process of fea-
ture integration is that it allows a formal analysis of the semantics of features.
This is the subject of another paper ([20]).

We expect that our approach will benefit from advances in verification technol-
ogy. Two developments look especially promising: (semi-)automatic abstrac-
tion techniques [7,24] and simulation techniques that exercise the “interesting”
parts of the system with good coverage, as demonstrated in [9].

References

[1] G. C. Barney and S. M. dos Santos. Elevator Analysis, Design and Control.
IEE Control Engineering Series 2. Peter Peregrinus Ltd., 1985.

[2] M. Berry. Proving properties of the lift system. Master’s thesis, School of
Computer Science, University of Birmingham, 1996.

[3] L. G. Bouma and Hugo Velthuijsen, editors. Feature Interactions in
Telecommunications Systems, Amsterdam, The Netherlands, May 1994. 1IOS
Press.

[4] K. E. Cheng and T. Ohta, editors. Feature Interactions in
Telecommunications II1, Tokyo, Japan, October 1995. IOS Press.

[6] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a
reimplementation of SMV. In B. Steffen and T. Margaria, editors, Proceedings
of the International Workshop on Software Tools for Technology Transfer
(STTT-98), BRICS Notes Series, pages 25-31, Aalborg, 1998. Available from
http://afrodite.itc.it:1024 /" cimatti/.

[6] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state
concurrent systems. In A Decade of Concurrency, number 803 in Lecture
Notes in Computer Science, pages 124 175. Springer Verlag, 1993.

[7] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, 1994.

[8] P. Dini et al., editors. Feature Interactions in Telecommunications and
Distributed Systems IV, Montreal, Canada, June 1997. IOS Press.

[9] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental
feature validation: a synchronous point of view. In Kimbler and Bouma [17],
pages 262 275.

[10] Formal Systems (Europe) Ltd, Oxford, UK. Failures-Divergence Refinement,
Oct 1997.

[11] Nancy Griffeth, editor. 1st International Workshop on Feature Interactions in
Telecommunications Software Systems, St. Petersburg, Florida, USA,
December 1992.

35

[12] C. A. R. Hoare. Communication Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

[13] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

[14] M. R. Huth and M. D. Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 1999.

[15] ITU-T. Intelligent Network — ITU Recommendations (.1200 series, 1995.

[16] S. Katz. A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337 356, April
1993.

[17] K. Kimbler and L. G. Bouma, editors. Feature Interactions in
Telecommunications and Software Systems V, Lund, Sweden, Sept 1998. IOS
Press.

[18] K. McMillan. The SMV language. Available from
www-cad.eecs.berkeley.edu/ kenmcmil, June 1998.

[19] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[20] M. Plath and M. Ryan. The semantics of a feature construct for SMV: A case
study in non-monotonic composition. Technical report, School of Computer
Science, University of Birmingham, 1999. Available as
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1999/CSR-99-10.ps.gz.

[21] M. C. Plath and M. D. Ryan. Plug-and-play features. In Kimbler and Bouma
[17], pages 150-164.

[22] M. C. Plath and M. D. Ryan. SFI: a feature integration tool. Advances in
Computer Science, pages 201-216, 1999.

[23] Malte Plath and Mark Ryan. A feature construct for Promela. In SPIN’98 -
Proceedings of the 4th SPIN workshop, Nov 1998. Available as
http://netlib.bell-labs.com/netlib/spin/ws98/plath.ps.gz.

[24] A. Pnueli. Verification by finitary abstraction. In SPIN’98 — Proceedings of
the 4th SPIN workshop, Nov 1998. Available from
www.wisdom.weizmann.ac.il/“amir /invited-talks.html.

36

