
Feature integration using a feature construct 1
Malte Plath and Mark RyanSchool of Computer Science, University of Birmingham, Birmingham B15 2TT,UK,http://www.cs.bham.ac.uk/f~mcp,~mdrgAbstractA feature is a unit of functionality that may be added to (or omitted from) a system.Examples of features are plug-ins for software packages or additional services o�eredby telecommunications providers. Many features override the default behaviour ofthe system, which may lead to unforeseen behaviour of the system; this is knownas feature interaction.We propose a feature construct for de�ning features, and use it to provide a plug-and-play framework for exploring feature interactions. Our approach to the featureinteraction problem has the following characteristics:� Features are treated as �rst-class objects during the development phase;� A method is given for integrating a feature into a system description.It allows features to override existing behaviour of the system beingdeveloped;� A prototype tool has been developed for performing the integration;� Interactions between features may be witnessed.In principle, our approach is quite general and need not be tied to any particularsystem description language. In this paper, however, we develop the approach inthe context of the SMV model checking system.We describe two case studies in detail: a lift system and a telephone system.Key words: features, feature interaction, model checking1 Financial support from the EU through Esprit working groups ASPIRE (22704)and FIREworks (23531), and from British Telecommunications PLC and theNu�eld Foundation in the UK is gratefully acknowledged.Preprint submitted to Elsevier Preprint 19 December 1999

1 IntroductionThe concept of feature has emerged in the telecommunications industry as away of describing optional services to which telephone users may subscribe.Features o�ered by telephone companies include Call Forwarding, AutomaticCall Back, and Voice Mail. Features are not restricted to telephone systems,however. Any part or aspect of a speci�cation which the user perceives ashaving a self-contained functional role is a feature. For example, a printermay exhibit such features as: ability to understand PostScript; Ethernet card;serial interface; ability to print double-sided; and others. Thinking in terms offeatures is important to the user, who often understands a complex system asa basic system plus a number of features. It is also an increasingly commonway of designing products.A signi�cant motivation for the feature construct introduced in this paper isthe concept of feature interaction. When several features are integrated on topof a base system, they may interfere with each other, or interact in ways whichare hard to predict. This problem has been dubbed the feature interactionproblem in the literature on telecommunications. A series of workshops isdedicated to feature interaction ([11], [3], [4], [8] and [17]).Examples of feature interactions in telecommunications systems are:� \Call Forward on Busy" and \Voice Mail on Busy": both these featurestry to take control of a second (incoming) call to the subscriber. This isinconsistent, so one cannot allow both features to be active on the samephone.� The \Ring Back When Free" (RBWF) attempts to set up a call for thesubscriber to a callee whose line is engaged as soon as the line becomes free.The interaction of RBWF and \Call Forward Unconditional" (CFU) leadsto consistent, but potentially undesirable behaviour:x requests RBWF from y, then CFU to z.z will be noti�ed when y becomes available.However, it was x who requested the noti�cation.Just as features are not restricted to telecommunication systems, the featureinteraction problem can be observed in other contexts as well. To mention buta few examples, system extensions for Windows and Mac OS, packages forGNU Emacs and LATEX styles may not work as intended when loaded in thewrong order, or in some cases not be compatible at all. These `interactions'can usually be traced down to the fact that two `features' manipulate thesame entities in the base system, and in doing so violate some underlyingassumptions about these entities that the other `features' rely on. An exampleof interfering LATEX packages are german.sty and amstex.sty (when loaded2

in this order): when amstex.sty applies its changes, it is not aware of thealterations which german.sty has made, leading to undesirable results. In thiscase, luckily, reversing the loading order solves the problem, since german.stywas written to respect amstex.sty.Feature interaction seems unavoidable if the features we allow are reasonablypowerful. When a feature adds conceptually new information to a system orthe data it works on, other features may be subverted. For example, if `CallWaiting' introduces a new state 2 into the telephone system, for which none ofthe other features have been prepared, their actions may not have the desirede�ect. But that is the central point of features: they may add functionalityto a system which was not conceived when the system was designed. Thusfeature interaction will occur in any su�ciently exible system.But feature interaction is not always a bad thing | take the second exampleabove: x may be forwarding her calls to her mobile phone, in which casethe indicated behaviour is desirable. (In this case x and z refer to the sameperson.) In cases when it is clear that the result of a feature interaction isundesirable, or detrimental to the operation of the whole system, we often usethe term feature interference to stress this fact.Since there is no way of avoiding feature interaction short of rigidly restrictingthe set of potential features, it is desirable to analyse potential interactions asearly as possible in the life-cycle of a new feature, and to interleave all stepsin the development of new services with further analysis.Our approach addresses the early stages of speci�cation, and enables the spec-i�er to identify problems with little more than the requirements to work from.That is to say, given a model of the basic system, the features are easy tospecify, to add, and to remove or to re-specify, should interferences with otherfeatures arise.We model the basic system and its features as di�erent textual units, and in-tegrate the features into the basic system, producing an extended system. Wecheck for interactions by verifying the extended system. This approach worksin principle with any modelling language and veri�cation method. In this pa-per, however, we `instantiate' the approach by working with the SMV modelchecker developed at Carnegie Mellon University [6,19]. SMV can automati-cally check whether a system description satis�es its speci�cation, expressedas a temporal logic formula. It does so by exhaustive state enumeration. Ashort introduction to SMV is provided in section 2.We extend the SMV language with a new construct for describing features.2 For the situation when a call arrives at an engaged phone: the new caller will notget the busy tone, and the call can be completed.3

We have built a tool called SFI (\SMV Feature Integrator") which compilesdescriptions in this extended language into pure SMV, ready for veri�cationby the SMV model checker. We present details of this extension and the inte-gration process in the remainder of the paper, along with two substantial casestudies of feature integration. This paper extends and completes two previouspapers [21,22].The structure of this paper is as follows: in the following section we give a shortintroduction to the SMV language. In section 3 we describe the ideas behindour approach. This is followed by an explanation of the feature construct forSMV in section 4. Sections 5 and 6 are devoted to our two case studies, the liftsystem and the telephone system, respectively. The �les for these case stud-ies can be found at http://www.cs.bham.ac.uk/~mdr/features/SFI-demo/.We conclude our paper by summing up our experiences with this approach insection 7.2 A short introduction to SMVKnowledge about SMV 3 is required in order to understand our feature con-struct, our tool SFI, and the case studies presented in this paper. We apologisefor leaving this exposition of SMV very sketchy and refer the interested readerto [6,19] for a more detailed account. SMV is a veri�cation tool which takesas input� a system description in the SMV language, and� some formulas in the temporal logic CTL (Computation Tree Logic).It produces as output the statement `true' or `false' for each of the formulas,according to whether the system description satis�es the formula or not. Insymbols we write S j= � if the system S satis�es the formula �, and S 6j= � if� does not hold for S. In the case that the formula is not satis�ed, SMV alsoproduces a trace showing circumstances in which the formula is false.The SMV description language is essentially a high-level syntax for describ-ing �nite state automata. It provides modularisation, and synchronous andasynchronous composition. The behaviour of the environment is modelled bynon-determinism. An SMV system description declares the state variables,3 Until 1998 there was just one SMV, but now there are three. CMU SMV [19] isthe original one, developed by Ken McMillan, and is the one we use in this paper.NuSMV is a re-implementation being developed in Trento [5], and is aimed atbeing customisable and extensible. Cadence SMV is an entirely new model checkerfocussed on compositional systems. It is also developed by Ken McMillan, and itsdescription language resembles but much extends the original SMV [18].4

their initial values and the next values in terms of the current and next valuesof the state variables { as long as this does not lead to circular dependencies.SMV works with unlabelled automata and has no message passing. Henceall synchronisation has to be by explicit references to current and next val-ues. While this keeps the syntax simple, it does sometimes make writing thedescription slightly cumbersome.1: MODULE main2: VAR3: request : boolean;4: state : {ready,busy};5: ASSIGN6: init(state) := ready;7: next(state) := case8: state = ready & request : busy;9: 1 : {ready,busy};10: esac;11: SPEC AG(request -> AF state = busy)Fig. 1. A system description for SMVFigure 1 shows one of the examples distributed with the SMV system. (Theline numbers are not part of the code.) This piece of code de�nes an automatonwith four states (f0; 1g�fready; busyg). There are transitions from every stateto every state, except for the state (1; ready) from which only transitionsto (1; busy) and (0; busy) are allowed. The initial states are (1; ready) and(0; ready).Generally, a model description for SMV consists of a list of modules withparameters. Each module may contain variable declarations (VAR), macro def-initions (DEFINE), assignments (ASSIGN), and properties (SPEC) to be checkedof the module.Possible types for variables are boolean (f0; 1g), enumerations (e.g. state),�nite ranges of integers, or arrays of these types. For declared variables (asopposed to DEFINEd ones, which are merely macros) we may assign the ini-tial value (e.g. line 6) and the next value (e.g. lines 7{10), or alternatively,the current value. The expressions that are assigned to variables may be non-deterministic as in line 9: if state is not ready or request is 0, the next valueof state can be either ready or busy. (Since request is not determined at allby the description, it too will assume values non-deterministically.) Note thatcase statements are evaluated top to bottom, so the result is the expressionfrom �rst branch whose condition evaluates to true. It is important to bear inmind that all assignments are evaluated in parallel (although there is also amechanism for asynchronous (interleaving) composition of modules).5

A special kind of variable declaration is the instantiation of a module, as in\landingBut1 : button(lift.floor=1 & lift.door=open);" (cf. �gure 3in section 5). This is interpreted as a declaration of all local variables (includ-ing DEFINEd identi�ers) of that module, pre�xed with the name of the newlydeclared variable, together with the assignments or macro-de�nitions withinthat module. In this example, the module button has a local variable pressed,so the declaration above implicitly declares landingBut1.pressed. The for-mal parameters are replaced by the actual parameters as in a call-by-namelanguage.It is possible to assert fairness constraints on the model (cf. �gure 9, page 24).In the presence of such fairness constraints, only executions are consideredalong which these constraints are true in�nitely often.After de�ning a system in the SMV language, we formulate the properties tobe veri�ed in the temporal logic CTL (marked by the keyword SPEC, e.g. line11). The propositional atoms for these formulas are the boolean variables andthe equations over the variables and constants of the system.Given a set P of propositional atoms, CTL formulas are given by the followingsyntax:� ::=p j > j :� j �1 ^ �2 jAX� j EX� j AG� j EG� j AF� j EF� j A[�1U�2] j E[�1U�2]:where p 2 P . The other boolean operators (_;!;$;?) are de�ned in termsof ^;: in the usual way. In SMV, logical or is written as |, and as &, and notas !; truth (>) is represented by 1 and falsity (?) by 0.Notice that CTL temporal operators come in pairs. The �rst of the pair isone of A and E. A means `along all paths' (inevitably), and E means `alongat least one path' (possibly). The second one of the pair is X, F, G, or U,meaning `neXt state', `some Future state', `all future states (Globally)', andUntil respectively. Notice that U is binary. The pair of operators in E[�1U�2],for example, is EU. Further details of CTL are widely available in the papersby E. Clarke and others [6,19], and also in the forthcoming introductory text[14].Two useful derived connectives are AW and EW , which use the `weak until'connective W, which is similar to U, but �1W�2 does not require that �2eventually becomes true if �1 is inde�nitely true. One de�nes A[�1W�2] as:E[:�2U:(�1 _ �2)], and E[�1W�2] as E[�1U�2] _ EG�1.6

3 Features and feature integrationIn this section we describe how an existing system can be extended and alteredto provide new functionality. The new functionality will be given in the formof features that are integrated into the system. In this sense every feature canbe seen as a packet of functionality. We can also see it as a transformationof the old system to a new one which o�ers di�erent functionality. Formallywe distinguish between these aspects by calling the transformation featureintegration.The general idea of our approach is to describe features formally as unitsof functionality which can be understood without detailed knowledge of thebase system. These are then automatically integrated into the system, andthe resulting extended system is veri�ed. We do not assume any particulararchitecture of the base system in question, and (theoretically) as much or aslittle as one wants can be modelled. To make model checking viable, however,the system should be modelled in a rather abstract way, in order to keep thestate space to a reasonable size. Since our approach aims at exposing logicalinteractions, i.e. interactions which are inherent in the speci�cation and quiteindependent of the implementation (e.g. inconsistencies), this is not necessarilya shortcoming, for at a high level of abstraction the logical interactions maybecome more visible.A feature description can be seen as a prescription for extending and changingthe basic system. A feature description can usually be applied to di�erentsystem descriptions, reecting the fact that most features are quite generic,and only their implementations for di�erent systems need to be adjusted tothe precise underlying system.The main aim of our approach of extending a speci�cation and veri�cationlanguage with a feature construct is to provide a `plug-and-play' system forexperimenting with features and witnessing their interactions. Features canoverride existing behaviour of the base system in a tightly controlled way.In this paper, we apply our approach to the SMV modelling language andveri�cation tool [6,19]. We extend the SMV language with a feature construct,thus making features self-contained textual units. These are integrated intothe system description automatically by our tool, SFI (\SMV Feature Inte-grator"), and the resulting system can then be validated with the SMV modelchecker. We believe our approach is quite general, however. Elsewhere [23] wehave applied it to the model checker SPIN [13] and its language Promela. Weare also developing a feature construct for CSP [12], using the model checkerFDR2 [10].SMV is well-suited to this approach for the following reasons:7

� The SMV language is designed and optimised for concurrent, reactive sys-tems, such as the telephone system.� The SMV language is expressive yet compact. Its compactness means thatthe feature construct is compact too, and feature integration is relativelystraight forward.� The SMV tool can check temporal properties of systems described using theSMV language. This enables rapid development of rigorous and accurateexamples.Our concept of feature makes it a special case of superimposition [16]. Asuperimposition is a syntactic device for adding extra code to a given program,usually to make it better behaved with respect to other concurrently runningprograms. In the classic example of superimposition, extra code is added toenable processes to respond to interrogations from a supervisory process aboutwhether they are awaiting further input, and this enables smooth terminationof the system.The superimposition construct proposed in [16] is suited to imperative lan-guages, and therefore cannot be used directly for SMV. In imperative lan-guages data and control ow are explicit, and the superimposition constructworks by modifying them. For a declarative language like SMV data and con-trol ow are implicit. An SMV program essentially is just a set of assignmentsto state variables. Hence, state variables and assignments are the entities whicha superimposition or feature construct for SMV has to be based on. In thefollowing section we will show how this is done.
4 The feature construct for SMVWe present an extension of the SMV syntax for describing features. We alsoshow how model descriptions written in the extended SMV can be compiledinto pure SMV, thus giving semantics to the feature construct. We will illus-trate its use with some examples in the following two sections.A formal speci�cation of the syntax of the feature construct is given in �gure 2.There are three main sections of the feature construct, introduced by thekeywords REQUIRE, INTRODUCE and CHANGE.The REQUIRE section stipulates what entities are required to be present in thebase program in order for the feature to be applicable. A collection of modulesand variables in modules may be speci�ed there. All old modules and variablesthat are used in the INTRODUCE and CHANGE sections should be REQUIREd, andtheir absence will lead to an error. 8

FEATURE feature-name[REQUIREf MODULE module-name [(parameter-list)]VAR variable-declarations g�][INTRODUCEf MODULE module-name[VAR variable-declarations][ASSIGN assignments][DEFINE de�nitions][f SPEC formula g�] g�][CHANGEf MODULE module-name[IF condition THEN][IMPOSE assignmentsj TREAT var1 = expr1 [, : : : varn = exprn]] g�]ENDwhere: [] stands for `optional'[j j] stands for `one of'f g* stands for `several'Fig. 2. The syntax of the feature constructThe INTRODUCE section states what new modules or new variables within oldmodules are introduced by the integration of the feature into a program.DEFINE and ASSIGN clauses may also be given, and CTL formulas in SPECclauses may be given. These are textually added to the SMV text at integrate-time.The CHANGE section speci�es how the feature changes the behaviour of thesystem wrt. the original state variables. It gives a number of TREAT or IMPOSEclauses, which may be guarded by a condition. This is where the behaviour ofthe original system is altered.Integrating a feature. Given an SMV text representing the base system,and a feature description, our integration tool SFI does the following:� It checks that the REQUIREd entities are present in the base system, andreports an error if they are not.� It inserts text for the new modules or variables declared in the INTRODUCEsection. 9

� For CHANGEs of the formIF cond THEN TREAT x = exprit replaces all right-hand-side occurrences of x bycasecond : expr;1 : x;esacThis means that whenever x is read, the value returned is not x's value, butthe value of this expression. Thus, when cond is true, the value returned isexpr. In short, when cond is true, we treat x as if it had the value given byexpr. Note that we require expr to be deterministic because x may occurin conditions in case statements, and SMV requires such conditions to bedeterministic.� For CHANGEs of the formIF cond THEN IMPOSE x := expr;In assignments x := oldexpr or next(x) := oldexpr, it replaces oldexprby casecond : expr;1 : oldexpr;esacWhereas TREAT just deals with expressions reading the value of x, i.e. oc-currences of x on the right-hand-side of an assignment to another variable,IMPOSE deals with assignments to the variable x. It has the e�ect that, whencond is true, x is assigned the value of expr; but when cond is false, x isassigned the value that it would have been assigned in the original program.In an IMPOSE statement, expr may be non-deterministic.� For CHANGEs that are not guarded by IF cond THEN, the case statementsare of course omitted, and the variable, or respectively, the expression (x oroldexpr, respectively) are replaced directly by the new expression (expr).The feature integration is deemed successful if the following are true:� The modules and variables stipulated in the REQUIRE section were presentin the base program; and� After the textual substitutions have been performed, the resulting programsatis�es the CTL formulas in the INTRODUCE section of the feature.Notice that one cannot expect the CTL formulas of the base system to hold,since the feature was introduced to alter the behaviour of the system.The semantics of TREAT and IMPOSE can also be given directly in terms of theautomaton, rather than in terms of the SMV text. This is mainly of theoreticalinterest and we omit it for the sake of brevity; a detailed account can be foundin [20]. 10

Integration of multiple features. When several features are integratedin succession, the question arises whether and how the order of integrationmatters. From the explanations above, it is clear that the order of integrationdoes matter in general. The details of how the features a�ect each other arequite complicated however. As a rule of thumb, one can assume that featureswhich are integrated later take precedence over features integrated previously.In the next two sections, we explore feature integration in the context of ourcase studies. This will illustrate the e�ect of integrating features in di�erentorders.Detecting feature interaction. We view a feature as comprising two com-ponents: the feature implementation and the feature requirements. In the fol-lowing we write (F; �) for a feature. In practice it is usually more useful tostate the requirements as several formulas. The formula � then stands for aspeci�c property one would like to verify of the system. When we integrate afeature (F; �) into a base system S, to yield a new system S + F , we want totest the following:� S + F j= �: Feature F has been successfully integrated.� (S +F1) +F2 j= �2: Feature F2 can be integrated into the extended systemS + F1.� (S + F1) + F2 j= �1: Feature F2 does not violate the requirements of F1.Of course these tests will not necessarily succeed. For the remainder of thissection, we shall however assume that all features are correct wrt. the basesystem, i.e., S + F j= � for any feature (F; �). Then we can observe featureinteraction in the following forms:� Type I: (S + F1) + F2 6j= �2:Earlier feature breaks later one.� Type II: (S + F1) + F2 6j= �1:Later feature breaks earlier one.� Type III: S; S + F1; S + F2 j= but (S + F1) + F2 6j= :(where is a property of the base system.)Features combine to break system.� Type IV: 9�:(S + F1) + F2 j= � but (S + F2) + F1 6j= �:(where � is a property of S, F1 or F2)Features do not commute.Note that these types of interactions do not represent a disjoint classi�cation;two features may exhibit several types of interaction. Obviously, for commut-ing features, a Type I interaction for integration of F1 and then F2 correspondsto a Type II interaction for the reverse order of integration, and vice versa.11

We will come back to this classi�cation in the analysis of our case studies.5 Case study 1: the lift system5.1 The basic lift systemAs a �rst case study, we have analysed a lift system and its features. Forthe base system we have adapted the lift system description written by MarkBerry [2]. The SMV code for a single lift travelling between 5 oors is givenin �gures 3 to 5. It consists of about 120 lines of SMV code.The module main (�gure 3) declares �ve instances (one for each landing) ofthe module button (passing to each one as argument the conditions underwhich that button should cancel itself). It also declares one instance of lift,to which it passes two parameters: 4� the next landing { in the current direction of travel { at which there was arequest for the lift,� and whether there is a landing request.The lift module (�gure 4) declares the variables floor, door and directionas well as a further 5 buttons, this time those inside the lift. The algorithmit uses to decide which oor to visit next is the one called \Single ButtonCollective Control" (SBCC) from [1]: the lift travels in its current directionanswering all lift and landing calls until no more exist in the current direction;then it reverses direction, and repeats. Actually the conditions under which itreverses direction are slightly more complicated, as can be seen by inspectingthe code for next(direction) in �gure 4: if the lift is idle, it maintains thesame direction as it had before, but if it is at the top or bottom of its shaft itchanges direction to down and up respectively; otherwise, as stated, it reversesdirection if there are no calls remaining to be served in the current direction.The �nal `1:direction' means that if none of the preceding conditions aretrue, then the value returned by the case statement is simply the old valueof direction. Notice that the SBCC algorithm stipulates only one button oneach landing, rather than the conventional two. Passengers press the button,but they are not guaranteed that the lift will be willing to go in the directionthey wish to travel.By inspecting the buttonmodule (�gure 5), one �nds that its variable pressedis set to false if the reset parameter is true; otherwise, if it was pressed before,it persists in that state; otherwise, it non-deterministically becomes true or4 Recall that the parameters are treated in a call-by-name fashion.12

MODULE main
VAR
 landingBut1 : button ((lift.floor=1) & (lift.door=open));
 landingBut2 : button ((lift.floor=2) & (lift.door=open));
 landingBut3 : button ((lift.floor=3) & (lift.door=open));
 landingBut4 : button ((lift.floor=4) & (lift.door=open));
 landingBut5 : button ((lift.floor=5) & (lift.door=open));

 lift : lift (landing_call, no_call);

DEFINE
 landing_call :=
 case
 lift.direction = down :
 case
 landingBut5.pressed & lift.floor>4 : 5;
 landingBut4.pressed & lift.floor>3 : 4;
 landingBut3.pressed & lift.floor>2 : 3;
 landingBut2.pressed & lift.floor>1 : 2;
 landingBut1.pressed : 1;
 1 : 0;
 esac;
 lift.direction = up :
 case
 landingBut1.pressed & lift.floor<2 : 1;
 landingBut2.pressed & lift.floor<3 : 2;
 landingBut3.pressed & lift.floor<4 : 3;
 landingBut4.pressed & lift.floor<5 : 4;
 landingBut5.pressed : 5;
 1 : 0;
 esac;
 esac;

 no_call := (!landingBut1.pressed &
 !landingBut2.pressed &
 !landingBut3.pressed &
 !landingBut4.pressed &
 !landingBut5.pressed);Fig. 3. The SMV code for the module main in the lift system.false. This non-determinism is to model the fact that a user may come alongand press the button at any time. In common with most actual lift systems,the user may not un-press the button; once pressed, it remains pressed untilthe conditions to reset it arise inside the lift system.5.1.1 Properties for the basic lift system.Before any features are added, we may use SMV to check basic properties ofthe lift system. For example, the following CTL 5 speci�cation in the module5 To enhance the readability of the speci�cations we present them in a meta-notation, using variables and quanti�ers which SMV does not allow. Translatingthis into pure SMV notation is purely mechanical, though. In these examples, anyfree variables are universally quanti�ed. For example, if we expand the above spec-i�cation to pure SMV, we obtain the conjunction of the formulas:AG (landingBut1.pressed -> AF (lift.floor=1 & lift.door=open))throughAG (landingBut5.pressed -> AF (lift.floor=5 & lift.door=open))13

MODULE lift (landing_call, no_call)
VAR
 floor : {1,2,3,4,5};
 door : {open,closed};
 direction : {up,down};
 liftBut5 : button (floor=5 & door=open);
 liftBut4 : button (floor=4 & door=open);
 liftBut3 : button (floor=3 & door=open);
 liftBut2 : button (floor=2 & door=open);
 liftBut1 : button (floor=1 & door=open);

DEFINE
 idle := (no_call & !liftBut1.pressed & !liftBut2.pressed &
 !liftBut3.pressed & !liftBut4.pressed & !liftBut5.pressed);
 lift_call :=
 case
 direction = down :
 case
 liftBut5.pressed & floor>4 : 5;
 liftBut4.pressed & floor>3 : 4;
 liftBut3.pressed & floor>2 : 3;
 liftBut2.pressed & floor>1 : 2;
 liftBut1.pressed : 1;
 1 : 0;
 esac;
 direction = up :
 case
 liftBut1.pressed & floor<2 : 1;
 liftBut2.pressed & floor<3 : 2;
 liftBut3.pressed & floor<4 : 3;
 liftBut4.pressed & floor<5 : 4;
 liftBut5.pressed : 5;
 1 : 0;
 esac;
 esac;

ASSIGN
 door := case
 floor=lift_call : open;
 floor=landing_call : open;
 1 : closed;
 esac;
 init (floor) := 1;
 next (floor) := case
 door=open : floor;
 lift_call=0 & landing_call=0 : floor;
 direction=up & floor<5 : floor +1;
 direction=down & floor>1 : floor −1;
 1 : floor;
 esac;
 init (direction) := down;
 next (direction) := case
 idle : direction;
 floor = 5 : down;
 floor = 1 : up;
 lift_call=0 & landing_call=0 & direction=down : up;
 lift_call=0 & landing_call=0 & direction=up : down;
 1 : direction;
 esac;Fig. 4. The SMV code for the module lift in the lift system.main is satis�ed: pressing a landing button guarantees that the lift will arriveat that landing and open its doors, i.e.:AG (landingButi.pressed-> AF (lift.floor=i & lift.door=open)).14

MODULE button (reset)
VAR
 pressed : boolean;
ASSIGN
 init (pressed) := 0;
 next (pressed) := case
 reset : 0;
 pressed : 1;
 1 : {0,1};
 esac;Fig. 5. The SMV code for the module button in the lift system.These are some properties that we have veri�ed for the base lift system and forits extensions with features. The results of our veri�cations are summarisedin table 1. (The numbers in the table refer to the numbering in this list.)(1) Pressing a landing button guarantees that the lift will arrive at thatlanding and open its doors:AG (landingButi.pressed-> AF (lift.floor=i & lift.door=open))(2) If a button inside the lift is pressed, the lift will eventually arrive at thecorresponding oor.AG (liftButi.pressed -> AF (floor=i & door=open))(3) The lift will not change its direction while there are calls in the directionit is travelling.One formula for upwards travel,AG 8i < j: (floor=i & liftButj.pressed & direction=up-> A[direction=up U floor=j]): : : and one formula for downwards travel, for i > j:AG 8i > j: (floor=i & liftButj.pressed & direction=down-> A[direction=up U floor=j])(4) If the door closes, it may remain closed.!AG (door=closed -> AF door=open)(5) The lift may remain idle with its doors closed at oor i.EF (floor=i & door=closed & idle)AG (floor=i & door=closed & idle-> EG (floor=i & door=closed))(The �rst formula states that the lift can actually get into a state satis-fying the premise of the second formula.)(6) The lift may stop at oors 2, 3, and 4 for landing calls when travellingupwards:8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed& direction=up) -> door=closed)(7) The lift may stop at oors 2, 3, and 4 for landing calls when travellingdownwards:8i 2 f2; 3; 4g: !AG ((floor=i & !liftButi.pressed& direction=down) -> door=closed)15

One can think of many more properties to check for a lift system. For thispaper, we have omitted all safety properties, and have concentrated on aselection of properties that are characteristic of the SBCC algorithm, namelythose that concern guarantee of service (or absence thereof).5.2 Features of the lift systemThe following features of the lift system were described using our feature con-struct, and then integrated into the base system using the feature integrator:Parking. When a lift is idle, it goes to a speci�ed oor (typically the groundoor) and opens its doors. This is because the next request is anticipatedto be at the speci�ed oor. The parking oor may be di�erent at di�erenttimes of the day, anticipating upwards-travelling passengers in the morningand downwards-travelling passengers in the evening.Lift-23-full. When the lift detects that it is more than two-thirds full, it doesnot stop in response to landing calls, since it is unlikely to be able to acceptmore passengers. Instead, it gives priority to passengers already inside thelift, as serving them will help reduce its load.Overloaded. When the lift is overloaded, the doors will not close. Somepassengers must get out.Empty. When the lift is empty, it cancels any calls which have been madeinside the lift. Such calls were made by passengers who changed their mindand exited the lift early, or by practical jokers who pressed lots of buttonsand then got out.Executive Floor. The lift gives priority to calls from the executive oor.By way of illustration, we give the code for the parking feature in �gure 6.The parking feature introduces the speci�cation ((12) in table 1)AG 8i 6= 1: !EG(floor=i & door=closed)which says that the lift will not remain idle inde�nitely at any oor other thanoor 1. (In �gure 6 we give only the instance for i = 4.)The other features mentioned introduce other speci�cations; these are listedbelow.5.2.1 Properties for the featured lift system.In addition to the generic properties for the base system, we check some re-quirements for each feature. The results for these properties can also be foundin table 1. (Again the numbering in the table corresponds to the numbers in16

FEATURE park
REQUIRE
 MODULE main −− require all landing buttons
 VAR
 landingBut1.pressed : boolean; landingBut2.pressed : boolean;
 landingBut3.pressed : boolean; landingBut4.pressed : boolean;
 landingBut5.pressed : boolean;
 MODULE lift −− require all lift buttons and the variable floor
 VAR
 floor : {1,2,3,4,5};
 liftBut1.pressed : boolean; liftBut2.pressed : boolean;
 liftBut3.pressed : boolean; liftBut4.pressed : boolean;
 liftBut5.pressed : boolean;

INTRODUCE
 MODULE lift −− no new variables introduced
 SPEC −− lift parks at floor 1:
 AG (floor=4 & idle −> E [idle U floor=1])
 SPEC −− lift cannot park at floor 3:
 AG (!EG(floor=3 & door=closed))

CHANGE
 MODULE main
 IF !lift.floor=1 &
 !(landingBut1.pressed | lift.liftBut1.pressed |
 landingBut2.pressed | lift.liftBut2.pressed |
 landingBut3.pressed | lift.liftBut3.pressed |
 landingBut4.pressed | lift.liftBut4.pressed |
 landingBut5.pressed | lift.liftBut5.pressed)
 THEN TREAT landingBut1.pressed = 1
END Fig. 6. The code for the Parking featurethis list.)We derived these requirements from the (natural language) description of thefeatures and translated them into CTL as directly as possible.(8) Empty:The lift will not arrive empty at a oor unless the button on that landingwas pressed.AG (lift.floor=i & lift.door=open & lift.empty-> landingButi.pressed)(9) Empty: (in MODULE lift)The lift will honour requests from within the lift as long as it is not empty.AG 8i: (liftButi.pressed & !empty)-> AF ((floor=i & door=open) | empty)(10) Overloaded: (in MODULE lift)The doors of the lift cannot be closed when the lift is overloaded.!EF (overload & door=closed)(11) Overloaded: (in MODULE lift)The lift will not move while it is overloaded.AG (floor=i & overload -> A[floor=i W !overload])(12) Parking: (in MODULE lift)The lift will not remain idle inde�nitely at any oor other than oor 1.AG 8i 6= 1: !EG(floor=i & door=closed)(13) Lift-23-full: (in MODULE lift) 17

Car calls have precedence when the lift is 23 full (indicated by the agtt-full).AG 8i 6= j: ((tt-full& liftButi.pressed & !liftButj.pressed)-> A [!(floor=j & door=open)U ((floor=i & door=open)| !tt-full | liftButj.pressed)])(14) Executive Floor:The lift will answer requests from the executive oor (lift.ef).AG (lift.ef=i-> A[(landingButi.pressed -> AF(lift.floor=i))W !lift.ef=i])5.3 Feature interactions in the lift systemOur method provides a framework to plug these di�erent features into the liftsystem, and by examining the result, to witness feature interactions. The SFItool integrates one or more of the features, in a given order, into the basesystem. The result of our experimentation with the features for the lift systemis summarised in table 1.Each row represents a combination of the base system and some features, andeach column represents a property which SMV has checked against the relevantsystems. The �rst row is the unfeatured lift system; rows 2{6 represent thebase system with just one feature, and the remaining rows represent the basesystem with two features. The order in which two features are added mattersin general. In those cases where exactly the same speci�cations are satis�ed,we write F1 �F2 and list just one ordering, otherwise we write F1+F2. (Thus,inspection of the table reveals that the only features which do not commuteare Lift-23-full and Executive Floor: a type IV interaction.)The properties, represented by columns in the table, are divided into twogroups. Properties 1{7, to the left of the double line, are properties whichapply to any lift system, featured or not. We can see which properties arebroken by the addition of various features.To the right of the double line are properties 8{14 which are designed to testthe integration of speci�c features. Whenever there is a cross in the right-hand part of the table, we have detected some kind of feature interference. Arequirement of one of the features is not satis�ed in the presence of the otherfeature. This initial diagnosis has to be followed by a closer look at the featuresand the property concerned to �nd out the reasons (and the seriousness) ofthe interference. 18

Table 1Feature interactions for the lift systemProperty (see sections 5.1.1 and 5.2.1)Feature(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14no features p p p p p p p | | | | | | |Empty p � � p p p p p p | | | | |Overloaded � � � p p p p | | p p | | |Parking p p p p � p p | | | | p | |Lift-23 -full � p p p p p p | | | | | p |Exec. Floor � � p p p p p | | | | | | pOverloaded* Empty � � � p p p p � � p p | | |Parking* Empty p � � p � p p p p | | p | |Lift-23 -full* Empty � � � p p p p p p | | | � |Exec. Floor* Empty � � � p p p p p � | | | | pParking* Overloaded � � � p � p p | | p p p | |Lift-23 -full* Overloaded � � � p p p p | | p p | � |Exec. Floor* Overloaded � � � p p p p | | p p | | �Lift-23 -full* Parking � p p p � p p | | | | p p |Exec. Floor* Parking � � p p p p p | | | | p | pExec. Floor+ Lift-23 -full � � p p p p p | | | | | p �Lift-23 -full+ Exec. Floor � � p p � p p | | | | | � �p: property holds; �: property does not hold; | : property not applicableWe can see that most feature interferences are of type I or II (cf. page 11),respectively, depending on the order of integration. Only combination Lift-23-full + Executive Floor produces a type III interaction. As mentioned abovethese features also exhibit a type IV interaction.For example, in the line \Overloaded + Empty" we can see that one of theviolated properties is about guaranteed service for the lift with the \Empty"19

feature. Obviously this cannot be expected to hold for an overloaded lift sincewe already know that the \Overloaded" feature can block the lift. (Servicewill still be guaranteed as long as overload is not true, but we omitted thisproperty from the table.)The reason for the second violation of a property of \Empty" by integrating\Overloaded" is quite di�erent. Here the violation stems as much from theway we coded the property in CTL (AG (lift.floor=i & lift.door=open& lift.empty -> landingButi.pressed)) as from the way the system andthe features were coded. Essentially, in the base system, the lift would neverstay at the same oor with its doors open for more than one step; and thebuttons are reset when in that step. (Cf. property 5 in section 5.1.) With the\Overloaded" feature however it can happen that the lift is forced to keep itsdoors open { the premise of the implication holds, but the button has beenreset (landingButi.pressed = false).We see that the violation occurs when both the ag overload and emptyare true. 6 Obviously, in reality a lift can never be overloaded and emptyat the same time, but our veri�cation software and the feature integratorcannot know that. One possible solution would be to alter the features to takeaccount of this constraint. However, this would contravene the modularityand independence of the features, so the best solution is to design anotherfeature that implements the constraint, by either setting overload to falsewhen empty is true or vice versa.6 Case study 2: the telephone systemOur second case study is a simple version of the Plain Old Telephone System(POTS). Features we have modelled for integration into our model of POTSinclude:Call Waiting (CW) When the subscriber is engaged in a call, and there isa second incoming call, the subscriber is noti�ed and the second call is puton hold. The subscriber can switch between the two calls at will. A callerwill hear an announcement while her call is on hold.Call Forward Unconditional (CFU) All calls to the subscriber's phoneare diverted to another phone.Call Forward on Busy (CFB) All calls to the subscriber's phone are di-verted to another phone, if and when the subscriber's line is busy.6 The trace that SMV produces demonstrates this. A little reasoning shows thatan interference is inevitable when overload = empty = 1.20

Call Forward on No Reply (CFNR) All calls to the subscriber's phonewhich are not answered after a certain amount of time, are diverted toanother phone.Ring Back When Free (RBWF) If the user gets the busy-tone on call-ing another line, she can choose to activate RBWF, which will attempt toestablish a connection with that line as soon as it becomes idle.Terminating Call Screening (TCS) This feature inhibits calls to the sub-scriber's phone from any number on the screening list chosen by the sub-scriber. The caller will hear an announcement to the e�ect that her call isbeing rejected.Originating Call Screening (OCS) This feature inhibits calls from thesubscriber's phone to any number from a set chosen by the subscriber. Anyattempt to ring such a number will yield an announcement.Automatic Call Back (ACB) This feature records the number of the lastcaller to the subscriber's phone, which the subscriber can choose to ringdirectly, without dialling the number.
6.1 The base system (POTS)We have built an SMV description of a network of four synchronous phones.The behaviour of each phone is given by the �nite automaton shown in �gure 7,plus one variable, dialled, for each phone which indicates the phone to whichit is connected (or to which it is trying to connect). Initially the phone is instate idle; from there, it may move to ringing (if someone rings it) or todialt (if someone lifts the handset). Dialt, ringingt, and busyt abbreviatedial-tone, ringing-tone, and busy-tone, respectively. Talking represents thestate where the phone is connected in a conversation which it initiated, whiletalked means that the conversation was initiated by someone else. Endedmeans that the party to which the phone was connected has hung up.The variable dialled determines the other copy of the phone automatonwith which these transitions have to synchronise. User input is simulated bynon-determinism: the number to be dialled is non-deterministically chosen,and when there is more than one transition from a state, one is chosen non-deterministically. If a transition has to synchronise with a transition in anotherphone (indicated by a dotted line in the diagram), it can only be chosen if theother phone chooses the corresponding transition. In detail, the transitionsare synchronised as follows: 21

ringingidle

ended

talking

ringingt

dialt

busyt

talked

trying

(Dotted lines indicate synchronising transitions.)Fig. 7. The automaton for a single phone.trying ! ringingt with idle ! ringingringingt ! idle with ringing ! idleringingt ! talking with ringing ! talkedtalking ! idle with talked ! endedtalking ! ended with talking ! idle.Part of the code for the phone module can be seen in �gures 8 and 9. In thispiece of code one can also see how the synchronisation mechanism helps toavoid the race condition arising when several phones try to contact the sameline at the same time. (In SMV we do this by using the next operator on theright hand side of an assignment.)As it turned out, this model quickly grew too large to verify when we addedfeatures, since every phone was extended with the features. Therefore we pro-ceeded to a reduced model with only two complete phones, and one termi-nating and one originating phone (thus, still four in total). In the diagram(�gure 7), the left hand side represents the originating line, and the righthand side the terminating line, both including the states idle and ended.Additionally, each feature was only added to one of the (complete) phones.A positive side-e�ect of this di�erentiation is that one can distinguish theinteractions according to how features are distributed over the system.For the features we modelled, we argue that the reduced model still exhibitsall possible interactions of two feature instances if we go through all relevantcombinations.First we argue that four (complete) phones are su�cient. Each feature dealswith at most three parties, and each phone can only originate one call (we22

MODULE phone (X,B,C,D,p) −− parameters: the 4 numbers, and the array of phones
−− X is our own number

VAR
 dialled : {0,1,2,3,4};
 st : {idle,dialt,trying,busyt,ringingt,talking,ringing,talked,ended};

ASSIGN
 init(dialled) := 0;
 next(dialled) := case
 next(st=idle) : 0;
 dialled = 0 & next(st)=trying : {1,2,3,4};
 1 : dialled;
 esac;

 init(st) := idle;
 next(st) := case
 st=idle :
 case
 p[B].st=trying & p[B].dialled=X & next(p[B].st=ringingt) : ringing;
 p[C].st=trying & p[C].dialled=X & next(p[C].st=ringingt) : ringing;
 p[D].st=trying & p[D].dialled=X & next(p[D].st=ringingt) : ringing;
 1 : {idle,dialt};
 esac;

 st=ringing :
 case
 p[B].st=ringingt & p[B].dialled=X & next(p[B].st)=idle : idle;
 p[C].st=ringingt & p[C].dialled=X & next(p[C].st)=idle : idle;
 p[D].st=ringingt & p[D].dialled=X & next(p[D].st)=idle : idle;
 1 : {ringing,talked};
 esac;

 st=dialt : {dialt,trying};

 st=busyt : {idle,busyt};

 st=trying :
 case
 dialled=B & p[B].st=idle
 & ((p[C].st=trying & p[C].dialled=B)−> next(p[C].st)=busyt)
 & ((p[D].st=trying & p[D].dialled=B)−> next(p[D].st)=busyt) :ringingt;
 dialled=C & p[C].st=idle
 & ((p[B].st=trying & p[B].dialled=C)−> next(p[B].st)=busyt)
 & ((p[D].st=trying & p[D].dialled=C)−> next(p[D].st)=busyt) :ringingt;
 dialled=D & p[D].st=idle
 & ((p[B].st=trying & p[B].dialled=D)−> next(p[B].st)=busyt)
 & ((p[C].st=trying & p[C].dialled=D)−> next(p[C].st)=busyt) :ringingt;
 1 :busyt;
 esac;

 st=ringingt :
 case
 dialled=B & next(p[B].st)=talked : talking;
 dialled=C & next(p[C].st)=talked : talking;
 dialled=D & next(p[D].st)=talked : talking;
 1 : {ringingt,idle};
 esac;Fig. 8. The SMV code for the phone system. (1/2)did not model Three Way Calling). Therefore a second feature may be addedon any type of phone: one that is a�ected by the �rst feature in some way, orone that is not connected to it in any way. This gives rise to all interestingbehaviours.The main premise for our reasoning is that the e�ects of a feature are localised,i.e. only those phones which participate in a call a�ected by an instance ofthe feature, exhibit altered behaviour. We will use the term con�guration todescribe such a set of phones. To parties outside a con�guration, the phoneswithin the con�guration behave as usual. 7 A direct consequence of this as-7 Should this not be the case (wrt. the properties we check), it would be detectedwhen we test for successful integration of the feature: the feature would a�ect theoperation of the network as seen by third parties, that have nothing to do with thefeature instance or its subscriber. 23

 st=talked :
 case
 p[B].st=talking & p[B].dialled=X & next(p[B].st)=idle : ended;
 p[C].st=talking & p[C].dialled=X & next(p[C].st)=idle : ended;
 p[D].st=talking & p[D].dialled=X & next(p[D].st)=idle : ended;
 1 : {idle,talked};
 esac;

 st=talking :
 case
 dialled=B & p[B].st=talked & next(p[B].st)=idle : ended;
 dialled=C & p[C].st=talked & next(p[C].st)=idle : ended;
 dialled=D & p[D].st=talked & next(p[D].st)=idle : ended;
 1 : {idle,talking};
 esac;

 st=ended : {ended,idle};
 esac;

−− Fairness constraints to ensure that a phone does not remain in a state
−− indefinitely. A phone may still alternate between, eg, idle and dialt.
FAIRNESS !st=idle
FAIRNESS !st=dialt
FAIRNESS !st=trying
FAIRNESS !st=busyt
FAIRNESS !st=ringingt
FAIRNESS !st=talking
FAIRNESS !st=ringing
FAIRNESS !st=talked
FAIRNESS !st=ended

MODULE main
VAR
 ph[1] : phone (1,2,3,4,ph);
 ph[2] : phone (2,1,3,4,ph);
 ph[3] : phone (3,1,2,4,ph);
 ph[4] : phone (4,1,2,3,ph);Fig. 9. The SMV code for the phone system. (2/2)sumption is that we only need to look at overlapping con�gurations whenchecking combinations of features. In essence, we are taking some of the choiceaway from the model checker, and in turn we need to ensure that we test allrelevant cases. Checking di�erent ways of overlapping will in general happenthrough the model checking process.For the features we modelled in our case study, con�gurations comprise one,two or three phones. Only Call Waiting a�ects three phones, since the CallForwarding features operate by re-routing the call { the forwarding phone iscut out of the con�guration as soon as it diverts the call, and we are left withtwo phones in a standard call situation. In fact, the forwarding phone onlyprovides the number to forward to. It does not have any new transitions todeal with forwarding, that functionality resides entirely in the phone whichoriginated the call.From this it is clear that overlapping con�gurations in a system with only twofeature instances (from the set of features we consider) contain at most fourdistinct phones.The argument for the soundness of the abstraction is more di�cult, and de-pends on the fact that any phone can only originate one call, among others.Here we have to look at the particular features in more detail and determinewhat \roles" the phones in a con�guration can take.24

To illustrate this type of reasoning we look at Call Waiting.Call Waiting has up to three distinct \roles": the subscriber, the party thatthe subscriber called, and a (subsequent) caller to the subscriber. 8 Obviously,the non-subscriber roles can be �lled by the truncated phones, so that we stillhave a full phone to apply any other feature to. (Of course, this phone mayalso become part of a Call Waiting con�guration.) This phone with its featureinstance may now exercise the behaviour wrt. all possible roles in the CallWaiting con�guration. Similar arguments apply for other features; however,they are simpler since Call Waiting is the only feature that a�ects up to threephones at once.6.2 Integrating features into the telephone systemAs an illustration of the feature construct we show the Ring Back When Freefeature in �gure 10. When looking at this example the reader should keepin mind that this code was written with the goal to run it through a modelchecker { and that the syntax which SMV accepts is rather limited. So fore�ciency reasons, RBWF will only store one number at a time, and we do notallow cancelling RBWF once it is activated, until a call between the subscribedphone and the phone with the stored number has been established.The REQUIRE section states that the feature needs a MODULE phone with atleast the named parameters, and within that module, variables dialled andst are required, and the domain of dialled has to include at least the values0 through 4, and that of st the values idle, trying, busyt, talking andtalked.The code given in the INTRODUCE section declares two new variables, rbwf-useand rbwf-number, and de�nes which number to store in rbwf-number, and un-der which conditions RBWF may be activated (rbwf-use=1) and deactivated(rbwf-use=0).Finally, in the CHANGE section we de�ne how the new variables interact withthose of the base system. For the RBWF feature, the CHANGE section statesthat when both the subscriber's phone and the phone whose number wasstored are idle, the subscriber's phone should try to connect to the phonewith the stored number.We do not model the subscriber's phone ringing to alert her to the fact thatthe RBWF call is being attempted, although this would not be di�cult; infact this could be implemented as another feature. It would, however, slow8 If both calls are incoming calls, the situation is symmetrical and there are onlytwo distinct roles. 25

FEATURE rbwf −− Ring Back When Free
REQUIRE
 MODULE phone(X,B,C,D,p) −− req’d parameters: our number and those of the
 VAR −− other phones, and the array of phones
 dialled : {0,1,2,3,4};
 st : {idle,trying,busyt,talking,talked};

INTRODUCE
 MODULE phone
 VAR
 rbwf−number : {0,1,2,3,4}; −− to store the number we’re trying to reach
 rbwf−use : boolean; −− true if RBWF activated
 ASSIGN
 init(rbwf−number) := 0;
 next(rbwf−number) :=
 case
 rbwf−number=0 −− don’t allow changing the stored number
 & st=busyt & rbwf−use : dialled;
 !rbwf−use : 0 −− reset stored number on deactivation
 1 : rbwf−number;
 esac;
 init(rbwf−use) := 0;
 next(rbwf−use) :=
 case
 rbwf−use −− only deactivate if call established (either way)
 &((dialled=rbwf−number & st=talking)
 |(st=talked
 &(rbwf−number=B & p[B].st=talking & p[B].dialled=X)
 &(rbwf−number=C & p[C].st=talking & p[C].dialled=X)
 &(rbwf−number=D & p[D].st=talking & p[D].dialled=X))) : 0;
 !rbwf−use & st=busyt : {0,1}; −− may activate RBWF on busy−tone
 1 : rbwf−use; −− otherwise, keep same value
 esac;

CHANGE
 MODULE phone
 IF (rbwf−use & st=idle −− if RBWF is active and our phone is idle
 &((rbwf−number=B & p[B].st=idle) −− and the stored phone is idle,
 |(rbwf−number=C & p[C].st=idle) −− try to connect to it
 |(rbwf−number=D & p[D].st=idle)))
 THEN IMPOSE next(dialled) := rbwf−number;
 next(st) := trying;

END Fig. 10. The code for the Ring Back When Free featuredown the model checking signi�cantly, as we would have to introduce anothervariable to indicate the special ringing.Apart from the generic properties of the phone system listed in the next section(6.2.1), we also want to verify that the base system with the feature actuallybehaves as the feature speci�cation demands. For example, in the case ofRWBF we also require the following (omitted in �gure 10):� If RBWF is active, the stored number will be dialled as soon as possible (aslong as RBWF is active).AG ((ph[i].rbwf-use & ph[i].rbwf-number=j)-> A[(ph[i].st=idle & ph[j].st=idle-> AX ph[i].dialled=j)W !ph[i].rbwf-use])� The stored number is reset when a call to the stored number is completed.26

AG 8i 6= j: ((ph[i].rbwf-number=j& ph[i].st=talking & ph[i].dialled=j)-> AF ph[i].rbwf-number=0)The stored number is also reset when the target party calls.AG 8i 6= j: ((ph[i].rbwf-number=j & ph[i].st=talked& ph[j].dialled=i & ph[j].st=talking)-> AF ph[i].rbwf-number=0)� RBWF is deactivated when a call to the stored number is completed.AG 8i 6= j: ((ph[i].rbwf-number=j& ph[i].st=talking & ph[i].dialled=j)-> AF ph[i].rbwf-use=0)RBWF is also deactivated when the target party calls.AG 8i 6= j: ((ph[i].rbwf-number=j & ph[i].st=talked& ph[j].dialled=i & ph[j].st=talking)-> AF ph[i].rbwf-use=0)As expected the base system plus the Ring Back When Free feature satis�esthese speci�cations. After all, these were the requirements for the feature.We also found that RBWF does not violate any of the properties that westipulated for the base system. (See table 3, and the following section.)6.2.1 Properties of the basic phone system.These are the properties that we have veri�ed for the base system. (Again weuse the meta-notation introduced on page 13.)To save space, we have omitted from table 3 some more technical properties,but also these rather intuitive properties of the base system:� The correct phone will ring: if phone i is trying to contact phone j andconsequently gets the ringing-tone, then phone j must be ringing.AG ((ph[i].st=trying & ph[i].dialled=j)-> AX (ph[i].st=ringingt -> ph[j].st=ringing))� Phone i can be talked to; and if it is being talked to, there has to be anotherphone talking to it.EF ph[i].st=talkedAG (ph[i].st=talked<-> 9j:(ph[j].st=talking & ph[j].dialled=i))� Phone i can be ringing; and if it is ringing, there has to be another phonethat has dialled it and is getting the ringing-tone.EF ph[i].st=ringingAG (ph[i].st=ringing<-> 9j:(ph[j].st=ringingt & ph[j].dialled=i))The results for the following properties are given in table 3:27

(1) Any phone may call any other phone.AG 8i 6= j: EF (ph[i].st=talking & ph[i].dialled=j)(2) If phone i is talking to phone j, the call will eventually end; and this willbe by one party hanging up (st=idle) and the other party still o�-hook(st=ended). (This holds only with \weak" fairness, which ensures that aphone cannot remain in the same state inde�nitely.)AG ((ph[i].dialled=j & ph[i].st=talking)-> AF ((ph[i].st=idle & ph[j].st=ended) |(ph[j].st=idle & ph[i].st=ended)))(3) When a phone is in state trying, it will always get ringing-tone or busy-tone in the next step.AG (ph[i].st=trying-> AX (ph[i].st=ringingt | ph[i].st=busyt))(4) A list of SPECs stating that if a phone is talking, the dialled phone mustbe talked to.AG (ph[i].st=talking & ph[i].dialled=j-> ph[j].st=talked)(5) Never can two phones be talking to the same third phone.AG 8i 6= j: !(ph[i].st=talking & ph[i].dialled=k &ph[j].st=talking & ph[j].dialled=k)(6) The dialled number cannot change without replacing the hand-set. (Thisonly holds with \weak" fairness, otherwise one has to use the `weak until'connective, Cf. page 6.)AG ((ph[i].dialled=j & ph[i].st=trying)-> (A[ph[i].dialled=j U ph[i].st=idle]))
6.2.2 Properties for the featured phone system.We derived the following requirements from the description of the servicesthat these features implement and veri�ed them for the respective features.For lack of space we only give one or two properties for each feature and omitsome of the more technical properties that we veri�ed.(7) Call Forwarding Unconditional:If a forwarding number is given, the phone will never ring. (The forward-ing number is chosen at random at initialisation but does not changeafter that.)AG (!ph[i].cfu-forw=0-> AG !(ph[i].st in fringing,talkedg))(8) Call Forwarding on Busy:If the subscriber's phone is busy, incoming calls will terminate at thephone with the forwarding number. (Again, the forwarding number re-mains �xed.) 28

AG 8i 6= j 6= k: ((ph[i].cfb-forw=j & !ph[i].st=idle& ph[k].dialled=i & ph[k].st=trying)-> AF(ph[k].dialled=j & ph[k].st in fbusyt,ringingtg& (ph[k].st=ringingt -> ph[j].st=ringing)))(9) Call Waiting:If there are two calls to the subscribers phone, exactly one party will hearthe `onhold'-message. (In other words, at most one party will hear the`onhold'-message at any given time.)AG 8i 6= j 6= k: (ph[i].st=talking & ph[i].dialled=k &ph[j].st=talking & ph[j].dialled=k-> (ph[i].cw-msg <-> !ph[j].cw-msg))(10) Call Waiting:The `active' party is never on hold. (In the Call Waiting feature, dialledholds the value of the party which the subscriber is currently talking to.)AG (!ph[i].dialled=0 -> !ph[i].onhold=ph[i].dialled)(11) Ring Back When Free:If Ring Back When Free is activated, call completion will be attemptedwhen possible, i.e., whenever both phones are idle.AG ((ph[i].rbwf-use & ph[i].rbwf-number=j)-> A[(ph[i].st=idle & ph[j].st=idle-> AX ph[i].dialled=j)W !ph[i].rbwf-use])(12) Ring Back When Free:The stored number will be reset when a call between the subscriber andthe phone with the stored number is established. One formula for callsinitiated by the subscriber and one for incoming calls. (These two couldbe rolled into one.)AG ((ph[i].rbwf-number=j & ph[i].st=talking& ph[i].dialled=j) -> AF ph[i].rbwf-number=0)AG (ph[i].rbwf-number=j & ph[i].st=talked &ph[j].dialled=i & ph[j].st=talking-> AF ph[i].rbwf-number=0)(13) Terminating Call Screening:Calls from numbers on the screening list (array tcs) are never accepted.AG (ph[i].tcs[j]-> AG !(ph[j].dialled=i& ph[j].st in fringingt,talkedg))(14) Originating Call Screening:Calls to numbers on the screening list (array ocs) never succeed.AG (ph[i].ocs[j]-> AG !(ph[i].dialled=j& ph[i].st in fringingt,talkingg))
29

6.3 More features for the telephone systemSo far we have only veri�ed the correct operation of a single feature addedto the base system. More interesting with view to feature interaction is thequestion if adding other features leads to violations of the speci�cations whichthe base system plus RBWF satis�es, or of speci�cations which are satis�edby the base system plus the respective other features.For example, when we added RBWF to POTS+CFB, the only properties thatwere not preserved, were already violated by CFB on its own:� lines calling the CFB subscriber do not have to go immediately from statetrying to state busyt or ringingt because the diversion takes one execu-tion step;� the dialled number may change without replacing the hand-set when it isupdated by the forwarding feature.The same was true when we added the features in the opposite order (�rstCFB, then RBWF) and irrespective of whether the same phone subscribed toboth of these features or they were activated for two di�erent phones. 9 Thisleads us to the conclusion that Call Forwarding on Busy and Ring Back WhenFree do not interfere with each other, at least with respect to our speci�cationof the system.With other features, however, RBWF is not always so well behaved. Whenwe added RBWF to POTS+CW, we found that that RBWF did not respectthe speci�cations introduced for CW (Type II interaction): this combinationof features violated a requirement for CW (property (9) in section 6.2.2). Theviolated property states, that when there are two callers to a CW subscriber,exactly one of them is on hold at any given time.AG (ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg))where ph[1] is the phone subscribing to CW and the ag cw-msg indicateswhether the respective phone is on hold. The trace that SMV produces as acounter-example shows up the following behaviour:(1) ph[1] tries to ring ph[4] when ph[4] is busy, and ph[1] activatesRBWF;(2) ph[1] then calls ph[2] (successfully);9 The latter result was omitted from table 3.30

(3) using CW, ph[1] accepts an incoming call from ph[3], which is put onhold;(4) �nally ph[1] hangs up on ph[2], while the call from ph[3] is on holdand ph[4] is idle.(5) At this moment RBWF takes action: RBWF assumes that ph[1] is nowidle and ready to complete the call to ph[4], while, in fact, CW shouldlet the subscriber know that she still has a call on hold.At �rst sight the trace that SMV produced looked rather pathological, butthat is just because a counter-example has to be a \worst case" scenario. CWmay still work correctly as may be checked byEG (ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg))which turns out to be true. However, this only happens when RBWF is notactivated, as can be veri�ed by checkingEG ((ph[2].st=talking & ph[2].dialled=1 &ph[3].st=talking & ph[3].dialled=1-> (ph[2].cw-msg <-> !ph[3].cw-msg)) -> rbwf-use=0)which also holds.If, on the other hand, we integrate RBWF �rst and then CW, the systemviolates the RBWF requirements (Type II), namely that call completion willbe attempted whenever both the subscriber's phone and the phone whichRBWF should monitor become idle. This is in a sense symmetrical to theabove interference, since now CW overrides RBWF when both features areactivated.Table 2Interferences between features for the phone systemCW CFU CFB RBWF RBWF1 TCS OCSCW | IV IV II, IV p IV II4CFU I, IV | IV p p p pCFB I, II, IV II, IV | p p II IIRBWF II, IV p p | p p pRBWF1 p p p p | p pTCS II, IV p I p p | pOCS I4 p I p p p |31

Table 2 indicates interferences between features for the phone system. A tickdenotes that there is no interference, i.e. that both features work correctlytogether and it does not matter in what order they are integrated. Whenthat is not the case, the table gives the types of interaction that we observed,according to the classi�cation in 4. The superscripted numbers have the samemeanings as in Table 3 and are explained below.Table 3 summarises our experimental �ndings. Again, rows and columns re-present feature combinations and properties respectively. A `+' between twofeatures indicates that the order they are integrated into the system matters,i.e. di�erent properties are satis�ed by the two di�erent orderings; while a`�' indicates that the order does not matter. In these tables, all features aresubscribed to by the same phone, unless stated otherwise (see below). Thefollowing notes interpret the superscripted numbers:1 Ring Back When Free subscribed to by a di�erent phone.2 Call forwarding on Busy/Unconditional subscribed to by two phones.3 Call Screening subscribed to by two phones.4 This is clearly an artifact, generated by the fact that Call Waiting storesthe currently active party in dialled, regardless whether that line is theoriginating or terminating line of the current connection. Hence OCS willinterrupt a Call Waiting call that was established by a call from a phone onthe screening list to the OCS subscriber.It is obvious from Table 3 that the interactions of Call Forwarding featureswith Call Screening features we could detect were determined by our decisionnot to model call legs. Had we modelled call legs, the combination of a CallForwarding feature with a Call Screening feature would have violated the CallScreening property, since the extra call leg would interfer with determiningthe originator and terminator of a call, which is essential for screening thecall.7 ConclusionsOur approach to the feature-interaction problem gives features the status of�rst-class citizens; we could think of this as feature orientation. In concreteterms, this means that features are compact textual units in a speci�cationor program, and that they are as independent as possible of the base systemdescription, and features are independent of one another. In this way, we de-velop a framework for plug-and-play features: features can be added, removed,re-ordered or re-designed in order to explore and resolve feature interactions.The feature construct is most useful when the base system is not written in a`feature ready' way. When one is dealing with a `feature ready' speci�cation32

Table 3Feature interactions for the telephone systemProperty (see sections 6.2.1 and 6.2.2)Feature(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14POTS p p p p p p | | | | | | | |CW p � � � � � | | p p | | | |CFU � p � p p � p | | | | | | |CFB p p � p p � | p | | | | | |RBWF p p p p p p | | | | p p | |TCS � p p p p p | | | | | | p |OCS � p p p p p | | | | | | | pCW + CFU � � � � � � p | p p | | | |CFU + CW � � � � � � p | p � | | | |CW + CFB p � � p � � | p p p | | | |CFB + CW p � � p � � | � p � | | | |CW + RBWF p � � � � � | | � p p p | |RBWF + CW p � � � � � | | p p � p | |CW * RBWF1 p � � � � � | | p p p p | |CW + TCS � � � � � � | | p p | | p |TCS + CW p � � � � � | | p p | | � |CW * OCS � � � � � � | | �4 p | | | pCFU + CFB � p � p p � p p | | | | | |CFB + CFU � p � p p � p � | | | | | |RBWF * CFU � p � p p � p | | | p p | |TCS * CFU2 � p � p p � p | | | | | p |OCS * CFU2 � p � p p � p | | | | | | pRBWF * CFB p p � p p � | p | | p p | |TCS * CFB2 � p � p p � | � | | | | p |OCS * CFB2 � p � p p � | � | | | | | pTCS * RBWF3 � p p p p p | | | | p p p |OCS * RBWF3 � p p p p p | | | | p p | p33

(e.g. the \Intelligent Network" architecture for telephony [15]), this speci�ca-tion already de�nes the entities which can be manipulated by features andinterfaces for these manipulations. Moreover the integration process is dic-tated by the architecture. Hence, in such a context, a feature construct wouldmerely provide a uniform notation for features but would not add furthermodularisation.The speci�er of a feature needs a good understanding of the base system inorder to make the feature operate correctly since the features are quite de-pendent on the underlying system. However, when designing a feature, thedeveloper does not need to know about all other features that can be addedto the system. With a feature construct, feature integration and interaction de-tection are completely automatic. Interferences between features are detectedby model checking, and illustrated with traces, which help the developer toresolve the interferences.The combination of feature integration and model checking has proved to bevery useful. However, like all model checking applications, it su�ers from thestate space explosion problem. To overcome the state space explosion we wereforced to use a rather abstract model. Due to the level of abstraction we chose,we missed some anticipated interactions, while on the other hand detectingsome spurious interactions.Our experiences with SMV as the underlying language were mixed. WhileSMV's compact language made it easy to de�ne the feature construct andfeature integration and the feature construct proved easy to use, we did �ndit not expressive enough for some purposes. Especially the restrictions on theusage of arrays and the lack of primitives for synchronisation and communica-tion were cumbersome. On the other hand, the simplicity of SMV resulted ina small and simple feature construct, much simpler than our proposed featureconstruct for Promela [23].Choosing SMV also meant that we were committed to the veri�cation of prop-erties stated in a logic, rather than testing processes for bisimulation or re-�nement, or checking generic properties such as deadlock-freedom. On theone hand, property based veri�cation has the drawback that one might missrelevant aspects of the system; on the other hand, for most systems thereis no general property that is not subject to changes by features. (The onlygenerally desirable properties are probably deadlock- and livelock-freedom.)As a further development, one might want to automatically deduce some in-teresting properties from the feature implementation, such as checks that afeature's triggering conditions can actually arise in the system. An extensionof this would be to check for overlaps in the conditions of various features, butwe haven't explored that direction, yet.34

Another positive result of de�ning a feature construct and the process of fea-ture integration is that it allows a formal analysis of the semantics of features.This is the subject of another paper ([20]).We expect that our approach will bene�t from advances in veri�cation technol-ogy. Two developments look especially promising: (semi-)automatic abstrac-tion techniques [7,24] and simulation techniques that exercise the \interesting"parts of the system with good coverage, as demonstrated in [9].References[1] G. C. Barney and S. M. dos Santos. Elevator Analysis, Design and Control.IEE Control Engineering Series 2. Peter Peregrinus Ltd., 1985.[2] M. Berry. Proving properties of the lift system. Master's thesis, School ofComputer Science, University of Birmingham, 1996.[3] L. G. Bouma and Hugo Velthuijsen, editors. Feature Interactions inTelecommunications Systems, Amsterdam, The Netherlands, May 1994. IOSPress.[4] K. E. Cheng and T. Ohta, editors. Feature Interactions inTelecommunications III, Tokyo, Japan, October 1995. IOS Press.[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: areimplementation of SMV. In B. Ste�en and T. Margaria, editors, Proceedingsof the International Workshop on Software Tools for Technology Transfer(STTT-98), BRICS Notes Series, pages 25{31, Aalborg, 1998. Available fromhttp://afrodite.itc.it:1024/~cimatti/.[6] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-stateconcurrent systems. In A Decade of Concurrency, number 803 in LectureNotes in Computer Science, pages 124{175. Springer Verlag, 1993.[7] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACMTransactions on Programming Languages and Systems, 16(5):1512{1542, 1994.[8] P. Dini et al., editors. Feature Interactions in Telecommunications andDistributed Systems IV, Montreal, Canada, June 1997. IOS Press.[9] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incrementalfeature validation: a synchronous point of view. In Kimbler and Bouma [17],pages 262{275.[10] Formal Systems (Europe) Ltd, Oxford, UK. Failures-Divergence Re�nement,Oct 1997.[11] Nancy Gri�eth, editor. 1st International Workshop on Feature Interactions inTelecommunications Software Systems, St. Petersburg, Florida, USA,December 1992. 35

[12] C. A. R. Hoare. Communication Sequential Processes. International Series inComputer Science. Prentice Hall, 1985.[13] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,1991.[14] M. R. Huth and M. D. Ryan. Logic in Computer Science: Modelling andReasoning about Systems. Cambridge University Press, 1999.[15] ITU-T. Intelligent Network { ITU Recommendations Q.1200 series, 1995.[16] S. Katz. A superimposition control construct for distributed systems. ACMTransactions on Programming Languages and Systems, 15(2):337{356, April1993.[17] K. Kimbler and L. G. Bouma, editors. Feature Interactions inTelecommunications and Software Systems V, Lund, Sweden, Sept 1998. IOSPress.[18] K. McMillan. The SMV language. Available fromwww-cad.eecs.berkeley.edu/~kenmcmil, June 1998.[19] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.[20] M. Plath and M. Ryan. The semantics of a feature construct for SMV: A casestudy in non-monotonic composition. Technical report, School of ComputerScience, University of Birmingham, 1999. Available asftp://ftp.cs.bham.ac.uk/pub/tech-reports/1999/CSR-99-10.ps.gz.[21] M. C. Plath and M. D. Ryan. Plug-and-play features. In Kimbler and Bouma[17], pages 150{164.[22] M. C. Plath and M. D. Ryan. SFI: a feature integration tool. Advances inComputer Science, pages 201{216, 1999.[23] Malte Plath and Mark Ryan. A feature construct for Promela. In SPIN'98 {Proceedings of the 4th SPIN workshop, Nov 1998. Available ashttp://netlib.bell-labs.com/netlib/spin/ws98/plath.ps.gz.[24] A. Pnueli. Veri�cation by �nitary abstraction. In SPIN'98 { Proceedings ofthe 4th SPIN workshop, Nov 1998. Available fromwww.wisdom.weizmann.ac.il/~amir/invited-talks.html.

36

