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tThe paper is a theoreti
al study of a generalisation of the lexi
ographi
 rule for 
ombiningordering relations. We de�ne the 
on
ept of priority operator: a priority operator mapsa family of relations to a single relation whi
h represents their lexi
ographi
 
ombinationa

ording to a 
ertain priority on the family of relations.We present four kinds of results.� We show that the lexi
ographi
 rule is the only way of 
ombining preferen
e relationswhi
h satis�es natural 
onditions (similar to those proposed by Arrow [1℄).� We show in what 
ir
umstan
es the lexi
ographi
 rule propagates various 
onditionson preferen
e relations, thus extending Grosof's [14℄ results.� We give ne
essary and suÆ
ient 
onditions on the priority relation to determine variousrelationships between 
ombinations of preferen
es.� We give an algebrai
 treatment of this form of generalised prioritisation. Two opera-tors, 
alled but and on the other hand, are suÆ
ient to express any prioritisation. Wepresent a 
omplete equational axiomatisation of these two operators.These results 
an be applied in the theory of so
ial 
hoi
e (a bran
h of e
onomi
s), innon-monotoni
 reasoning (a bran
h of arti�
ial intelligen
e), and more generally whereverrelations have to be 
ombined.1 Introdu
tionThe lexi
ographi
 
ombination of orderings 
onstru
ts a single ordering from severalindividual ones. Traditionally, the individual orderings will order words a

ording1



to their ith letter using alphabeti
al ordering, and the 
ombination will then be theusual ordering of di
tionaries. This 
ombination thus says that a letter on the left ismore important than any letter on its right, thereby giving a priority between letterindi
es. If the �rst letter of the �rst word is stri
tly before the �rst letter of the se
ondword, this �rst word will indeed appear �rst in the di
tionary. In 
ase of ties, these
ond ordering will be used, and so on.In this paper we study a generalisation of this 
ombination of relations, in whi
hthe priority ordering on the indi
es may be an arbitrary order instead of a �nite linearone, and the relations themselves need not be orders.Appli
ations of this work potentially in
lude any appli
ation of the lexi
ographi
rule in 
omputer s
ien
e and arti�
ial intelligen
e, and are therefore varied andwidespread. We mention some of them here:Arti�
ial intelligen
e. Default logi
s have been used in AI for twenty years[13, 5℄.The lexi
ographi
 rule was �rst proposed for prioritised defaults by Lifs
hitz [19,20℄ in the setting of 
ir
ums
ription. Later, Grosof [14℄ re
ognised its appli
a-bility to any preferential logi
, and dubbed it generalised prioritisation. Thelexi
ographi
 rule has also been used for preferential logi
s in Ryan [25℄ andS
hobbens [30℄. In this 
ontext, a priority operator is a poli
y for 
ontrollingwhi
h defaults represent ex
eptions for whi
h other defaults. In the spe
i�

ase of 
ir
ums
ription, a priority operator is a 
ir
ums
ription poli
y. Thelexi
ographi
 rule has also been used in belief revision [28℄.Requirements spe
i�
ation. The requirements that users may spe
ify are oftensoft, and as su
h express a preferen
e over a set of possible implementationsrather than a hard set of implementations. In
onsisten
ies easily arise if therequirements are interpreted as hard, whereas resolving a set of soft require-ments involves �nding a 
ompromise between the preferen
es ea
h requirementdenotes. Priority operators in this setting represent a poli
y for putting togetherthe requirements.Con
retely, the use of default 
onstraints in spe
i�
ations has been proposedfor modelling requirements [4, 30, 26, 27, 15℄. The priority operator used toput together the preferen
es on models these defaults express may be derivedfrom the stru
ture of the spe
i�
ation [26℄, the use of a logi
al 
onne
tive `but'expressing ex
eptions [30℄, or an expli
it hierar
hy [9℄.E
onomi
s. Preferen
es originate from e
onomi
s, and naturally our work 
an alsobe used there. Two subdomains are more parti
ularly 
on
erned:So
ial 
hoi
e. The study of 
ombinations of preferen
es for so
ial 
hoi
e wasinitiated by Condor
et [7℄. Here, ea
h input relation represents the prefer-en
es of a member of the group, and the output represents the preferen
esof the group. This domain has yielded mostly negative results, the mostknown being Arrow's impossibility of 
ombining linear orders under verynatural 
onditions [1℄ re
alled in se
tion 3. In this paper, we show that sur-prisingly, when working in the slightly more general settings of relations, oreven pre-orders, we obtain on the 
ontrary a possibility theorem, yieldingour lexi
ographi
 
ombinations as the only solution. Various extensions ofthe lexi
ographi
 
ombination were also studied in [11, 12, 3, 17, 18℄.2



Multi-
riteria de
ision. Currently these results are more used in a di�erentbran
h of e
onomi
s, multi-
riteria de
ision. Arrow has rewritten his re-sults with this appli
ation in mind in [2℄. Here, the input relations representrankings a

ording to the various relevant 
riteria, and the single outputrepresents their 
ombination, on whi
h the �nal 
hoi
e will be based.This se
tion intuitively introdu
es the problems and the solutions 
onsidered inthis paper. We use an example from E
onomi
s, sin
e su
h examples are readilyexplained from 
ommon sense.Example 1 Claire and Bob have to repla
e their old 
ar. As often, they have di�erent
riteria for sele
ting the new 
ar, although some of them are 
ommon, but rankeddi�erently.The preferen
e of Claire is guided by the following 
riteria (in in
reasing order ofimportan
e):� the maximum speed (M);� the elegan
e of the design (D);� the ease with whi
h it 
an be driven in town (E);� the pri
e (P).The 
riteria for Bob are ranked di�erently:� the ease with whi
h the 
ar 
an be driven in town (E);� the maximum speed (M);� the pri
e (P).Some of these 
riteria are simple, and 
an be dire
tly 
omputed from the te
hni
aldata of the 
ar. Other 
an be de
omposed, say: the ease with whi
h the 
ar 
an bedriven in town (E) is an aggregation of:� the length of the 
ar (L);� its weight (W);� its turning 
ir
le diameter (C);� the presen
e of automati
 transmission (A).Let us say the last one is the most important, the other ones are equally important,but are 
learly expressed in in
omparable units, so that, for instan
e, adding themmakes no sense. The �nal 
hoi
e should at least be Pareto-optimal: no other 
ar willbe better for both Claire and Bob than the one sele
ted.Now, these 
riteria must be appli
able to any spe
i�
 market. In this paper,we do not work dire
tly with numeri
al 
riteria like the ones above. We 
onsiderthe market M 
ontaining e
onomi
 alternatives, in this 
ase the various 
ars thatare available; say M = ft; h; r;m; ng. The numeri
al 
riteria are 
onverted into apreferen
e ordering. For instan
e, if the a
tual 
hara
teristi
s of the 
ars are as in3



t h r m nlength L 3.5 3.5 7.3 5.0 3.7weight W 0.7 0.9 3.5 1.5 0.7turning 
ir
le diameter C 3.2 3.4 6.4 3.4 3.2automati
 transmission A N Y Y N Nmaximal speed M 110 130 180 250 120pri
e P 10 10 100 20 11Table 1: Car 
hara
teristi
stable 1, we forget the numeri
 values to remember only their ordering. For example,for the turning 
ir
le diameter (C), we remember only that t is equivalent to n (inthe notation of the main part of this paper, t R�C n), while n is stri
tly preferredto h (written n R<C h), and so on: in summary, tR�CnR<ChR�CmR<Cr. In some 
ases,no meaningful 
omparison 
an be established, so that both in
omparable alternativesshould be kept in the �nal 
hoi
e. For instan
e a shoe 
annot be 
ompared to a 
ar,say. We write this s R# 
.In the example, all preferen
es are transitive, and this is usually 
onsidered as
ondition for them to be rational. However, many empiri
al studies have shown thatintransitive preferen
es are the norm rather than the ex
eption for human de
isionmakers. Therefore, this study does not assume transitivity, but intends to preserveit when it exists. That is to say, when the underlying preferen
es are transitive, soshould be their 
ombination. We shall use (T) to refer to preservation of transitivity.We assume several other properties of the 
ombination. It should not advantage anyalternative ex
ept from the sele
ted 
riteria (B), and should respe
t the 
riteria whenthey are unanimous (U). Finally, alternatives that are not involved in a 
omparisonshould not in
uen
e the result (I): for instan
e, if m is preferred to n, this should notdepend on whether h is present in the market M or not, but only on the performan
eof m;n for the sele
ted 
riteria.If we a

ept these natural rationality postulates (IBUT), we demonstrate belowthat the problem 
an be expressed by priority graphs, or by algebrai
 expressions.For instan
e, the algebrai
 expressions for the example above are:Claire = M=D=E=PBob = E=M=Pwhere E = (LkWkC)=AResult = BobkClairewhere = expresses priority of the se
ond term, while k puts both sides on equal priority.In this example, our theory shows how to simplify the 
omputations: it is useless torepeat the 
omputation of E for Bob, ofM for Claire, sin
e anyway these 
riteria willbe better taken into a

ount by the other person. So Result = (Mk(D=E))=P givesthe same result more eÆ
iently. It is also 
lear from this expression that h is to be
hosen in the example, without even looking at 
riteria L;W;C;D.Our prin
ipal de�nition is that of priority operator. A priority operator spe
i-�es a way of putting together a family of relations to make a single relation. We4




all these relations preferen
e relations : the idea is that they relate elements of M(interpretations, e
onomi
 alternatives, et
.) a

ording to some preferen
e 
riterion.We present results of four kinds.1. We show that priority operators are 
anoni
al: they are the only way of 
ombin-ing preferen
e relations with di�erent priorities whi
h satis�es the very natural
onditions above, inspired by Arrow [1, 2℄.2. Next, we de�ne several natural properties of preferen
e relations: transitivity,re
exivity, irre
exivity, and well-foundedness. We show in what 
ir
umstan
esthese properties are propagated by priority operators. This generalises a resultby Grosof [14℄.3. We give ne
essary and suÆ
ient 
onditions on the priority relation to determinewhether the result of a priority operator is always in
luded in the result ofanother 
ombination. This also extends a result of Grosof [14℄. We also givene
essary and suÆ
ient 
onditions for other relationships between the results ofpriority operators, su
h as equality and preferential entailment.4. We give an algebrai
 treatment of generalised prioritisation. We formally de-�ne two binary priority operators, 
alled but and on the other hand, and showthem to be suÆ
ient to express any priority operator. We present a 
ompleteequational axiomatisation of these two operators.The stru
ture of the paper is as follows. The next se
tion presents basi
 de�nitions.Se
tion 3 presents the results whi
h show that the lexi
ographi
 rule is the only wayof 
ombining preferen
e relations that satis�es the natural generalisation of Arrow's
onditions. Propagation of properties of preferen
e relations by the rule is summarisedin se
tion 4, table 3. Se
tion 5 develops proof rules for priority graphs, and 5 explores
omposition of priority operators. Se
tion 7 summarises our algebrai
 treatment ofpriority operators, and 
on
lusions are drawn in se
tion 8.There is a long appendix to this paper, whi
h 
overs the mathemati
al details andproofs whi
h have been omitted from the text in order not to interrupt the 
ow. Thestru
ture of the appendix mirrors that of the paper.2 Priority operatorsLet M be a set 
ontaining at least two elements. The elements of M are the subje
tof the preferen
es: in the example above, it was the set of 
ars whi
h were availableon the market. From the point of view of our appli
ation to default reasoning, Mis the set of interpretation stru
tures of the logi
. Default rules or formulas expresspreferen
es on M . The results presented in the paper work for any appli
ationsof prioritised preferen
e, su
h as default reasoning, so
ial 
hoi
e or multi-
riteriade
ision. M is simply the set of obje
ts whi
h are ordered by preferen
e, whi
h ine
onomi
s are 
alled e
onomi
 alternatives. (Of 
ourse there must be at least two ofthem, otherwise there is nothing to 
hoose.)De�nition 2 A preferen
e relation (sometimes just 
alled a preferen
e) is any binaryrelation on M . Preferen
e relations will be written R, R1; R2; : : : ; or R0; R00 : : :.5



For intuition, the reader will be helped by reading R as meaning \better than, orindi�erent" or \as preferred as". We do not assume that R is transitive and re
exive,sin
e our mathemati
al results do not depend on these properties.In the non-monotoni
 appli
ation, ea
h default formula denotes a preferen
e re-lation on M whi
h orders interpretations a

ording to how nearly they satisfy thedefault information. As usual in the literature, interpretations `lower' in the relationare those whi
h are 
loser to satisfying the default. For m;n 2 M , the expressionm R n means that m is as preferred as n.De�nition 3 Given a preferen
e relation R, we de�ne the derived relationsm R n i� not mRn. \not better (nor indi�erent)"m R< n i� mRn and not nRm. \stri
tly better"m R� n i� mRn and nRm. \indi�erent"m R# n i� neither mRn nor nRm. \in
omparable"We also use F to denote the full relationM �M , and ; to denote the empty relation.Thus, F = F< = F# = ;< = ;� = ; and F� = ;# = ; = F .Now suppose we have a family of preferen
e relations (Rx)x2V , all on the sameset M . This 
an 
ome about be
ause we have several defaults, ea
h of them denotinga preferen
e relation among interpretations of a non-monotoni
 logi
. Or be
ause wehave several de
iders, ea
h having its own preferen
e among the e
onomi
 alternatives.Also, the preferen
es 
an originate from di�erent 
riteria that we wish to 
ombinea

ording to their importan
e. We want to 
ombine these relations into a singlerelation on the same setM . The next step is usually to pi
k the minimal (or preferred)interpretations (or alternatives) a

ording to it.De�nition 4 An V -ary operator is anymap taking some preferen
e relations (Rx)x2Vand returning a single preferen
e relation. (V may be in�nite.)Of parti
ular interest are operators whi
h 
ombine preferen
e relations a

ordingto some priority, whi
h is a stri
t partial order on V .The lexi
ographi
 
ombination of (Rx)x2V (V 6= ;) a

ording to priority < on Vis the relation R given bymRn() 8x 2 V: (mRxn _ 9y 2 V: (y < x ^mR<y n)): (�)This generalises the familiar rule used for the alphabeti
 ordering of words in adi
tionary, by allowing the priority < (position of letter in word) to be an arbitrarypartial order, and by allowing the preferen
e relations (ordering of letters in alphabet)to be an arbitrary relation. Intuitively, the lexi
ographi
 rule says that m is preferredto n overall if it is preferred at ea
h index, ex
ept possibly those for whi
h there isan index of greater priority at whi
h m is stri
tly preferred to n. To understand howthis redu
es to the familiar alphabeti
 ordering when < is a �nite total order (amongpositions in the word), observe that it says: in order that word m 
omes before (orequal) word n, we must have that for any x, the xth letter of m pre
edes or equalsthe xth letter of n, unless there was a smaller y su
h that the yth letter of m stri
tlypre
edes the yth letter of n.A number of de�nitions of the lexi
ographi
 ordering, whi
h are all equivalentwhen used with a �nite linear priority, 
an be found in the literature:6



1. aR<b i� 9z : aR<z b and 8x < z; aR�x b [23, p.49℄2. aR<b i� D = fxjaR�x bg is not empty and aR<z b, where z is the <-minimumelement of D [12, p.1442℄3. aRb i� 8x(8y < xaR�y b)) aRxb [14℄When we generalise to a partially ordered priority:� De�nition 1 may yield both aR<b and bR<a, and is thus not useful in this
ontext.� De�nition 2 needs to be generalised, sin
e D will not have a single minimumbut a set of minimals. So we 
ould require that aR<z b for all these minimals.� De�nition 3 is dire
tly usable.De�nition 3, and our generalisation of de�nition 2, are ea
h equivalent to our de�ni-tion in equation (�) under the assumption that < is well-founded (see theorem 12).This is an assumption we will make frequently in the paper; it is generally valid forappli
ations.The formulation (�) of the lexi
ographi
 
ombination is not as general as we wouldlike, however, be
ause it forbids us from repli
ating an argument Rx several times inthe prioritisation. We 
an generalise it by 
onsidering the following notion of prioritygraph.De�nition 5 A priority graph is a tuple (N;<; v) where N is a set (of `nodes'), <is a stri
t partial order on N (the `priority relation') and v is a fun
tion from N to aset of variables. N may be in�nite.This de�nition and the following one are the most fundamental in the paper;everything else depends on them. So, what is a priority graph? It is just an orderingof variables, but 
ru
ially it allows some variables to be represented several timesin the ordering, simply by repeating the variable in the priority graph. (A prioritygraph essentially represents a poli
y for prioritising 
ertain things represented by thevariables, and the ability to allow repetition of the variables greatly in
reases theexpressive power of the representation. We will prove this later.)A priority graph denotes an operator on preferen
e relations. The operator itdenotes 
ombines its arguments a

ording to the given priority, using the lexi
ographi
rule.De�nition 6 The V -ary operator o denoted by the priority graph (N;<; v) is givenby m o((Rx)x2V ) n() 8i 2 N: (mRv(i)n _ 9j 2 N: (j < i ^mR<v(j)n))where V = v[N ℄, the variables that o

ur in the graph.This says that the variables in the priority graph are instantiated to be the ar-gument preferen
e relations. The operator returns the preferen
e relation, whi
h istheir prioritised 
ombination a

ording to <, using the lexi
ographi
 rule.7



The di�eren
e between de�nition 6 and equation (�) is that the elements of N areordered, rather than the elements of V dire
tly. The onus is on us to show that thisadded 
ompli
ation is really useful. It turns out to be useful be
ause the ability todupli
ate one of the arguments Rx in the ordering in
reases the expressive power weare giving to priority operators. This is shown by example 9 below.Our notion of priority operator 
an now be seen to generalise the notion of 
ir-
ums
ription poli
y [20℄ in three ways.� It works for arbitrary preferential logi
s;� It allows the priority to be partial;� It allows repetition of the prioritised 
riteria in the ordering; and this in
reasesthe expressive power (example 9 below).Example 7 Consider the priority graph g1 = (N;<; v) given by N = f1; 2; 3g with1 < 2 and 1 < 3 and v(1) = y, v(2) = x and v(3) = y. Priority graphs will normallybe written using a graphi
al notation in whi
h we leave out the names of elementsof N , showing the base of the partial order < on the variables given by v (Thisis usually 
alled the Hasse diagram of the priority). Re
all that elements with thehighest priority are, surprisingly perhaps, written at the bottom of our diagrams. Thepriority graph g1 is: x yy>>>>>> �����This denotes a binary operator sin
e there are only two distin
t variables in the graph.It takes two preferen
e relations, say R and S, and returns a preferen
e relation whi
hrepresents the 
ombination of R and S with the priority whi
h represents R on
e andS twi
e. One of the representations of S has priority over the other and over R. Thus,if o1 is the operator denoted by the graph, then o1(R;S) is the following prioritised
ombination of R and S: R SS????? �����Applying the de�nition of the lexi
ographi
al rule (and simplifying), we obtain thato1(R;S) = (R\S)[S<. We may also write o1 = �x; y: (x\y)[y< , although we willgenerally leave out �'s and details of variable binding, and write o1 = (x \ y) [ y<.There may be several graphi
al representations of the same operator. As a trivialexample, any priority graph whose nodes are all labelled by the same variable xdenotes the identity operator, whi
h is the only unary priority operator.De�nition 8 Priority graphs g1; g2 are said to be equivalent, written g1 � g2, if theydenote the same operator on preferen
e relations.
8



The graph g1 in the pre
eding example is equivalent to the graph g2xy(whi
h does not have any repetition of variables), in the sense that the two graphsdenote the same operator o1 = (x \ y) [ y<.Example 9 The priority graph g3 x xy zdenotes the operator o3 = [x [ (y< \ z<)℄ \ y \ z, and is not equivalent to any graphwhi
h does not repeat the variable x (this will be proved later, in example 23). Inparti
ular, it is not equivalent to xy z����� ??????whi
h denotes [x[ (y\z)<℄\y\z. To see that these expressions may be di�erent, tryM = f1; 2g, x = ;, y = M �M , z = f(1; 1); (1; 2); (2; 2)g. Then the �rst expressionyields ;, while the se
ond one yields f(1; 2)g.Example 10 The graphsx yz z and x yz?????? �����denote the same operator, namely (x \ y \ z) [ z<.The lexi
ographi
 rule applied to graphs is not the only way of de�ning operatorson relations, but is an important one:De�nition 11 A priority operator is an operator whi
h is denoted by some prioritygraph.By 
onvention, we extend the usual properties of posets to priority graphs andthen
e to operators in the obvious way: for instan
e, we say that a priority operator iswell-founded i� there is a graph (N;<; v) denoting it su
h that (N;<) is well-founded,(i.e. there is no in�nite des
ending sequen
e i1 > i2 > i3 > � � �, in 2 N). An V -aryoperator is �nitary if V is �nite.Noti
e that the identity of nodes (elements of N) in a priority graph is irrele-vant. For this reason we 
an think of priority graphs as partially ordered multisets(pomsets [24℄) of variables. 9



The following theorem is useful in two respe
ts. First, it should help the readerbuild up intuitions for the behaviour of the lexi
ographi
 rule 
oded into de�nition 6.Se
ondly, it will be used for proving most results in all later se
tions, e.g. theorems 14and 15.Theorem 12 Suppose (N;<) is well-founded, and let R = o((Rx)x2V ). Then1. mRn i� 8i 2 N: (8j < i: mR�v(j)n) implies mRv(i)n.2. mRn i� 8i 2 N: (mRv(i)n or (9j < i: mR<v(j)n and 8j0 < j: mR�v(j0)n)).3. mR<n i� mRn and 9i 2 N: mR<v(i)n.4. mR�n i� 8i 2 N: mR�v(i)n.3 Canoni
ity of the lexi
ographi
 ruleWe have de�ned priority operators, whi
h take as arguments some preferen
e relationsand 
ombine them a

ording to some priority, using the lexi
ographi
 rule. Arrow [1,2℄ has studied operators taking sets of preferen
e relations to preferen
e relations, andproposed natural 
onditions that they should satisfy. Our aim in this se
tion is toshow that priority operators 
an be de�ned by a variant of Arrow's 
onditions, whi
his also very natural. Histori
ally, we arrived at these 
onditions when looking forfurther preferential operators, mainly a 
ounterpart for disjun
tion, only to dis
overthat there are no further operators.Let o be an operator taking (Rx)x2V and returning R = o((Rx)x2V ). To benatural, the operator o should:I. be independent of irrelevant alternatives: the resulting preferen
e on elementsin M depends only on the argument preferen
es on these elements. That is,8M 0 �M; o((Rx)x2V )jM 0 = o((RxjM 0)x2V ):This is 
ondition 2 in [1℄ and [2℄.B. be based on preferen
es only: o is a fun
tion of the Rx's only, and may not takeinto a

ount the identity of any element ofM . That is, if there is an isomorphismf between M and M 0 (i.e. a bije
tion f su
h that 8x 2 V;8a; b 2 M;aRxb i�f(a)R0xf(b)) then the results are the same: aRb i� f(a)R0f(b). This 
onditionis 
alled permutation invarian
e in algebrai
 logi
. It was not used by Arrow,but by algebraists, order theorists, and e
onomists [12, p. 1448℄ and seems verynatural.U. be unanimous with abstentions: For intuition, we use here analogies from thetheory of so
ial 
hoi
e. Let us 
onsider that ea
h Rx represents the preferen
e-or-indi�eren
e relation of the person 
alled x, member of a group V of voters.To establish the preferen
e of the group, ea
h pair of alternatives a; b will bepresented in a vote, where the members 
an vote on whether a is preferable tob. For a given pair, ea
h member x has four possible votes, 
orresponding to the10




ases of de�nition 3: vote for a (aR<x b); vote for b (bR<x a); a; b are 
onsideredin
omparable (aR#x b); or indi�erent (also 
alled equivalent) (aR�x b). In thislast 
ase, we say that x abstains in the vote of a against b. In
omparability, onthe 
ontrary, is a strong opinion here: it means that the two alternative 
annot
ompete, and this vote will override de
ided votes of the same priority. In the�rst two 
ases, we say that x is de
ided.If all the Rx's determine a 
ertain vote between a and b (whi
h 
ould be aR<x b,aR#x b, bR<x a, or aR�x b) apart from those whi
h abstain (aR�x b), then the 
ondi-tion of unanimity states that R also determines the same vote between a and b.That is, for all � 2 f<;>;�;#g if 9V 0 � V su
h that V 0 6= ; and 8y 2 V 0; aR�yb,and 8x 2 V � V 0; aR�x b, then aR�b.Respe
ting unanimity is the motivation for 
ondition 4 of [1℄, but after moti-vating this 
ondition, [1℄ writes a mu
h weaker mathemati
al 
ondition.T. preserve transitivity: if all the argument preferen
es (Rx)x2V are transitive,then the resulting preferen
e R is also transitive. This 
ondition is not statedin [1℄ but is impli
itly used.N. be non-di
tatorial: it does not simply return a �xed one of its arguments withoutregard to the others. We formulate this te
hni
ally as follows: if jV j > 1 thenthere is no z 2 V su
h that R = Rz for all possible values of the other Rx's.This de�nition 
omes from [2℄.In the 
ase of total pre-orders, Arrow's well-known theorem shows that the prop-erty of non-di
tatoriality is in
ompatible with the other 
onditions. In our 
ase ofarbitrary relations in whi
h we have generalised his 
onditions, it is easy to show anopposite result:Theorem 13 Every operator satisfying unanimity with abstentions is non-di
tatorial.More generally, the result of su
h an operator 
annot be independent of any of itsarguments.Proof Assume o is di
tatorial in z; thus V r fzg is not empty. Take some non-fullrelation S and de�ne Rz = F andRx = S for all other x. By U, o((Rx)x2V ) = S 6= Rz.Thus non-di
tatorial is not only 
ompatible with IBUT, but implied by U. Thereare two explanations for this inversion, depending on the version ([1℄ or [2℄) to whi
hwe 
ompare:1. Unanimity with abstentions is a powerful and natural 
ondition, for pre-orders.The proof of [2℄ relies strongly on linear orders, where abstentions are impossible.2. The de�nition of di
tatoriality [2℄ we use is natural but restri
tive: some of ouroperators would be di
tatorial under the wider de�nition of [1℄. Arrow (in bothversions) uses a supplementary unstated 
ondition: the preservation of totality.As shown in theorem 15 below, this amounts to requiring a linear (total) priority.In this 
ase, the relation with highest priority is a di
tator in the sense of [1℄,but not of [2℄. 11



So, of 
ourse, there is no mathemati
al 
ontradi
tion between Arrow's results andours. But 
uriously, all informal explanations of [1℄ 
ould be retained to justify the
onditions of our inverse result { just draw opposite extra-mathemati
al generalisa-tions.The main result of this se
tion shows that only lexi
ographi
 
ombinations ofpreferen
es satisfy 
onditions IBUT (or equivalently IBUTN). We may state it asfollows.Theorem 14 A �nitary operator satis�es 
onditions IBUT i� it is a priority operator.The proof, found in se
tion A.3 in the Appendix, works by performing `tests' onthe operator in order to �nd a priority graph whi
h denotes it.It is not obvious that the 
onditions IBUT are all we should require; we 
ould alsothink that a natural operator should:1. preserve re
exivity: usually, one 
onventionally 
onsiders that preferen
es arere
exive. This 
onvention should be preserved by the operator.2. preserve irre
exivity: if we take the opposite 
onvention, it should also be pre-served;3. preserve antisymmetry: often preferen
es are taken to be antisymmetri
; thenthe result should also be.4. preserve well-foundedness: the goal of preferen
es is to �nd minima, and toensure their existen
e we must forbid in�nite regression. It is 
learly importantthat this property is preserved.5. allow majority extension or respond positively [2℄: Given a situation where theresult is some vote (for instan
e, that a and b are indi�erent), then any situationidenti
al ex
ept that more individual preferen
es give that vote, should have thesame resulting vote.6. be justi�ed: if the result is to prefer one of the interpretations, then at least onedefault (
alled the justi�
ation) must prefer this interpretation.7. obey Pareto rule or be benevolent: if one 
riteria stri
tly prefers an alternative,and the other ones prefer it, it should be stri
tly preferred globally. 8xaRxb ^9yaR<y b) aR<b.Fortunately, all these 
onditions 
an be derived from the 4 basi
 ones (at leastfor �nitary operators). The preservation properties (1-4) are theorems of the nextse
tion. Properties (5-6) are proved in lemmas 63 and 61, respe
tively, of appendixA.3. The Pareto rule is a spe
ial 
ase of U. There is, however, one 
ondition (proposedby [10℄) that we 
annot add, namely de
idedness: that the global preferen
e is de
ided(prefers one of the two interpretations to be 
ompared) as soon as one of the individualpreferen
es is de
ided. Intuitively, this 
ondition seems rather strong: for instan
e,the operator 
annot de
ide that two interpretations are in
omparable, even if a vastmajority of defaults share this opinion or if two equally important sets of defaults holdopposite opinions. If we add de
idedness, no 
ombination operator 
an be found, sin
ewe fall ba
k in the 
onditions of the original Arrow theorem: the operator will preservetotality. 12



Table 2: Properties of a relation R and their 
losuresProperty De�nition `Closure(s)'Re
exive 8m 2M:mRm mR�n i� mRn or m = nIrre
exive 8m 2M:mRm mR 6=n i� mRn and m 6=nSymmetri
 8m;n 2M: (mRn) nRm) mR_n i� mRn or nRmmR�n i� mRn and nRmmR#n i�mRn and nRm.Antisymmetri
 8m;n 2M: (mRn ^ nRm) m =n) mR<n i� mRn and nRmTransitive 8m1;m2;m3 2M: (m1Rm2 ^m2Rm3 ) m1Rm3) mR+n i� 9n: mRnyTotal 8m;n 2M: (mRn _ nRm)Empty 8m;n 2M: mRn ; (the empty relation)Full 8m;n 2M: mRn F (the full relation)Well-founded transitive, and there is noR<-sequen
e� � �m3 R< m2 R< m1#Zorn R transitive, and ea
h 
hain (to-tally R-ordered subset) in M hasa lower bound.4 Propagation of Properties via priority operatorsGrosof [14℄ has shown that a lexi
ographi
 
ombination of transitive preferen
es istransitive, provided the set of nodes is well-founded. A more systemati
 treatmentof su
h properties is summarised in table 3, for the 
lassi
al properties des
ribed intable 2. For example, Grosof's result is represented as line 5 of table 3. This saysthat for any priority operator o and non-empty family (Rx)x2V of arguments, theresultant relation R = o((Rx)x2V ) is transitive if ea
h of the argument relations Rxis transitive, and also the priority < on N is well-founded.Other 
onditions, su
h as re
exivity, irre
exivity and symmetry, propagate moresimply, without extra 
onditions on the priority relation.Theorem 15 Table 3 holds; i.e. the properties are propagated by the lexi
ographi

ombination in the manner shown in the table.In preferential logi
s, we are interested in �nding the minimals of preferen
e rela-tions. A strong property guaranteeing the existen
e of minimals is well-foundedness.Assuming that the relation R is transitive, well-foundedness is equivalent to sayingthat R restri
ted to any non-empty subsetM 0 ofM has minimals, i.e. MinR(M 0) 6= ;.13



Table 3: How the properties propagate through priority operatorsLet (N;<; v) be a priority graph denoting the priority operator o.The result of o is. . . if. . . argument is, and also . . .1. re
exive ea
h2. irre
exive some3. symmetri
 ea
h4. antisymmetri
 some there is no in�nite <-
hain below it.5. transitive ea
h the priority is well-founded.6. total ea
h the priority is total.7. empty some its node is minimal in (N;<).8. full ea
hNow suppose N is �nite, and ea
h Rv(i) is transitive.9. well-founded ea
h10. #Zorn ea
h for ea
h K � N the relation Ti2K Rv(i) is#Zorn.Table 3 shows that well-foundedness is propagated by the lexi
ographi
 rule undersimple assumptions.However, well-foundedness may be rather stronger than we a
tually need. This isbe
ause we do not require the existen
e of minimals in any non-empty set M 0 �M ,but only in those sets whi
h are denoted by a theory in the logi
. This is the motivationbehind the 
ondition of stopperedness [21℄ (aka smoothness [16℄) in the literature.To study the propagation of stopperedness, let C be the set of subsets of M whi
hare 
losed, i.e. whi
h are the denotation of a theory. Take any M 0 2 C. We say thatR has the #Zorn property (pronoun
ed downwards-Zorn) with respe
t to M 0 if ea
hR 
hain in M 0 has a lower bound in M 0. That is the 
ondition that is required inorder to apply Zorn's lemma to �nd minimals in M 0. Thus, to study the propagationof stopperedness it is suÆ
ient to study the propagation of #Zorn in ea
h of the setsin C. The propagation of #Zorn in any set is des
ribed in table 3.Theorem 16 Well-foundedness and #Zorn are related as follows. Let R be a transi-tive relation on M . R is well-founded i� (for all N �M RjN is #Zorn).Line 10 of table 3 is 
onsiderably harder to prove than the others, and requiresseveral lemmas. The proofs are in se
tion A.4.5 Proof Rules for Priority Graphs5.1 Re�nement and equivalen
eChe
king equivalen
e between priority graphs by applying the lexi
ographi
 rule to
onvert them into priority operators is a time-
onsuming and error-prone pro
ess.14



Fortunately, there are some synta
ti
al rules whi
h 
an help us. We 
onsider only well-founded priority graphs with �nitely many variables. As well as 
he
king equivalen
e,we develop proof rules for 
he
king re�nement between priority operators.De�nition 17 We say that o1 re�nes o2 and write o1 v o2 if, for all argument tuples(Rx)x2V , we have o1((Rx)x2V ) � o2((Rx)x2V ) as relations. This notion is liftednaturally to priority graphs: g1 v g2 if g1; g2 denote operators o1; o2 and o1 v o2.If (N;<; v) is a priority graph and i 2 N , we write #i for the set fj 2 N j j < igand v[N 0℄ for fv(j) j j 2 N 0g for any N 0 � N . Thus v[#i℄ = fv(j) j j < ig is the setof variables o

urring below the node i.Theorem 18 g1 v g2 i� for ea
h j 2 N2, there is a i 2 N1:� v1(i) = v2(j); and� v1[#1i℄ � v2[#2j℄.Corollary 19 (Cf. Grosof [14℄, Theorem 3) If N1 = N2 and v1 = v2 and <1 � <2then g1 v g2.Corollary 20 If g1 v g2, then v2[N2℄ � v1[N1℄.The theorem is easily extended to simple and e�e
tive test for equivalen
e betweenpriority graphs (re
all that two graphs are said to be equivalent if they denote thesame operator):Corollary 21 g1 � g2 i�� for ea
h i 2 N1, there is a j 2 N2 su
h that v1(i) = v2(j) and v2[#2j℄ � v1[#1i℄,and� for ea
h j 2 N2, there is a i 2 N1 su
h that v1(i) = v2(j) and v1[#1i℄ � v2[#2j℄.Proof Simply apply theorem 18 to the re�nements g1 v g2 and g2 v g1.Example 22 Some re�nement and equivalen
e relationships between priority graphs,whi
h are easily 
he
kable using the rules expressed by these theorems:x zy � x y � xy � yx xy zz y � xy z���� ???? x yz???? ���� � x yz zx xz zy � x yz � x yz???? ���� � xyz15



Example 23 The priority graph g1 x xy zwas presented in example 9, and it was stated that it 
ould not be written with justone o

urren
e of the variable x. Corollary 21 
an be used to prove this. Suppose g2has just a single o

urren
e of x, say at node i 2 N2, and g1 � g2. Then by the �rstpart of 21, v2[#2i℄ must be a subset of fyg and of fzg, hen
e (sin
e y; z are distin
tvariables) it must be empty. By the se
ond part, either fyg � v2[#2i℄ or fzg � v2[#2i℄,so v2[#2i℄ 
annot be empty. Contradi
tion.Corollary 24 If g1 � g2, then v1[N1℄ = v2[N2℄.We are interested in simplifying priority graphs without 
hanging the operatorthey denote. To this end, we de�ne the notion of a priority graph normal form;the normal form of a graph is the `simplest' graph whi
h is equivalent to it. (Here'simplest' means with a minimal number of nodes, but surprisingly, with a maximalnumber of links.)De�nition 25 Let g = (N;<; v). A node i 2 N is 
riti
al if for all k 2 N withv(i) = v(k), we have v[#k℄ 6� v[#i℄.That is to say, a node i is 
riti
al if the set of variables beneath it (v[#i℄) is minimal
ompared with other nodes k labelled by the same variable. The importan
e of 
riti
alnodes 
an be seen in de�nition 6: the 8i need only range over 
riti
al nodes, be
auseif i is not 
riti
al then the existen
e of an appropriate j beneath it is guaranteed byits existen
e for a 
riti
al node.De�nition 26 The normal form of a priority graph g = (N;<; v) is the graph(N 0; <0; v0) where N 0 = f(v(i); v[#i℄) j i 
riti
al in gg(v(j); v[#j℄) <0 (v(i); v[#i℄) , v[#j℄ [ fv(j)g � v[#i℄v0((v(i); v[#i℄)) = v(i)(We will soon justify the term `normal form' by giving rewrite rules for prioritygraphs.)Theorem 27 1. Any priority graph is equivalent to its normal form;2. Two priority graphs are equivalent i� their normal form is the same.Corollary 28 The normal form operator is idempotent.We now give rewrite rules for transforming a �nite graph into its normal form, up torenaming of the nodes.De�nition 29 The rewrite rules for priority graphs are16



(link) Link j below i if this does not 
hange the down-set of i.More formally: g link=) g0 if: there are i; j 2 N with i 6� j, v[#j℄ [ fv(j)g �v[#i℄ [ fv(i)g, and <0 is the transitive 
losure of < [ f(j; i)g.(del) Delete a node if:� it is not 
riti
al or there is an equivalent node, and� deleting it does not 
hange the down-sets of other nodes. Note that thislast 
ondition will eventually be obtained by appli
ation of (link), so thatonly one 
opy of ea
h 
riti
al node will be kept.More formally: g del=) g0 if: there are distin
t i; j 2 N with v[#j℄ � v[#i℄[fv(i)gand v(i) = v(j) = x for some x, and for all i0 > i there exists i00 < i0 withv(i00) = x, and N 0 = N � fig, and <0 = <jN 0 (the restri
tion of < to N 0), andv0 = vjN 0 .Example 30x xy zz y
link=) x xy zz y

?????? del=) xy zz y
??????

del=) x zz y
����� del=) x

z y00000000000ÆÆÆÆÆÆÆÆÆÆÆTheorem 31 By applying rules (link) and (del) repeatedly in any order until noneapplies, any �nite priority graph is brought into a form whi
h is equal to its normalform, up to renaming of elements of N .Corollary 32 Any priority graph in whi
h ea
h variable o

urs at most on
e is innormal form.Of 
ourse, there are priority graphs with several o

urren
es of a variable whi
h arein normal form, su
h as the one 
orresponding to the term (x=y)k(x=z) (example 23).5.2 Preferential entailment and preferential equivalen
eIn the setting of preferential logi
s, the models of interest are the minimal modelsa

ording to the preferen
e (sometimes 
alled preferred models).Min(R) = fm 2M j 6 9n 2M:nR<mg:17



Let us de�ne the relation of preferential entailment between operators as in
lusionof preferred models.De�nition 33 o1 preferentially entails o2, written o1 j� o2 i� for any arguments(Rx)x2V , we have Min(o1((Rx)x2V )) � Min(o2((Rx)x2V )). As for re�nement, thisnotion naturally extends to priority graphs.Note that preferential entailment (j�) is distin
t from re�nement (v). Analogouslyto re�nement, however, we 
an 
he
k preferential entailment by means of a simplesynta
ti
 
hara
terisation on graphs denoting the operators.Theorem 34 g1 j� g2 i� v2[N2℄ � v1[N1℄ and for ea
h node i 2 N1 either v[N2℄ �v1[#1i℄, or there is a j 2 N2 su
h that v(i) = v(j) and v[#j℄ � v[#i℄.Corollary 35 If g1 j� g2, then v2[N2℄ � v1[N1℄De�nition 36 o1; o2 are preferentially equivalent if o1 j� o2 and o2 j� o1. Again, thisextends naturally to graphs.Although preferential entailment and re�nement are distin
t, it turns out rathersurprisingly that preferential equivalen
e and equivalen
e are the same:Proposition 37 Two priority graphs are preferentially equivalent i� they are equiv-alent.Proof ). Suppose without loss of generality that the graphs are in normal form. Itis impossible that v1[#1i℄ � v[N2℄ (= v[N1℄ by Cor. 35) be
ause i wouldn't be 
riti
al.So we have the other 
ase, whi
h is just the 
hara
terisation of in
lusion (theorem18) in ea
h dire
tion, yielding equivalen
e. (. Obvious.So the 
omputation of the normal form 
an also be used for preferential equivalen
e.When 
onstants for given relations are introdu
ed, this property may fail.The results of this se
tion are dire
tly operational, and yield algorithms for de
id-ing equality, re�nement, preferential entailment, preferential equivalen
e and 
ompu-tation of the normal form.6 Composing priority graphs6.1 Composition vs graphi
al insertionSin
e an operator o maps some preferen
es (Rx)x2V to a preferen
e o((Rx)x2V ),operators 
an be 
omposed with ea
h other to give further operators. Therefore,priority operators 
an be 
omposed, but are their 
ompositions also priority operators?In 
ertain 
ir
umstan
es the answer is yes; indeed, we 
an 
ompose priority operatorssimply by manipulations on the graphs that denote them.De�nition 38 Let g = (N;<; v) having variables V = v[N ℄, and for ea
h x 2 V letgx = (Nx; <x; vx) be a priority graph. The graphi
al insertion g0 = g[(gx)x2V ℄ of thepriority graphs gx in the priority graph g is (N 0; <0; v0) where18



� N 0 = f(i; j) j i 2 N; j 2 Nv(i)g� (i1; j1) <0 (i2; j2) i� (i1 < i2) or (i1 = i2 and j1 <v(i) j2)� v((i; j)) = vv(i)(j)Example 39 If g, g1, g2 are respe
tively the priority graphsx1 x2x1CCCCCC {{{{{{ yz u vthen g0 = g[g1; g2℄ is the priority graphyz u vyz
????? �����ooooooooooooFor well-founded priority operators, graphi
al insertion is the synta
ti
al 
ounter-part of semanti
al 
omposition of priority operators:Theorem 40 Let g be a well-founded graph denoting operator o with variables V .Let (gx)x2V be a family of well-founded graphs denoting operators (ox)x2V withvariables (Vx)x2V . Let g0 be the graphi
al insertion of (gx)x2V in g, and let o0 be theoperator denoted by g0.Then o0 is the 
omposition of o with (ox)x2V , i.e.o0�(Ry)y2SfVxjx2V g� = o�(ox((Ry)y2Vx))x2V �Corollary 41 Well-founded priority operators are 
losed under 
omposition.6.2 The binary priority operatorsThere are essentially only two binary priority operators; they are denoted by thegraphs xy and x yStri
tly speaking, there is also a third one, whi
h is like the �rst one but with x andy swapped around. All other binary priority graphs (i.e. graphs having possibly morethan two nodes but pre
isely two variables) are equivalent to one of these three. Sin
ethe third one is essentially the same as the �rst, we fo
us just on the �rst two.19



The two binary priority operators are of great importan
e for the remainder ofthe paper. We will write them respe
tively as x=y and xky, and 
all = `but' and k`on the other hand'. The reason for these names is the following. From the pointof view of default reasoning, the \but" operator 
ombines two defaults by puttingthe se
ond in a position of greater priority than the �rst. Thus, x=y means \applythe 
riteria x and y, and where they 
on
i
t we apply y. This is like the naturallanguage 
onne
tive `but'. The operator `k' 
ombines two defaults by putting themat in
omparable priority. The expression `on the other hand' does the same job innatural language.Applying the lexi
ographi
 rule, we 
an see thatProposition 42 1. x=y = (x [ y<) \ y, whi
h is also equal to (x \ y) [ y<.2. x k y = x \ y.Proof Immediate from the de�nitions.The importan
e of these two operators is that any �nitary priority operator 
anbe written in terms of these two, using graphi
al insertion, as we now explain.The operators =; k apply to other operators in the standard 
ompositional way:o1=o2 and o1ko2 are de�ned by (o1=o2)((Rx)x2V ) = o1((Rx)x2V )=o2((Rx)x2V ), and(o1ko2)((Rx)x2V ) = o1((Rx)x2V )ko2((Rx)x2V ). A

ording to theorem 40, the opera-tors = and k 
an equivalently be applied at the level of priority graphs, in whi
h 
asethey 
orrespond respe
tively to the graphi
al operations of linear sum and disjointunion [6℄.Theorem 43 Any �nitary priority operator is denoted by a term built from =; k andthe variables that o

ur in the priority graph for the operator.Example 44 The 12 priority graphs in example 22 are respe
tively equivalent to thefollowing terms: xk(z=y), xky, x=y, y, (x=y=z)k(x=z=y), x=(ykz), (xky)=z, (x=z)k(y=z),(x=z=y)k(x=z), (x=z)ky, (xky)=z, and x=y=z.Noti
e how the =; k term 
an be obtained from the shape of the priority graph.When two equivalent priority graphs are given, we obtained the term using the se
-ond one. Extra
ting the term from the �rst graph in the �rst example, we obtain(x=y=z)k(x=z=y), whi
h 
an be shown to be equal to x=(ykz).Example 45 We 
annot graphi
ally obtain a term from the `N' shaped graphx zw y������However, it is equivalent to x zw y y~~~~~~ ?????and so it denotes the operator (x=(wky))k(z=y).20



Corollary 46 Any �nitary operator satisfying 
onditions IBUT is equivalent to aterm built from =; k and the variables.Proof Follows from theorems 13 and 43.The notions of re�nement, equivalen
e, preferential entailment and preferentialequivalen
e of the last se
tion all extend naturally to terms.Example 47 (xky)=z � (x=z)k(y=z); however, (x=y)k(x=z) v x=(ykz) but not 
on-versely.Example 48 x=y j� y; x=y j� x k y; x=y=z j� y k z.We note in passing that, for any relation R (and where F is the full relationM�Mand ; the empty relation):R=F = RF=R = RR=; = ;;=R = R< RkF = FkR = RRk; = ;kR = ;:7 Algebrai
 TreatmentNow that we have terms for des
ribing priority operators, we 
an study their algebrai
properties. Consider a set of relations onM whi
h is 
losed under the binary operators= and k, de�ned as before by x=y = (x \ y) [ y<x k y = x \ y:We 
all su
h an algebra a preferential algebra, or PA. Preferential algebras are a spe
ial
ase of algebras of binary relations, a survey on whi
h 
an be found in e.g., N�emeti[22℄ and S
hein [29℄.Terms in the language of PAs are made from variables and the binary operators=; k. If V is the set of variables o

urring in a term � , then � denotes the V -arypriority operator whi
h evaluates the term after substituting its arguments in pla
eof the variables. The next theorem rephrases theorem 43 in algebrai
 terminology.Theorem 49 For any �nitary V -ary priority operator o there is a term � of thelanguage of preferential algebras su
h that for any preferential algebra A and relations(Rx)x2V in A we have that o((Rx)x2V ) = �((Rx)x2V ).As usual with relational algebras, we may identify 
ertain equalities whi
h holdbetween terms, however their variables are substituted. For example, it was seen inexample 47 that (xky)=z = (x=z)k(y=z).The following theorem gives a �nite axiomatisation of all the equations (equalitiesbetween terms) true in preferential algebras.Theorem 50 An equation is true in all preferential algebras i� it is derivable fromthe following 7 axioms: 21



1. xkx = x (k Idempotent)2. xk(ykz) = (xky)kz (k Asso
iative)3. xky = ykx (k Commutative)4. (x=x) = x (= Idempotent)5. x=(y=z) = (x=y)=z (= Asso
iative)6. (xky)=z = (x=z)k(y=z) (= Distributes over k)7. (x=y)kx = xky (Absorption)Some subsets of these axioms are interesting on their own:� Two terms yield the same priority graph by graphi
al insertion i� they 
an beproved equal by the axioms 2, 3, 5;� We 
an de�ne the forest form of a term, as the term obtained by normalisingit using the axiom 6 from left to right.� The rules 1, 2, 3 form a 
omplete axiomatisation of the k-redu
t (a trivial 
lassof algebras, isomorphi
 to sets with interse
tion);� In 
ontrast, the rules 4, 5 do not axiomatise the =-redu
t: we have to addx=y=x = y=x (example 51(3) below). This sub
lass is again rather trivial, sin
ethe free algebras are isomorphi
 to strings of variables without repetition.Example 51 Some interesting derived equations.1. (x=y)ky = ((x=y)=y)k(x=y) absorption= (x=y)k(x=y) = asso
iative, idempotent= x=y k idempotent2. x=(ykx) = (x=(ykx))k(ykx) (1)= ((x=(ykx))kx)ky k asso
iative, 
ommutative= ((ykx)kx)ky absorption= xky k idempotent3. x=y=x = (x=y=x)k(y=x) (1) where y = y=x= (x=y=x)k(y=x=y=x) = idempotent= y=x=y=x (1) where y = x=y=x= y=x = idempotent4. (z=(xky))ky = [(z=(xky))k(xky)℄ky (1) where y = xky= [(z=(xky))k(xky)℄ k asso
iative, idempotent= (z=(xky)) (1)5. y=((x=y)kz) = (y=((x=y)kz))k(x=y) (4)= (y=((x=y)kz))k(x=y)ky (2)= ((x=y)kz)kyk(x=y) absorption= (x=y)kz (1)6. x=((x=y)kz) = x=y=((x=y)kz) (5)= (x=y)kz (3)22



7. ykzk(y=z) = ykzky absorption= ykz idempoten
eThese axioms are also 
omplete for in
lusion, sin
e R1 � R2 i� (R1kR2) = R2.It is also possible to 
onstru
t a (uninteresting) proof system for in
lusion withoutresorting to equalityPreferential algebras have turned out to be an interesting 
ase of relational alge-bras. We gave in theorem 50 a �nite set of axioms from whi
h all equations true ofPAs may be proved. There are many other issues in relational algebra whi
h 
an bedis
ussed. For example, is PA axiomatisable in the following stronger sense: is therea �nite set of equations whi
h are true of all and only all algebras in PA? If so, PAis a variety. The answer is no; this is proved in the appendix. However, PA is aquasi-variety (also proved in the appendix), whi
h means that it 
an be axiomatised(in this strong sense) by 
onditional equations.The following theorem gives a derivation system for preferential entailments truein preferential algebras.Theorem 52 A preferential entailment � j� � holds in all preferential algebras i� itis derivable from the equality axioms 1{7, together with the following:8. If x j� y then z=x j� y (C1)9. If y=x = x and x k y = y then x j� y (S1)8 Con
lusionThe paper develops the theory of generalised prioritisation begun by Grosof [14℄.It introdu
es priority operators, an analog of 
ir
ums
ription poli
ies appli
able inpreferential logi
s. Furthermore:� It shows that priority operators are 
anoni
al with respe
t to a generalisationof Arrow's 
onditions;� It gives 
riteria for de
iding: re�nement, equality and preferential entailment ofpriority operators;� It shows that the two binary operators 
an express any priority operator, andhen
e any operator satisfying generalised Arrow's 
onditions;� It gives a 
omplete axiomatisation of the operators and their relationships.Topi
s for further study in
lude investigating the supplementary laws that 
anbe established for spe
i�
 preferential logi
s, and for their 
ombinations. We wouldalso like to relax the requirement that operators be �nitary, and study a logi
 forexpressing in�nitary operators.
23
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le.A Appendix: Mathemati
al detailsA.1 Introdu
tionThis Appendix 
overs many mathemati
al details (in
luding proofs of theorems statedin the text). Its stru
ture mirrors the stru
ture of the main part of the paper. Newde�nitions and lemmas are given new numbers, but theorems whi
h are stated in thetext and proved here retain their old numbers.A.2 Priority operatorsLet g = (N;<; v) be a priority graph denoting the operator o.Theorem 12 Suppose (N;<) is well-founded, and let R = o((Rx)x2V ). Then1. mRn i� 8i 2 N: (8j < i: mR�v(j)n) implies mRv(i)n.2. mRn i� 8i 2 N: (mRv(i)n or (9j < i: mR<v(j)n and 8j0 < j: mR�v(j0)n)).3. mR<n i� mRn and 9i 2 N: mR<v(i)n.4. mR�n i� 8i 2 N: mR�v(i)n.Proof 1. ()) Suppose i is su
h that 8j < i; mR�v(j)n. We require to show thatmRv(i)n. Suppose not; then 9j < imR<v(j)n, a 
ontradi
tion.(() Suppose i is su
h thatmRv(i)n. We require to �nd j < i su
h thatmR<v(j)n.By hypothesis, 9j1 < i mRv(j1)n or nRv(j1)m. If mRv(j1)n, then nRv(j1)m somR<v(j1)n, so we set j = j1. Otherwise, again using the hypothesis, 9j2 < j1mRv(j2)n or nRv(j2)m. Again, we set j = j2 or we �nd j3 with the sameproperty. This pro
edure must terminate, for otherwise we have an in�nitedes
ending sequen
e j1 > j2 > � � �, 
ontradi
ting the well-foundedness of (N;<).2. (() immediate. ()) Similarly to part 1, �nd j minimal with mR<v(j)n.3. ()) Suppose m o((Rx)x2V )< n. Then m o((Rx)x2V ) n is immediate. Also,m o((Rx)x2V )< n implies n o((Rx)x2V ) m, so 9i: nRv(i)m. Sin
e m o((Rx)x2V )n, either mRv(i)n, in whi
h 
ase mR<i n as required; or 9j < i: mR<v(j)n, alsoproving the result. 24



(() Let i be minimal in the set fi j mR<v(i)ng. Then nRv(i)m and 8j <i: nR<v(j)m, so n o((Rx)x2V ) m4. Similar ideas.A.3 Canoni
ity of the lexi
ographi
 ruleOur aim in this se
tion is to prove theorem 14. This will involve inventing a newview of priority operators in terms of what we 
all votes. We do this in a sequen
e oflemmas. The �rst one shows that an operator that is independent, unanimous, andbased on preferen
es (in short: IBU) is determined by its responses to all possiblerelations on a �xed two-point domain.Lemma 53 Let M2 = fm;ng � M;m 6= n, and o1; o2 be two IBU operators. Iffor all families of relations (Rx)x2V we have o1((Rx)x2V )jfm;ng = o2((Rx)x2V )jfm;ngthen, for all (Rx)x2V , o1((Rx)x2V ) = o2((Rx)x2V ).Proof Take any 
; d 2M . We show 
 o1((Rx)x2V ) d i� 
 o2((Rx)x2V ) d.� If 
 = d, we have 
R�x d or 
R#x d for all x. Then by U, we have either
 o1((Rx)x2V )# d and 
 o2((Rx)x2V )# d, or 
 o1((Rx)x2V )� d and 
 o2((Rx)x2V )�d, depending on whether 
R#x d for some x or not. In any 
ase, o1; o2 agree at
; d.� If 
 6= d: de�ne the family (R0x)x2V in terms of (Rx)x2V as follows: R0x = Rxex
ept at (m;n), where mR0xn, 
Rxd. Then
o1((Rx)x2V )jf
;dgd $ 
 o1((Rxjf
;dg)x2V ) d by I$ m o1((R0xjfm;ng)x2V ) n by B$ m o2((R0xjfm;ng)x2V ) n by hypothesis$ 
 o2((Rxjf
;dg)x2V ) d by B$ 
 o2((Rx)x2V )jf
;dg d by I.De�nition 54 A vote is an element of V = f#; <;>;�g.De�nition 55 A ve
tor of jV j votes, one per variable of V , is 
alled an entry.Lemma 53 tells us that an V -ary IBU operator o determines a unique fun
tionV jV j ! V , and 
onversely. The fun
tion takes as argument the vote ea
h Rx giveson the two-point domain M2 (i.e. an entry), and returns as result the vote thato((Rx)x2V ) gives on M2. Su
h fun
tions 
an be represented �nitely by an operatortable. For instan
e, the operator \but" de�ned in se
tion 6.2 is des
ribed by table 4:Ea
h 
olumn above the line is an entry, and the element in the same 
olumn belowthe line is the 
orresponding result. For an entry e and vote v, ev is the subset ofvariables that gives vote v. In parti
ular, The winners er of an entry e is the subsetof V that gives the same vote as the result r; the abstainers e� is the subset of Vthat abstains, i.e., votes �; the rest is 
alled the opposition, whi
h is divided in twosubgroups, sin
e four votes are possible. A vote is de
ided if it is < or >.25



R1 # # # # < < < < > > > > � � � �R2 # < > � # < > � # < > � # < > �R # < > # # < > < # < > > # < > �Table 4: Table of \but" (=)De�nition 56 The 
onverse of a vote is de�ned by the table:v v�1# #< >> <� �Lemma 57 If an IBU operator gives a result r for entry e = (ei)i2V then it givesr�1 for entry e�1.Proof By B.Note that any table with this property will give us an IB operator.Corollary 58 There are 24n�3�(2n�1)�1 n-ary IBU operators.Proof The possible tables are 44n . Symmetry (lemma 57) redu
es this to 24n , whi
his thus the number of IB operators. The 
ases eliminated by unanimity, are givenby 
hoosing a non-empty unanimous subset (there are 2n � 1), 
hoosing its vote (3possibilities: either <;> or #), setting the rest to �. Plus 1 for the 
ase where allvotes are � and the result is �.We will illustrate proofs of the next few lemmas in tabular form, whi
h shouldbe understood as a s
hemati
 ex
erpt from an operator table su
h as table 4. Theleftmost 
olumn indi
ates subsets of the variables V . Ea
h 
olumn will represent apossible 
ombination of votes (an entry) and the result 
omputed by the operator.New 
olumns 
an be dedu
ed from pre
eding 
olumns, a

ording to the followingrules of inferen
e, derived from the respe
tive 
onditions on the operators.S. Symmetry: from an entry of the table with a given result, we dedu
e the 
onverseentry with the 
onverse result (lemma 57). In our tabular proofs, we will omitthe entry on whi
h it is applied when it operates on the previous 
olumn of theproof table.U. Unanimity: any unanimous 
olumn must have the result of the unanimoussubset (unless it is empty). This rule operates on the 
urrent 
olumn.T. Transitivity: In table 5, we 
ompute the admissible 
ompositions of votes fortransitivity. The verti
al dimension indi
ates the relation between x and y,the horizontal dimension the relation between y and z. The 
orresponding 
ellshows the implied relation between x and z. For instan
e, the �rst 
ell states26



Æ # < > �# V f<;#g f>;#g f#g< f<;#g f<g V f<g> f>;#g V f>g f>g� f#g f<g f>g f�gTable 5: Table of 
ompatible 
ompositionsthat if xR#y and yR#z, then no restri
tion on xRz 
an be dedu
ed. The 
elldiagonally below states that if xR<y and yR<z, then xR<z. If two 
olumnsare known, and we build a third entry whi
h is 
ompatible for transitivity withthese two 
olumns, then the result of this entry must also be 
ompatible fortransitivity with the results of the two known 
olumns. For otherwise we wouldhave built a 
ounterexample to preservation of transitivity, by using a domainfx; y; zg where preferen
es between (x; y) are given by the �rst 
olumn, between(y; z) by the se
ond, and between (x; z) by the third. For instan
e, if we 
omposetwo entries with results <;# respe
tively, we see in the table that the result ofthe 
omposition must be < or # for any entry whi
h is 
ompatible with the�rst two. If x is the only variable and the vote of Rx was < in the �rst entryand > in the se
ond entry, then any value of Rx must yield < or #. During aproof we will usually try to 
onstrain the result while letting the entry vary aswidely as possible to get stronger results. By default, T uses the two previous
olumns of the proof table.These table ex
erpts will be s
hemati
: usually, the designation on the left will notbe single variables, but sets of variables, indi
ating that the line has to be repli
atedas many times as they are variables in the set (sometimes 0). Also, the 
ontent ofthe 
ell 
an be a set. We will sometimes omit the set bra
es, for 
ompa
tness. In theresult, the 
omma (e.g. in <;#) thus means \or". We 
onvene that e1 is the name ofthe �rst entry (the se
ond 
olumn), and ei is the name of the ith entry (the i + 1th
olumn). The justi�
ation will be indi
ated below ea
h entry. It will be one of thebasi
 rules (S,U,T) or the number of a lemma. Further examples are provided in theproofs below.For the rest of this se
tion, we will omit the referen
e to the (�xed) IBUT operator.For instan
e, whenever we speak of \the result of an entry", it means the result ofapplying the 
urrently 
onsidered IBUT operator.Lemma 59 The result of e is � i� all arguments are �.Proof \If": by U.
27



\Only if": e1 e2 e3 e4e� � � � �e< < > < <e> > < < <e# # # < <r � � � <by S T� U�Read this table as follows. Suppose we supply a 
ertain entry, e1, whi
h of 
ourseis divided in �; <;>;# votes. The result (by hypothesis) is �. Constru
t the
onverse entry e2 = e�11 ; by S, the result is also �. Now 
onsider the argumentvotes e3 of the 4th 
olumn. Sin
e they are 
ompatible for transitivity with e1; e2,the result r3 should also be 
ompatible (justi�
ation: T). But that means it mustbe �. Now 
onsider the argument votes of the last 
olumn, e4; by U, the resultshould be <. The last two 
olumns 
ontradi
t, as indi
ated by �, unless thesubsets e<; e>; e# of V are all empty, so that U 
annot be applied on e4.Hen
e the only way of making the result � is by having e<; e>; e# empty, i.e.all votes for �.The sequen
e of lemmas that follows proves that IBUT operators have many of theproperties of priority operators. For example, the next lemma says that if a de�niteresult is obtained from a given entry, then the same result will be obtained a fortioriif some abstainers join the winners, whatever the opposition does.Lemma 60 If an entry e yields <, then any entry with some arguments in e#; e>repla
ed by any vote, and/or some in e� repla
ed by <, will also yield <.Proof Let C be the names of the votes 
hanging from � to <, and let v; w be anytuple of votes. e< < < < <e> > < v ve# # < # we� \ C � < < <e� r C � � � �r < < < <by U T T (e1; e3)Lemma 61 If the result of e is <, then some argument must be <.Proof Assume e< empty. Then:e> > � �e# # � �e� � � �r < < �by 60� U�28



The next lemma is very similar to lemma 60: It says that if an in
omparabilityresult is obtained from a given entry, then the same result will be obtained a fortioriif some abstainers or opposition join the winners. But here, the opposition 
ould
hange the result by making a 
oalition.Lemma 62 If an entry yields #, then the entry where some elements have beenrepla
ed by # also yields #.Proof Assume not: it 
annot yield � by 59, so it yields < (or symmetri
ally >) asshown in e2. Then e� � � �� # �e< < < << # <e> > > >> # >e# # # #r # < <by � 60�Lemma 63 If some elements are repla
ed by the result (in other words, if the winnersare extended), then the result remains the same.Proof If the result is:� #, the proof follows by 62;� <;>: by 60;� �: by 59, e� = V and thus 
annot be extended.De�nition 64 We say an operator propagates a property of relations, if its result hasthe property as soon as one of its arguments relation has it.An operator preserves a property of relations, if its result has the property whenall its argument relations have it.Clearly, propagation implies preservation unless V is empty.Corollary 65 Any IBU operator preserves re
exivity; propagates irre
exivity; pre-serves symmetry. Any IBUT operator propagates antisymmetry.Proof By U and 59.(These fa
ts are re
alled in theorem 15 for the narrower 
lass of priority operators.)De�nition 66 Let S;X � V su
h that S is disjoint from X . S shows X i� the entrywhere all arguments in S are �, all arguments in X are >, all other ones are <, yieldseither > or #. This result is 
alled the show-result.Lemma 67 If S �W;W disjoint from X , S shows X , then W shows X .29



Proof Suppose that W does not show X , as indi
ated in e1 below. Let H =V rW rX be the rest of the variables.X > >S � �W r S � <H < <r < <by 60The se
ond entry 
ontradi
ts the hypothesis that S shows X .Lemma 68 If X � Y , Y disjoint from S, S shows X , then S shows Y .Proof Suppose that S does not show Y , as in e1. Let H = V r Y r S be the restof the variables. X > >Y rX > <S � �H < << <by 60Again, e2 
ontradi
ts the hypothesis that S shows X .Lemma 69 If A 6= ;, V rA shows A.Proof By U.Lemma 70 If X is �nite and disjoint from A, A shows X i� for some xi 2 X;Ashows fxig.Proof For the impli
ation: We treat the 
ase of X = fx1; x2; x3g for notational
onvenien
e, but the indu
tion will work for any �nite set. Let H = V r A r X .Assume (H1) A shows X and for all xi 2 X , (H2.i) A doesn't show fxig.A � � � � � �x1 < > < > < <x2 > < < > < <x3 > > > < < <H > > > > > >> > > > > <;#by H2:1 H2:2 T H2:3 T� H1�The other dire
tion is just lemma 68.Lemma 71 If A shows disjoint X;Y , then both show-results are #.Proof Sin
e, a priori, there 2 possibilities for both show-results, we have to ex
lude3 
ases, but 2 are symmetri
. Let H = V rX r Y rA be the rest.30



1. Both show-results are <. A � � � �X < > � �Y > < � �H > > > >< < < >;�by H1 H2 T� U�2. One show-result (say X) is <, the other is #.A � � � �X < > � �Y > < � �H > > > >< # <;# >;�by H1 H2 T� U�The lemmas above demonstrate that \shows" is 
ompletely determined by thesenten
es of the form \S shows fxg" where S is minimal. We will now prove thatthese senten
es 
an be en
oded in a priority graph, and �nally, that this graph 
anre
onstru
t the operator, whi
h 
loses the 
y
le and proves the equivalen
e of all theserepresentations (for V �nite).De�nition 72 The priority graph of an IBUT operator is de�ned by:� N = f(x; S) j S is a minimal subset of V showing fxgg� (x1; S1) < (x2; S2) i� (fx1g [ S1) � S2.� v((x; S)) = x.Note that the node ordering < is irre
exive and transitive and thus a
y
li
.Lemma 73 If (x; S) 2 N , then for any z 2 S, S r fzg shows fzg.Proof (H1) S shows fxg. Sin
e S is a minimal showing set, (H2) S r fzg does notshow fxg. Now assume (H3) S r fzg shows fzg is false:x < < > <z � > < �S r fzg � � � �Rest > > > ><;# > > >H1� H2 H3 T�Corollary 74 If V is �nite, then for any (x; S) 2 N , S = fz j 9Sz (z; Sz) < (x; S)gProof Clearly fz j (z; Sz) < (x; S)g � S by the de�nition of the order. Conversely,take z 2 S. By 73, S r fzg shows z. Sin
e S is �nite, it is Zorn, and so there is aSz � S minimal su
h that Sz shows z, and (z; Sz) < (x; S).31



Lemma 75 Assume V is �nite. A shows fxg i� x is minimal in V r A, i.e. 9i 2N (v(i) = x^ 6 9i0:v(i0) 62 A ^ i0 < i).Proof By 
ontraposition, assume A doesn't show fxg. Sin
e V r fxg shows fxg by69, there must be a minimal M su
h that M � A;M shows fxg. Sin
e M 6= A, we
an pi
k some z 2 M r A. We have (x;M) 2 N , and (z; Sz) 2 N for some Sz. By74, (z; Sz) < (x;M), 
ontradi
ting the minimality of x in V r A.Conversely, if x is minimal, all nodes below i = (x; S) are in A. By lemma 74,they form S, so S shows fxg; S � A; x 62 A. By lemma 68, A shows fxg.Theorem 14 A �nitary operator satis�es 
onditions IBUT i� it is a priority operator.Proof We show that the priority operator denoted by the priority graph de�ned forit in de�nition 72, is identi
al to the given operator. By lemma 53, it is suÆ
ientto show this for relations on a universe of two elements (i.e. votes), that is, for anyentry e. The priority graph is well-founded, so that we 
an use theorem 12. Lookat the non-abstainers, A = fx 2 V j ex 6= �g and take its minimals for priorityM = Min�(A) = fx 2 A j 9i 2 N: v(i) = x ^ �i0 2 N: i0 < i; v(i0) 2 Ag. We note thatthe priority result (the result given by the priority graph) is Tv2M ev, by theorem 12,and that M = fxjA shows fxgg, by lemma 75. Consider the possible priority results:� the priority result is �: i� all arguments are � by theorem 12.4; i� the IBUTresult is � by lemma 59.� the priority result is <: i� M 6= ; and all arguments in M are < by theorem12(3). A shows M by lemma 68. By lemma 60, the IBUT result is also <.� the priority result is >: symmetri
ally.� the priority result is #: i� one of the two following 
ases arises, by theorem 12:{ some argument x in M is #. Ad absurdum, assume that the result isn't#. It 
an't be � either, by lemma 59. Say (H) it is >. (< is solvedsymmetri
ally.) then by lemma 60, A doesn't show fxg, 
ontradi
tinglemma 75. Tabularly: A = e� � �e< < >e> > >x # <e# r fxg # >> >by H 60{ some argument x 2M is <, another y 2M is >. Then let X = e<; Y = e>in lemma 71. By lemma 62, the IBUT result is #. Tabularly:A = e� � �X = e< < <Y = e> > >R = e# > ## #by 71 6232



A.4 Propagation of properties via priority operatorsWe prove the theorems implied by table 3.Theorem 15 Items 1{8 of table 3 hold; i.e. the properties re
exivity, irre
exivity,symmetry, antisymmetry, transitivity, totality, empty and full are propagated by thelexi
ographi
 
ombination in the manner shown in the table.Proof Let g = (N;<; v) be a priority graph denoting the operator o, and let V =v[N ℄.1. Suppose for ea
h i 2 N , Rv(i) is re
exive. We want to show that o((Rx)x2V ) isre
exive. Take any m 2 M . Sin
e 8i 2 N: mRv(i)m, it follows by def. 6 thatm o((Rx)x2V ) m.2. m o((Rx)x2V ) m i� 8i 2 N: mRv(i)m by def. 6, sin
e mR<v(j)m is always false.But 8i 2 N: mRv(i)m is false if there there is an irre
exive preferen
e.3. m o((Rx)x2V ) n implies 8i: mRv(i)n sin
e ea
h Rv(i) is symmetri
. Therefore8i: nRv(i)m, so n o((Rx)x2V ) m.4. Let i be su
h that Rv(i) is symmetri
 and there is no in�nite <-
hain belowit in the priority graph. Assume m o((Rx)x2V ) n and n o((Rx)x2V ) m andm 6= n. We will derive a 
ontradi
tion. If mRv(i)nRv(i)m then by symmetry ofRv(i) we have m = n, a 
ontradi
tion. Suppose (without loss of generality) thatmRv(i)n. Then there's some j < i su
h that mR<v(j)n. Therefore, nRv(j)m, sothere is some k < j su
h that nR<v(k)m. Therefore, mRv(k)n, and by 
ontinuingin this way an in�nite 
hain of nodes below i is produ
ed { a 
ontradi
tion.5. Suppose m1 o((Rx)x2V ) m2 o((Rx)x2V ) m3; we will show m1 o((Rx)x2V ) m3.Let i 2 N ; we show m1Rv(i)m3 or m1R<v(j)m3 for some j < i.Suppose m1Rv(i)m2. If m2Rv(i)m3 then m1Rv(i)m3. Otherwise, m2Rv(i)m3, solet i0 < i be su
h that m2R<v(i0)m3, and let i0 be minimal with this property,that is, we have m2Rv(i00)m3 for i00 < i0; here we make use of the fa
t that <is well-founded. If m1Rv(i0)m2, then let j < i0 be su
h that m1R<v(j)m2. Thenj < i and m1R<v(j)m3 follows from m1R<v(j)m2 and m2Rv(j)m3. If m1Rv(i0)m2,let j = i0. Then j < i, and m1R<v(j)m3 follows from m1Rv(j)m2 and m2R<v(j)m3.On the other hand, suppose m1Rv(i)m2 and let i0 < i be minimal su
h thatm1R<v(i0)m2 (so again we have m1Rv(i00)m2 for all i00 < i0). Again, 
onsiderseparately the two 
ases m2Rv(i0)m3 and m2Rv(i0)m3. If m2Rv(i0)m3, set j = i0;then j < i, andm1R<v(j)m3 follows fromm1R<v(j)m2 andm2Rv(j)m3. Otherwise,m2Rv(i0)m3 so let j < i0 be su
h that m2R<v(j)m3; then j < i, and m1R<v(j)m3follows from m1Rv(j)m2 and m2R<v(j)m3.6. Suppose n o((Rx)x2V ) m. We show that m o((Rx)x2V ) n. Sin
e n o((Rx)x2V )m, there is i su
h that nRv(i)m and 8j < i: nRv(j)m. But sin
e these are totalorders, this implies mR<v(i)n and 8j < i: mRv(j)n. But < is also total, so thisproves that m o((Rx)x2V ) n. 33



7. Let i be the minimal node su
h that Rv(i) is empty. Suppose m o((Rx)x2V )n. Then either mRv(i)n, or 9j < i � � �, both alternatives 
ontradi
ting ourhypothesis.8. Let m;n 2 M . Sin
e ea
h Rv(i) is full, mRv(i)n. Thus, by de�nition 6,m o((Rx)x2V ) n.9,10. The last two 
ases are treated separately below due to their length.Lemma 76 Item 9 of table 3 holds; i.e. if N is �nite, and ea
h Rv(i) is transitive andwell-founded, then o((Rx)x2V ) is well-founded.Proof Suppose not, i.e. suppose � � �m3 o((Rx)x2V )< m2 o((Rx)x2V )< m1 isan o((Rx)x2V )<-sequen
e. Ea
h mn+1 o((Rx)x2V )< mn gives us an in (by theorem12(3)) su
h that mn+1R<v(in)mn. Let N1 = fi 2 N j fn j i = ing is in�niteg. Sin
eN is �nite, N1 6= ;. Let N2 � N1 be the <-minimal points of N1; also N2 6= ;. Leti 2 N2; n0 be the last n where in 62 N1. We have 8n: > n0mn+1Rv(i)mn and forin�nitely many n, mn+1R<v(i)mn. Sin
e Rv(i) is transitive, it is easy to pi
k a sequen
eshowing that Rv(i) is not well-founded, 
ontradi
ting the hypothesis.Theorem 16 Well-foundedness and #Zorn are related as follows. Let R be a transi-tive relation on M . R is well-founded i� (for all P �M RjP is #Zorn).Proof ().) Let P � M , and let C be an R 
hain in P . Sin
e C � M and R iswell-founded, C has a minimal element, say 
. We now show that 
 is a lower boundfor C. Let m 2 C. We must show that 
Rm. Sin
e C is a 
hain, either mR
 or 
Rm.If mR
 then 
Rm. But also, if mR
, then 
Rm, otherwise we would 
ontradi
t 
'sminimality.((.) Suppose not; let P be an in�nite des
ending R sequen
e. As R is transitive,it is an RjP -
hain, but has no RjP -lower bound, so RjP is not #Zorn.Theorem 82 requires several lemmas. Fix a �nite graph (N;<; v) denoting operatoro. Let us write Ri instead of Rv(i) and R instead of o((Rx)x2V ), in order to keep thenotation lighter.De�nition 77 Let m;n 2 M . The m;n-frontier, written fr(m;n), is the set of <-minimal elements of the set fi 2 N j mR�i ng.Note that if fi 2 N j mR�i ng = ; then fr(m;n) = ;.Lemma 78 Suppose mRn. Then i 2 fr(m;n) i� mR<i n and 8j < i: mR�j n.Proof (If) Immediate. (Only if) Let mRn and i 2 fr(m;n). (1) We prove mRin;for if not, by de�nition, 9j < i: mR<j n, i.e. mR�j n, 
ontradi
ting s's minimality. (2)Sin
e i 2 fr(m;n), mR�i n. Thus mR<i n.Now suppose j < i. Sin
e i is minimal in fi 2 N j mR�i ng, we have mR�j n.De�nition 79 Let K � N . We write mRKn if 8j 2 K: mRjn. We also write + Kfor fi 2 N j 9j 2 K: i � jg. 34



Now, and for the remainder of this subse
tion, suppose Ri is transitive for ea
hi 2 N and N is �nite.Lemma 80 Let P � M be a R-
hain with no minimal element. Then there existsK � N and a 2 P su
h that1. 8j 2 K: 8i 2 N: 8m;n 2 P: (nRmRa and i � j) implies nRim | that is,fn 2 P j nRag forms a R+K-
hain.2. 8j 2 K: 8m 2 P: mRa implies 9p 2 P: (pR<m and pR<j m) | that is, the sameset also forms a RK-
hain with no minimal element.3. 8i 2 N: 8m;n 2 P: nRmRa implies (nRim or 9j 2 K: j < i).Proof The idea of the proof is the following. First, we obtain a set N 0 � N whi
h
ontains those i whi
h parti
ipate in frontiers all the way down the 
hain P . Then�nd an element a of P below whi
h all the frontiers are in N 0. K is de�ned as theminimal elements of N 0. Then it is possible to prove property 1. Property 2 followsbe
ause we have stipulated that P have no minimal element; that is, for ea
h n 2 Pthere is a n0 2 P with n0R<n. Property 3 follows be
ause K is the set of minimalelements of N 0.Let N 0 = fi 2 N j 8m 2 P: 9n; p 2 P: pR<nRm and i 2 fr(n; p)g.� If N 0 = N then let a be an arbitrary element of P .� Otherwise, for ea
h i 2 N �N 0 let mi 2 P be su
h that 8n; p 2 P , if pR<nRmithen i 62 fr(n; p), and let a = minRfmi j i 2 N � N 0g. That ea
h mi 
an befound follows from the de�nition of N 0, and that their minimum 
an be foundis guaranteed by the fa
ts that P is a 
hain and N is �nite.Now we show that N 0 is non-empty. Let m;n 2 P be su
h that nR<mRa. The fa
tthat P has no minimal element guarantees that these 
an be found. Sin
e nR<m,fr(m;n) 6= ;, and sin
e m;nRa, we have fr(m;n) � N 0.1. Let j 2 K, i 2 N and m;n 2 P be su
h that i � j and nRmRa. If i 2fr(m;n) then nR<i m (lemma 78); otherwise, if i 62 fr(m;n) and nRim then9j0 < i: nR<j0m, 
ontradi
ting the minimality of j in K.2. Let j 2 K and m 2 P with mRa. Sin
e j 2 N 0, we 
an pi
k n; p 2 P withpR<nRm and j 2 fr(n; p). By part 1, pRjnRjm; and sin
e j 2 fr(n; p) we havepR<j n. By transitivity, pR<j m.3. If nRim then 9j0 2 fr(m;n) � N 0: j0 < i (theorem 12(2)), and sin
e K 
onsistsof the minimal elements of N 0 (and, sin
e N is �nite, < is well-founded), 9j 2K: j < j0.Now we show, subje
t to a 
ertain 
ondition, that it is possible to �nd a lowerbound for any R-
hain. The 
ondition says that lower bounds 
an be found forinterse
tions (i.e. 
onjun
tions) of the Ri relations.Lemma 81 Suppose for every K � N , every RK-
hain has a lower bound. Thenevery R-
hain has a lower bound. 35



Proof Let P be a R-
hain. If P has a minimal element, then that serves as its lowerbound. Suppose, then, that P has no minimal element. Let K � N and a 2 P be asde�ned in lemma 80. Let U = K [ fj0 2 N j 8j 2 K: j 6� j0g. We now show that theset fm 2 P j mRag forms a R+U 
hain. Without loss of generality, let m;n 2 P besu
h that nRmRa, and i 2 N and j0 2 U be su
h that i � j0. We need to show thatnRim. If j0 2 K then nRim by lemma 80(1). Otherwise, 8j 2 K: j 6� j0 (de�nition ofU). Therefore, j 6� i. Suppose nRim. Then by 80(3), 9j 2 K: j < i, a 
ontradi
tion.So nRim.Now let b be a R+U lower bound for fm 2 P j mRag. We show that it is also aR lower bound for that set, and hen
e for P . Let m 2 P with mRa; we show thatbRm, using the lexi
ographi
 rule.First note that (i) j 2+ U implies bRjm (by de�nition of b). Also, (ii) j 2 Kimplies mR<j b. To see this, take n su
h that nR<j m by lemma 80(2); but then bRjn,so bR<j m.Now let i 2 N . We show that either bRim or 9j < i: bR<j m. If i 2+ U , bRim by(i). If i 62+ U , then i 62 U . By de�nition of U , 9j 2 K: j < i; by (ii), bR<j m.Hen
e we have:Lemma 82 Item 10 of table 3 holds; i.e. if N is �nite, and ea
h Rv(i) is transitiveand for ea
h K � N the relation Ti2K Rv(i) is #Zorn, then R is #Zorn.A.5 Proof rules for Priority GraphsTheorem 18 g1 v g2 i� for ea
h j 2 N2, there is a i 2 N1:� v1(i) = v2(j); and� v1[#1i℄ � v2[#2j℄.Proof Let o1; o2 be the operators denoted by g1; g2.): Suppose not, i.e. suppose there's an j in N2 s.t. for every i in N1 with v1(i) =v2(j) = z there is a k < i in N1 with v(k) = y s.t. y 62 v[#j℄.� Either there is no su
h i; then let us set Rx = F for all x 2 V ex
ept z, andRz = ;. So o1((Rx)x2V ) = F (sin
e z doesn't o

ur in it), and o2((Rx)x2V ) = ;(sin
e z does o

ur in it): but 
learly F 6� ;, so 
ontradi
tion.� Or, if some i exists, ea
h i might give us a di�erent y. Let Rz = ;; for ea
hof those ys, let Ry = R for some relation R s.t. R< 6= ; (su
h a relation existssin
e M 
ontains two elements); and let Rx = F , the full relation, for everyother variable x.Then o1((Rx)x2V ) is just the relation R<. That is be
ause, graphi
ally, it has a
olle
tion of F s, ;s and Rs (the last two o

urring at least on
e), but there is anR below ea
h ;; so we just use de�nition 6. On the other hand, in the graph foro2((Rx)x2V ) we have an ; with only F o

urring below it, and by de�nition 6the result is ;. Therefore, o2((Rx)x2V )= ;, so the in
lusion fails; 
ontradi
tion.36



(: Suppose m o1((Rx)x2V ) n. We show m o2((Rx)x2V ) n. Suppose for somenode j in N2 we have mRv2(j)n. By the hypothesis, 9i 2 N1: mRv1(i)n, and sin
em o1((Rx)x2V ) n, there is a k <1 i s.t. mR<v1(k)n. But v1[#1i℄ � v2[#2j℄, so there is ak0 2 N2 with v2(k0) = v1(k) and therefore, mR<v2(k0)n. Therefore, m o2((Rx)x2V ) n.Normal formsIn the main text, a 
anoni
al form of priority graphs was de�ned. An importantproperty of this de�nition is that the variables below a 
riti
al node in a graph arethe same as those below the 
orresponding node in the normal form. This lemma willbe used in the proof of the theorem that follows.Lemma 83 Let g0 = (N 0; <0; v0) be the normal form of g = (N;<; v). If i 2 N is
riti
al, then v[#i℄ = v0[#0(v(i); v[#i℄)℄.Proof Suppose that x 2 v[#i℄. Then there's a node k 2 N with k < i and v(k) = x. kneed not be 
riti
al, but we know that there is a j 2 N 
riti
al with v[#j℄ � v[#k℄, andv(j) = v(k). Therefore, v(j) 2 v[#i℄ and v[#j℄ � v[#i℄, so x 2 fv(j) j v[#j℄ [ fv(j)g �v[#i℄g = v0[#0(v(i); v[#i℄)℄.Conversely, if x 2 v0[#0(v(i); v[#i℄)℄ then there's a j 2 N with v(j) = x andv[#j℄ [ fv(j)g � v[#i℄, so x 2 v[#i℄.Theorem 27 1. Any priority graph is equivalent to its normal form;2. Two priority graphs are equivalent i� their normal form is the same.Proof 1. We apply Cor. 21. Suppose g0 = (N 0; <0; v0) is the normal form ofg = (N;<; v), as given in de�nition 26.g v g0: If (v(i); v[#i℄) is a node in N 0 then we pi
k the 
riti
al node i in N . Wemust show (i) that v0(v(i); v[#i℄) = v(i), whi
h is immediate, and (ii) thatv[#i℄ � v0[#0(v(i); v[#i℄)℄, whi
h follows from the lemma 83.g0 v g: If i is a node in N , we must �nd a node in N 0 with the relevant prop-erties. First, if i is not 
riti
al in N , then pi
k a 
riti
al node i0 su
hthat v(i) = v(i0) and v[#i0℄ � v[#i℄. Now take (v(i0); v[#i0℄) 2 N 0. Wemust show (i) that v(i) = v0(v(i0); v[#i0℄), whi
h is immediate, and (ii)that v0[#0(v(i0); v[#i0℄)℄ � v[#i℄. For that, it is suÆ
ient to show thatv0[#0(v(i0); v[#i0℄)℄ � v[#i0℄, whi
h follows from the lemma 83.2. ) Let g1; g2 be two equivalent graphs, g01; g02 their normal forms. By 1., thenormal forms are equivalent, so by 
orollary 21, we have two fun
tions, sayf : N 01 ! N 02 and g : N 02 ! N 01, that respe
t labels (v(i) = v(f(i))) andde
rease down-sets (v[#f(i)℄ � v[#i℄). Let k = g(f(i)); v[#k℄ � v[#i℄. Butv[#k℄ � v[#i℄ is impossible, for then i would not be 
riti
al. So v[#k℄ = v[#i℄.Thus v[#f(i)℄ = v[#i℄; symmetri
ally v[#g(j)℄ = v[#j℄. Using the de�nitionof normal form, we get f(i) = i and g(j) = j. Thus g01 = g02.( from 1.Lemma 84 37



1. If g link=) g0 by linking j below some i, then v[#i℄ � v0[#0i℄ � v[#i℄ [ fv(i)g; and,for all for all k 2 N with k 6= i, v[#k℄ = v0[#0k℄.2. If g del=) g0 then, for all k 2 N 0, v[#k℄ = v0[#0k℄.Proof 1. In the 
ase of i, v0[#0i℄ = v[#i℄ [ v[#j℄ [ fv(j)g � v[#i℄ [ fv(i)g. In the
ase of other ks, the only non-trivial 
ase is where k > i. But then, the fa
tthat v[#i℄ [ fv(i)g hasn't 
hanged guarantees that v[#k℄ hasn't either.2. The only non-trivial ks are those above the deleted i; we must show that v(i) 2v[#k℄ for those. But that is what is guaranteed by the 
ondition that for alli0 > i there exists i00 < i0 with v(i00) = x.Theorem 31 By applying rules (link) and (del) repeatedly in any order until noneapplies, any �nite priority graph is brought into a form whi
h is equal to its normalform, up to renaming of elements of N .Proof First we show that (link) and (del) are sound. This 
an be done using 
orol-lary 21. Suppose g rewrites to g0by (link). Corollary 21 requires us to �nd a 
orrespondent in N 0 for ea
h node in N ,and vi
e versa. Lemma 84 tells us that usually v0[#0i℄ = v[#i℄ for all i 2 N , andhen
e the 
orrespondent of a node 
an be the node itself. The only ex
eptiono

urs in the 
ase that in the link of j below i, we had v(i) = v(j). In that
ase, v0[#0i℄ = v[#i℄ [ v(i), and the 
orrespondent of i 2 N should be 
hosen tobe j 2 N 0.by (del). Again, we must show how to pi
k the 
orrespondents for 
orollary 21. Forea
h node in N other than the deleted node, pi
k the same node in N 0. For thedeleted node, pi
k the node in N 0 referred to as j in the (del) rule. For ea
h nodein N 0 pi
k the same node in N . Lemma 84 ensures that these 
orrespondentshave the right properties.To show that the order of appli
ation does not matter, we must also show thatthe term-rewriting system 
onsisting of the set of V -ary �nite priority graphs withthe rules (link) and (del) is terminating and 
on
uent [8℄.Terminating. Sin
e the graphs are �nite, and (link) adds one edge and (del)removes one node, the number of rewrites is bounded by n2 + n, where n = jN j.Con
uent. We show that a rule applies unless g is a renaming of the normal form,so that we 
annot terminate elsewhere. This implies 
on
uen
e. Let g be distin
tfrom its normal form.� Either a node i of g is not 
riti
al: (for instan
e, the node y at mid-height inexample 30.1) then by de�nition 25 of 
riti
al, there is a k that either 
an belinked below i (in example 30.1, the low y), or is already below i, and then i
an be deleted.� Or, several i; j are mapped to the same node of the normal form: (for instan
e,the two nodes x in example 30.1) if they are not linked, any of them 
an belinked below the other; else the top one 
an be deleted.38



� Or, all nodes are 
riti
al and 
orrespond to a single node of the normal form,but some links are di�erent: In this 
ase, the links of g are a subset of those ofthe normal form. Then we 
an add a missing link.In all three 
ases, an appli
ation of link or del was possible.A.5.1 Preferential entailmentTheorem 34 g1 j� g2 i� v2[N2℄ � v1[N1℄ and for ea
h node i 2 N1 either v[N2℄ �v1[#1i℄, or there is a j 2 N2 su
h that v(i) = v(j) and v[#j℄ � v[#i℄.Proof Let o1; o2 be the operators denoted by g1; g2.). Choose some relation S su
h that MinS(M) 6= M . (This is possible; as thereare at least two elements a; b in M , we 
ould take mSn i� m = a ^ n = b.) Supposethe RHS is false, i.e. either� v2[N2℄ r v1[N1℄ 6= ;. Choose z in this di�eren
e, and set Rz = S, Rx = F forany other x.� there is i 2 N1 su
h that v2[N2℄ 6� v1[#1i℄ and for all j 2 N2 su
h that v1(i) =v2(j), there is a xj 2 v2[#2j℄ � v1[#1i℄. If there is su
h a j, set Rv1(i) = ;;for ea
h j set Rxj = S; and Rx = F for all other variables x. Else, pi
ky 2 v2[N2℄ r v1[#1i℄, set Ry = S, set again Rv1(i) = ;, and set everything elseto F .In either 
ase, by an argument similar to that in the proof of theorem 18, we haveo1((Rx)x2V )= ; and o2((Rx)x2V )= S. But Min(o1((Rx)x2V )) = M 6�o2((Rx)x2V ),so the LHS is false.(. Suppose RHS and n 2 Min(o1((Rx)x2V )). We show that n 2 Min(o2((Rx)x2V )). Suppose not, i.e. there is an m su
h that m o2((Rx)x2V )< n, i.e. m o2((Rx)x2V ) nand 9j 2 N2: mR<v2(j)n. We'll show m o1((Rx)x2V )< n, i.e. (a) m o1((Rx)x2V ) n and(b) 9j0 2 N1: mR<v1(j0)n.(a) Suppose mRv1(i)n; then by hypothesis, either v2[N2℄ � v1[#1i℄, so 9j1 <1i:mR<v1(j1)n; or there is a j 2 N2 su
h that v1(i) = v2(j) and v2[#2j℄ � v1[#1i℄;so mRv2(j)n so 9k <2 j with mR<v2(k)n, but using v2[#2j℄ � v1[#1i℄ we have that9k0 <1 i with mR<v1(k0)n.(b) Either 
ase of the hypothesis again provides j 2 N2 su
h that mR<v2(j)n andv2[N2℄ � v1[N1℄.A.6 Composing priority graphsTheorem 40 Let g be a well-founded graph denoting operator o with variables V .Let (gx)x2V be a family of well-founded graphs denoting operators (ox)x2V withvariables (Vx)x2V . Let g0 be the graphi
al insertion of (gx)x2V in g, and let o0 be theoperator denoted by g0.Then o0 is the 
omposition of o with (ox)x2V , i.e.o0�(Ry)y2SfVxjx2V g� = o�(ox((Ry)y2Vx))x2V �39



Proof First observe that if g; g1; : : : ; gn are well-founded, then so is g0. This enablesus to use theorem 12. Let us write g = (N;<; v) and gx = (Nx; <x; vx) for ea
hx 2 V = f1; : : : ; ng. Now,m o0((Rx)x2V ) n() 8i 2 N: 8i0 2 Nv(i):�mRvv(i) (i0)n_ 9j0 2 Nv(i):(j0 <v(i) i0 ^mR<vv(i) (j0)n)_ 9j 2 N:9j0 2 Nv(j):(j < i ^mR<vv(j) (j0)n)�We simplify notation for this proof, by writing Ni and <i in pla
e of Nv(i) and <v(i),and by writing Rij0 instead of mRvv(i) (j0)n (m;n are �xed). We will 
onsistently useunprimed variables for the `outer' level indi
es, and primed variables for the `inner'ones. Thusm o0((Rx)x2V ) n() 8i 2 N: 8i0 2 Ni:�Rii0 (1a)_ 9j0 2 Ni:(j0 <i i0 ^R<ij0) (1b)_ 9j 2 N:9j0 2 Nj :(j < i ^R<jj0)� (1
)() 8i 2 N: 8i0 2 Ni:�Rii0 (2a)_ 9j0 2 Ni:(j0 <i i0 ^R<ij0) (2b)_ 9j 2 N:9j0 2 Nj :(j < i ^R<jj0 (2
)^ 8k 2 N:(k < j ! 8i0 2 Nk:Rki0)��, (2d)version (2) following from version (1) by theorem 12(2). But now,m o(o1((Rx)x2V ); : : : ; on((Rx)x2V )) n() 8p 2 N: (m ov(p)((Rx)x2V ) n _ 9q 2 N:(q < p ^m (ov(q)((Rx)x2V ))< n))() 8p 2 N:�(8p0 2 Np:(Rpp0 _ 9q0 2 Np:(q0 <p p0 ^ R<pq0))) (3a)_ 9q 2 N:�q < p ^ 8p0 2 Nq:�Rqp0 (3b)_ 9q0 2 Nq :(q0 <q p0 ^ R<qq0)� (3
)^ 9q0 2 Nq:R<qq0�� (3d)3b-d 
omes from the expansion of m (ov(j)((Rx)x2V ))< n using theorem 12(3).That (3) implies (1) is easy: if 1a and 1b are not satis�ed, set j = q in 3b andj0 = q0 in 3d to satisfy 1
. So all that remains is to show that (2) implies (3).Suppose we have p; p0 whi
h do not satisfy the disjun
ts in 3a. We need to �nd anappropriate q. Setting q = j from 2
 might work; if it does, we are home. If it doesn't,we have a troublesome p0 2 Nq for whi
h not Rqp0 and there is no appropriate q0.Use (2) again with i = q and i0 = p0, to obtain a j < q and j0 2 Nj , whi
h we will
all r < q, r0 2 Nr. Sin
e r < q, we have by 2d 8s0 2 Nr:Rrs0; and by transitivitywe have r < p, so r satis�es the 
onditions for q in 3b. Moreover, R<rr0 (from 2
)guarantees 3d. 40



The extra
tion of terms from priority graphs was given by example in the maintext. Here, we give formal de�nitions in order to prove theorem 43.De�nition 85 To eliminate su
h shapes as the N shape in example 45, we de�ne theforest form g0 = F (g) of g as:� N 0 is the the set of maximal up-bran
hes in G. Formally:N 0 = f(i1; : : : ; in) j n > 0;8l < n(il < il+1 ^�j 2 N:(il < j < il+1) ^ �j 2 N:(in < j))g:� <0 is the suÆx ordering. Formally � <0 � i� there is a non-empty sequen
e ofnodes � su
h that � = �; � .� v0 takes the label where the bran
h starts, i.e. if � = (i1; : : : ; in) then v0(�) =v(i1).A
tually this de�nition simply removes any \V" shape from the graph by repli
at-ing the node at the bottom of the \V" that be
omes \II". In parti
ular, we repla
e any\N" shape by a \� I" shape. This is not always ne
essary, for instan
e in example 22the V-shaped example 
ould be expressed dire
tly as (xky)=z.Proposition 86 g � F (g).Proof All down-sets are preserved, so we 
an use 
orollary 21.De�nition 87 Termifying a �nite priority graph g to T (g) is done as follows:� if g is made of a single node labelled by x, set T (g)x;� if g is made of disjoint 
omponents g1; : : : ; gn, then we set T (g) = T (g1)k : : : kT (gn);� else, �nd a M � N su
h that 8m 2M; n 2 N rM we have n < m, as follows:Start by setting M to the maximal nodes of N ; and while there is a node whi
his not below all elements of M , add it to M . This algorithm may stop withM = N , in whi
h 
ase it signals failure; else, we set T (g) = T (M)=T (N rM).We see that the algorithm su

eeds exa
tly when g is the graphi
al insertion of someterm (equivalently, when no N shape is in
luded in g); this term is unique up toasso
iativity of = and k, and 
ommutativity of k. (T (g) will have = asso
iated to theleft, sin
e we started from top.)Theorem 43 Any �nitary priority operator is denoted by a term built from =; k andthe variables that o

ur in the priority graph for the operator.Proof Take any �nitary V -ary operator o. Let g be a graph denoting o. Let g0 bethe forest form of g. It is easy to 
he
k that we 
an always termify a forest form: Thelast step su

eeds immediately, and M 
ontains the single maximum element (theroot of the tree). So o 
an be expressed by T (g0).41



A.7 Algebrai
 TreatmentDe�nition 88 ` denotes equational derivation from axioms 1-7. This means that aproof 
an use axioms 1-7, and the 
lassi
al rules of equality:Re
exivity ` � = �Symmetry � = � ` � = �Transitivity � = �; � = � ` � = �Congruen
e � = � ` �[x := � ℄ = �[x := �℄In order to prove the soundness and 
ompleteness of the axioms of theorem 50,we need a lemma.Lemma 89 ` �=� = � , if v(�) � v(�).Proof (Note that this is obviously valid semanti
ally, sin
e all o

urren
es in the �part of �=� are non-
riti
al.) We �rst indu
e on the stru
ture of �:1. if � is the variable x: we pro
eed by indu
tion on the stru
ture of the term � .(a) � is a variable; sin
e x 2 v(�), � is the variable x, so use idempoten
e of =.(b) � = (�k�): Then x 2 v(�) or x 2 v(�). Without loss of generality, assumex 2 v(�). Then ` � = x=� by the indu
tive hypothesis, and thus ` x=� =x=((x=�)k�).But ` x=((x=y)kz) = (x=y)kz is derivable (example 51(6)), thus ` x=((x=�)k�) =(x=�)k� = �k� = � .(
) � = �=�.� x 2 v(�). Then x=� = x=�=� def. �= x=�=x=� ind. hyp.= �=x=� example 51(3)= �=� ind. hyp.= � def. � .� x 2 v(�). Then x=� = x=�=� def. �= �=� ind. hyp.= � def. � .2. � = (�1=�2): we use asso
iativity of = to obtain �1=(�2=�), and �rst eliminate�1 indu
tively, then �2.3. � = (�1k�2): we use distributivity to obtain (�1=�)k(�2=�), and pro
ess indu
-tively ea
h part.Theorem 50 An equation is true in all preferential algebras i� it is derivable fromthe following 7 axioms: 42



1. xkx = x (k Idempotent)2. xk(ykz) = (xky)kz (k Asso
iative)3. xky = ykx (k Commutative)4. (x=x) = x (= Idempotent)5. x=(y=z) = (x=y)=z (= Asso
iative)6. (xky)=z = (x=z)k(y=z) (= Distributes over k)7. (x=y)kx = xky (Absorption)Proof The soundness of the axioms is obvious. (For example, apply 
orollary 21 tothe graph forms of ea
h side of the axioms.)Completeness: Let ` � v Æ abbreviate ` �kÆ = � (Indeed, this use of v mat
hesthat in the semanti
s). We need only prove statements of the form ` � v Æ, sin
e toprove ` � = Æ we just prove ` � v Æ and ` Æ v � , whi
h expands to � = �kÆ = Æ.Suppose � v Æ semanti
ally. We prove ` � v Æ by indu
tion on Æ.1. Æ is the variable x. We perform indu
tion on � .(a) � is a variable. Sin
e � v Æ, � must also be x (by theorem 18). Idempoten
e�nishes the proof.(b) � = �1=�2. By theorem 18 we know �1=�2 v x i� �2 v x, and by indu
tivehypothesis ` �2 v x. We prove ` �1=�2 v x as follows:(�1=�2)kx = (�1=�2)k�2kx example 51(1)= (�1=�2)k�2 sin
e ` �2 v x= �1=�2 example 51(1)(
) � = �1k�2. By theorem 18 we know �1k�2 v x i� �1 v x or �2 v x. Withoutloss of generality we suppose it's �1, and by indu
tive hypothesis we have` �1 v x. Now ` �1k�2kx = (�1kx)k�2 = �1k�2, so ` �1k�2 v x.2. Æ = 
k�. By the semanti
s we know that � v (
k�) is valid i� � v 
 and � v �,so by indu
tive hypothesis we prove ` � v 
 and ` � v �, whi
h expand to�k
 = � and �k� = � , from whi
h we prove � = �k(
k�) using asso
iativity,
ommutativity and idempoten
e.3. Æ = 
=�: By indu
tion on 
. 
 
an be:(a) 
1k
2: then we use distribution.(b) 
1=
2: then we use asso
iativity to obtain Æ = 
1=(
2=�).(
) a variable x. If x o

urs in �, we suppress it using lemma 89. The remaining
ase is to prove inequalities of form � v x=�, where x is a variable noto

urring in �. By theorem 18, an inequation of this form is valid i� � v �and in the graph of � there is a node labelled by x su
h that v[#x℄ � v[�℄.We 
an assume without loss of generality that � is in forest form, sin
ewe just have to apply distribution repeatedly to obtain this form. Let �denote the subterm below x in the forest form (� = : : : =(: : : k(x=�))). By
onvention, we treat the 
ase where � is empty uniformly.i. we prove ` � v x=� by indu
tion on � . Sin
e it is in forest form, � 
anbe: 43



A. y=�2: If y = x and �2 = � we are done.Otherwise we rewrite � to (y=�2)k�2 using example 51(1) ba
k-wards, and we pro
eed on this last �2 whi
h must have an o

ur-ren
e of x=� sin
e y 6= x. Then theorem 18 gives �2 v x=�, whi
hby indu
tive hypothesis gives ` �2 v x=�, thus ` (y=�2)k�2 v x=�using asso
iativity of k.B. �1k�2: We know x=� must o

ur in �1 or �2 (or both); we pro
eedindu
tively on that part, say �2. Again �2 v x=� implies ` � v x=�using by theorem 18, indu
tive hypothesis, and asso
iativity of k.ii. Let's put this together:` � v x=� just proved` � v � by indu
tive hypothesis` � v (x=�)k� as in 
ase 2` � v x=�=� by 51(7)` � v x=� = Æ by lemma 89Example 90 We apply the algorithm of the proof of theorem 50 to 
onstru
t a proofof x=(ykz) = (x=y=z)k(x=z=y):x=(ykz) = (x=(ykz))kykz 51(1)= (x=(ykz))kykzk(z=y) 51(7)= (x=(ykz))k(z=y) 51(1)= (x=(ykz))k((x=(ykz))=(z=y)) axiom 7= (x=(ykz))k(x=z=y) 89= (x=(ykz))kykzk(x=z=y) 51(1)= (x=(ykz))kykzk(y=z)k(x=z=y) 51(7)= (x=(ykz))k(y=z)k(x=z=y) 51(1)= (x=(ykz))k((x=(ykz))=(y=z))k(x=z=y) 51(1)= (x=(ykz))k(x=y=z)k(x=z=y) 89= ((x=z=y)=(ykz))k(x=y=z)k(x=z=y) 89= (x=y=z)kzk(x=z=y)ky axiom 7= (x=y=z)k(x=z=y)ky 51(1)= (x=y=z)k(x=z=y) 51(1)This identity is the basis of the Tus
an form: given a term, rewrite it �rst usingdistributivity, and then this identity. By this pro
ess, any term is brought in a formwhere k are outside and = inside. We 
an use 3, 4, 1 and 7 to eliminate some dupli-
ates, but this will not yield some unique normal form. For instan
e, x=(ykz)=w =x=((y=w)k(z=w)) = (x=y=w=z=w)k(x=z=w=y=w) = (x=y=z=w)k(x=z=y=w) = (x=y=z=w)k(y=w) =(z=w)k(x=z=y=w); the last 4 are Tus
an forms, the last 2 are simpli�ed.The equations 1{7 given in theorem 50 are not 
omplete, however, with respe
tto 
onditional equations (impli
ations between equations).Theorem 91 There is a 
onditional equation true in all preferential algebras whi
his not a 
onsequen
e of 1{7; for example, x=y=z = z=y=x ` x=z = z=x is su
h a
onditional equation. 44



Proof The 
onditional equation is true in all PAs : Expand =; k using the equationsin prop. 42; now, we want to prove that (x \ y \ z) [ (y< \ z) [ z< = (x \ y \ z) [(y< \ x) [ x< implies (x \ z) [ z< = (x \ z) [ x<. Suppose the premise and thatm ((x \ z) [ z<) n. Then either m (x \ z) n, so m ((x \ z) [ x<) n, and we are done;orm z< n and m (x \ z) n. m z< n implies m (x \ y \ z) [ (y< \ z) [ z< n, sin
e thelast disjun
t is true. m (x \ z) n meansm x n orm z n. Sin
e z< � z, the se
ond halfis impossible and we have m x n. Using the premise, m (x \ y \ z) [ (y< \ x) [ x< n,so m x n, a 
ontradi
tion.The 
onditional equation 
annot be derived from the axioms 1{7 : In axioms 1{7,and here in the ante
edents, the same variables o

ur in the left- and right-hand side.By examining the rules for deriving equations (de�nition 88), we noti
e that no rule
an eliminate a variable from the ante
edent; thus the 
on
lusion must 
ontain y ifthe proof uses the ante
edent. On the other hand, the proof must use the ante
edent,sin
e the 
onsequent is not valid and thus not a 
onsequen
e of axioms 1{7.This means that the 
lass PA of all isomorphi
 
opies of preferential algebras isnot axiomatisable by equations, but we now show that PA 
an be axiomatised by
onditional equations:Theorem 92 PA is a quasi-variety.Proof We use standard te
hniques [22℄ of algebras of relations, namely, we provethat the 
lassK of algebras isomorphi
 to a preferential algebra is 
losed under takingsubalgebras, dire
t produ
ts, and ultraprodu
ts.� K is 
losed under taking subalgebras, by de�nition.� K is 
losed under taking dire
t produ
ts: Let I be a set and for ea
h i 2 Ilet hAi;\; =i be a preferential algebra. That is, Ai is a set of binary relationson some Ui 
losed under interse
tion and lexi
ographi
 
ombination. We mayassume that the Ui's are pairwise disjoint. Let U be the union of these Ui's.For any tuple a = hai : i 2 Ii of elements of the produ
t (ai 2 Ai), let f(a) bethe union of ai's, whi
h is indeed a binary relation on U . Let A be the set ofthe all these f(a)'s. Then A is 
losed under:{ interse
tion: (Si ai) \ (Si bi) = Si(ai \ bi), sin
e the Ui are disjoint. Nowsin
e ea
h Ai is 
losed, A is.{ lexi
ographi
 
ombination: (Si ai)=(Si bi) = Si(ai=bi), for if m(Si bi)�n,it means that m;n 2 Ui for some unique i, and thus mb�i n.The fun
tion f is an isomorphism from the dire
t produ
t of the algebras Ai tothe algebra hA;[; =i: its inverse is just the tuple of proje
tions on the Ui's.� K is 
losed under taking ultraprodu
ts: The operations of K are de�nable inBRA, the 
lass of binary relation algebras (i.e. K is a generalised redu
t ofBRA). It is known that BRA is 
losed under taking ultraprodu
ts (
laim 1.1of [22℄). Hen
e K is 
losed under taking ultraprodu
ts.The axioms presented in theorem 50 are also 
omplete for in
lusion, sin
e R1 � R2i� (R1kR2) = R2. It is also possible to 
onstru
t a proof system for in
lusion withoutresorting to equality: 45



1. x v x (re
exivity)2. x v y; y v z implies x v z (transitivity)3. x v y implies xkz v ykz (monotoni
ity k)4. x v y implies x=z v y=z (monotoni
ity =a)5. x v y; y v x implies z=x v z=y (monotoni
ity =b)6. x v xkx (k Idempotent)7. xk(ykz) v (xky)kz (k Asso
iative)8. xky v ykx (k Commutative)9. x v (x=x) (= Idempotent)10. x=(y=z) v (x=y)=z (= Asso
iative)11. (x=y)=z v x=(y=z) (= Asso
iative)12. (xky)=z v (x=z)k(y=z) (= Distributes over k)13. (x=z)k(y=z) v (xky)=z (= Distributes over k)14. xky v (x=y)kx (Absorption)15. x=y v y (=-re�nement)Theorem 52 A preferential entailment � j� � holds in all preferential algebras i� itis derivable from the equality axioms 1{7, together with the following:16. If x j� y then z=x j� y (C1)17. If y=x = x and x k y = y then x j� y (S1)Proof (. We 
he
k the soundness of the two new rules.C1. If Minx(M) � Miny(M), then indeed Minz=x(M) � Miny(M), sin
e the mini-mals of z=x are among the minimals of x.S1. x k y = y means that y v x. y=x = x means that mx�n ) my�n. So ifm0y<m, then also m0x<m, for all three other possibilities are ex
luded. So if mis not minimal for y, it means that 9m0:m0y<m, thus m0x<m, and m is neitherminimal for x.) : We want to prove, say, � j� �. Let g1; g2 be their graphs. We use theorem34. First let I = fi j v[#i℄ � v(N2)g. I is upward-
losed. If I = ;, let �2 be a termrepresenting �. Otherwise we 
onstru
t �2 as follows:For all k 62 I , if i < k then i 62 I , so that by 34 v(i) = v(j) for some j 2 N2;therefore we have v[#k℄ � v(N2) � v(i), for any i 2 I , so that we link any node k 62 Ibelow ea
h minimal i 2 I using rule (link). Therefore, the graph is now of the formg1=g2 where g1 
ontains all nodes of I and g2 the rest. We �nd terms �1; �2 expressingg1; g2 by theorem 43. Sin
e � is equivalent to �1=�2 by their 
onstru
tion, this isprovable by 
ompleteness (theorem 50).Sin
e �2 only 
ontains nodes outside I : By theorem 34, v(�2) � v(�). Also,by theorem 18, � v �2. By 
ompleteness, �2k� = � is provable. By 
orollary 20,v(�2) � v(�) and thus v(�2) = v(�). So in �=�2, all o

urren
es in � are non-
riti
al,implying that �=�2 = �2 is valid, and thus provable by 
ompleteness. Thus, we 
anuse rule S1 to prove �2 j� �, and then rule C1 to prove �1=�2 j� �.
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