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Operators and Laws forCombining Preferene RelationsHajnal Andr�ekaMathematial Institute, Hungarian Aademy of Siene,Budapest Pf. 127 H-1364, Hungary. andreka�math-inst.huMark RyanShool of Computer Siene, University of Birmingham,Edgbaston, Birmingham B15 2TT, England. mdr�s.bham.a.ukPierre-Yves ShobbensInstitut d'Informatique, Fault�es Universitaires de Namur,Rue Grandgagnage 21, 5000 Namur, Belgium. pys�info.fundp.a.beJune 10, 2002AbstratThe paper is a theoretial study of a generalisation of the lexiographi rule for ombiningordering relations. We de�ne the onept of priority operator: a priority operator mapsa family of relations to a single relation whih represents their lexiographi ombinationaording to a ertain priority on the family of relations.We present four kinds of results.� We show that the lexiographi rule is the only way of ombining preferene relationswhih satis�es natural onditions (similar to those proposed by Arrow [1℄).� We show in what irumstanes the lexiographi rule propagates various onditionson preferene relations, thus extending Grosof's [14℄ results.� We give neessary and suÆient onditions on the priority relation to determine variousrelationships between ombinations of preferenes.� We give an algebrai treatment of this form of generalised prioritisation. Two opera-tors, alled but and on the other hand, are suÆient to express any prioritisation. Wepresent a omplete equational axiomatisation of these two operators.These results an be applied in the theory of soial hoie (a branh of eonomis), innon-monotoni reasoning (a branh of arti�ial intelligene), and more generally whereverrelations have to be ombined.1 IntrodutionThe lexiographi ombination of orderings onstruts a single ordering from severalindividual ones. Traditionally, the individual orderings will order words aording1



to their ith letter using alphabetial ordering, and the ombination will then be theusual ordering of ditionaries. This ombination thus says that a letter on the left ismore important than any letter on its right, thereby giving a priority between letterindies. If the �rst letter of the �rst word is stritly before the �rst letter of the seondword, this �rst word will indeed appear �rst in the ditionary. In ase of ties, theseond ordering will be used, and so on.In this paper we study a generalisation of this ombination of relations, in whihthe priority ordering on the indies may be an arbitrary order instead of a �nite linearone, and the relations themselves need not be orders.Appliations of this work potentially inlude any appliation of the lexiographirule in omputer siene and arti�ial intelligene, and are therefore varied andwidespread. We mention some of them here:Arti�ial intelligene. Default logis have been used in AI for twenty years[13, 5℄.The lexiographi rule was �rst proposed for prioritised defaults by Lifshitz [19,20℄ in the setting of irumsription. Later, Grosof [14℄ reognised its applia-bility to any preferential logi, and dubbed it generalised prioritisation. Thelexiographi rule has also been used for preferential logis in Ryan [25℄ andShobbens [30℄. In this ontext, a priority operator is a poliy for ontrollingwhih defaults represent exeptions for whih other defaults. In the spei�ase of irumsription, a priority operator is a irumsription poliy. Thelexiographi rule has also been used in belief revision [28℄.Requirements spei�ation. The requirements that users may speify are oftensoft, and as suh express a preferene over a set of possible implementationsrather than a hard set of implementations. Inonsistenies easily arise if therequirements are interpreted as hard, whereas resolving a set of soft require-ments involves �nding a ompromise between the preferenes eah requirementdenotes. Priority operators in this setting represent a poliy for putting togetherthe requirements.Conretely, the use of default onstraints in spei�ations has been proposedfor modelling requirements [4, 30, 26, 27, 15℄. The priority operator used toput together the preferenes on models these defaults express may be derivedfrom the struture of the spei�ation [26℄, the use of a logial onnetive `but'expressing exeptions [30℄, or an expliit hierarhy [9℄.Eonomis. Preferenes originate from eonomis, and naturally our work an alsobe used there. Two subdomains are more partiularly onerned:Soial hoie. The study of ombinations of preferenes for soial hoie wasinitiated by Condoret [7℄. Here, eah input relation represents the prefer-enes of a member of the group, and the output represents the preferenesof the group. This domain has yielded mostly negative results, the mostknown being Arrow's impossibility of ombining linear orders under verynatural onditions [1℄ realled in setion 3. In this paper, we show that sur-prisingly, when working in the slightly more general settings of relations, oreven pre-orders, we obtain on the ontrary a possibility theorem, yieldingour lexiographi ombinations as the only solution. Various extensions ofthe lexiographi ombination were also studied in [11, 12, 3, 17, 18℄.2



Multi-riteria deision. Currently these results are more used in a di�erentbranh of eonomis, multi-riteria deision. Arrow has rewritten his re-sults with this appliation in mind in [2℄. Here, the input relations representrankings aording to the various relevant riteria, and the single outputrepresents their ombination, on whih the �nal hoie will be based.This setion intuitively introdues the problems and the solutions onsidered inthis paper. We use an example from Eonomis, sine suh examples are readilyexplained from ommon sense.Example 1 Claire and Bob have to replae their old ar. As often, they have di�erentriteria for seleting the new ar, although some of them are ommon, but rankeddi�erently.The preferene of Claire is guided by the following riteria (in inreasing order ofimportane):� the maximum speed (M);� the elegane of the design (D);� the ease with whih it an be driven in town (E);� the prie (P).The riteria for Bob are ranked di�erently:� the ease with whih the ar an be driven in town (E);� the maximum speed (M);� the prie (P).Some of these riteria are simple, and an be diretly omputed from the tehnialdata of the ar. Other an be deomposed, say: the ease with whih the ar an bedriven in town (E) is an aggregation of:� the length of the ar (L);� its weight (W);� its turning irle diameter (C);� the presene of automati transmission (A).Let us say the last one is the most important, the other ones are equally important,but are learly expressed in inomparable units, so that, for instane, adding themmakes no sense. The �nal hoie should at least be Pareto-optimal: no other ar willbe better for both Claire and Bob than the one seleted.Now, these riteria must be appliable to any spei� market. In this paper,we do not work diretly with numerial riteria like the ones above. We onsiderthe market M ontaining eonomi alternatives, in this ase the various ars thatare available; say M = ft; h; r;m; ng. The numerial riteria are onverted into apreferene ordering. For instane, if the atual harateristis of the ars are as in3



t h r m nlength L 3.5 3.5 7.3 5.0 3.7weight W 0.7 0.9 3.5 1.5 0.7turning irle diameter C 3.2 3.4 6.4 3.4 3.2automati transmission A N Y Y N Nmaximal speed M 110 130 180 250 120prie P 10 10 100 20 11Table 1: Car haraterististable 1, we forget the numeri values to remember only their ordering. For example,for the turning irle diameter (C), we remember only that t is equivalent to n (inthe notation of the main part of this paper, t R�C n), while n is stritly preferredto h (written n R<C h), and so on: in summary, tR�CnR<ChR�CmR<Cr. In some ases,no meaningful omparison an be established, so that both inomparable alternativesshould be kept in the �nal hoie. For instane a shoe annot be ompared to a ar,say. We write this s R# .In the example, all preferenes are transitive, and this is usually onsidered asondition for them to be rational. However, many empirial studies have shown thatintransitive preferenes are the norm rather than the exeption for human deisionmakers. Therefore, this study does not assume transitivity, but intends to preserveit when it exists. That is to say, when the underlying preferenes are transitive, soshould be their ombination. We shall use (T) to refer to preservation of transitivity.We assume several other properties of the ombination. It should not advantage anyalternative exept from the seleted riteria (B), and should respet the riteria whenthey are unanimous (U). Finally, alternatives that are not involved in a omparisonshould not inuene the result (I): for instane, if m is preferred to n, this should notdepend on whether h is present in the market M or not, but only on the performaneof m;n for the seleted riteria.If we aept these natural rationality postulates (IBUT), we demonstrate belowthat the problem an be expressed by priority graphs, or by algebrai expressions.For instane, the algebrai expressions for the example above are:Claire = M=D=E=PBob = E=M=Pwhere E = (LkWkC)=AResult = BobkClairewhere = expresses priority of the seond term, while k puts both sides on equal priority.In this example, our theory shows how to simplify the omputations: it is useless torepeat the omputation of E for Bob, ofM for Claire, sine anyway these riteria willbe better taken into aount by the other person. So Result = (Mk(D=E))=P givesthe same result more eÆiently. It is also lear from this expression that h is to behosen in the example, without even looking at riteria L;W;C;D.Our prinipal de�nition is that of priority operator. A priority operator spei-�es a way of putting together a family of relations to make a single relation. We4



all these relations preferene relations : the idea is that they relate elements of M(interpretations, eonomi alternatives, et.) aording to some preferene riterion.We present results of four kinds.1. We show that priority operators are anonial: they are the only way of ombin-ing preferene relations with di�erent priorities whih satis�es the very naturalonditions above, inspired by Arrow [1, 2℄.2. Next, we de�ne several natural properties of preferene relations: transitivity,reexivity, irreexivity, and well-foundedness. We show in what irumstanesthese properties are propagated by priority operators. This generalises a resultby Grosof [14℄.3. We give neessary and suÆient onditions on the priority relation to determinewhether the result of a priority operator is always inluded in the result ofanother ombination. This also extends a result of Grosof [14℄. We also giveneessary and suÆient onditions for other relationships between the results ofpriority operators, suh as equality and preferential entailment.4. We give an algebrai treatment of generalised prioritisation. We formally de-�ne two binary priority operators, alled but and on the other hand, and showthem to be suÆient to express any priority operator. We present a ompleteequational axiomatisation of these two operators.The struture of the paper is as follows. The next setion presents basi de�nitions.Setion 3 presents the results whih show that the lexiographi rule is the only wayof ombining preferene relations that satis�es the natural generalisation of Arrow'sonditions. Propagation of properties of preferene relations by the rule is summarisedin setion 4, table 3. Setion 5 develops proof rules for priority graphs, and 5 exploresomposition of priority operators. Setion 7 summarises our algebrai treatment ofpriority operators, and onlusions are drawn in setion 8.There is a long appendix to this paper, whih overs the mathematial details andproofs whih have been omitted from the text in order not to interrupt the ow. Thestruture of the appendix mirrors that of the paper.2 Priority operatorsLet M be a set ontaining at least two elements. The elements of M are the subjetof the preferenes: in the example above, it was the set of ars whih were availableon the market. From the point of view of our appliation to default reasoning, Mis the set of interpretation strutures of the logi. Default rules or formulas expresspreferenes on M . The results presented in the paper work for any appliationsof prioritised preferene, suh as default reasoning, soial hoie or multi-riteriadeision. M is simply the set of objets whih are ordered by preferene, whih ineonomis are alled eonomi alternatives. (Of ourse there must be at least two ofthem, otherwise there is nothing to hoose.)De�nition 2 A preferene relation (sometimes just alled a preferene) is any binaryrelation on M . Preferene relations will be written R, R1; R2; : : : ; or R0; R00 : : :.5



For intuition, the reader will be helped by reading R as meaning \better than, orindi�erent" or \as preferred as". We do not assume that R is transitive and reexive,sine our mathematial results do not depend on these properties.In the non-monotoni appliation, eah default formula denotes a preferene re-lation on M whih orders interpretations aording to how nearly they satisfy thedefault information. As usual in the literature, interpretations `lower' in the relationare those whih are loser to satisfying the default. For m;n 2 M , the expressionm R n means that m is as preferred as n.De�nition 3 Given a preferene relation R, we de�ne the derived relationsm R n i� not mRn. \not better (nor indi�erent)"m R< n i� mRn and not nRm. \stritly better"m R� n i� mRn and nRm. \indi�erent"m R# n i� neither mRn nor nRm. \inomparable"We also use F to denote the full relationM �M , and ; to denote the empty relation.Thus, F = F< = F# = ;< = ;� = ; and F� = ;# = ; = F .Now suppose we have a family of preferene relations (Rx)x2V , all on the sameset M . This an ome about beause we have several defaults, eah of them denotinga preferene relation among interpretations of a non-monotoni logi. Or beause wehave several deiders, eah having its own preferene among the eonomi alternatives.Also, the preferenes an originate from di�erent riteria that we wish to ombineaording to their importane. We want to ombine these relations into a singlerelation on the same setM . The next step is usually to pik the minimal (or preferred)interpretations (or alternatives) aording to it.De�nition 4 An V -ary operator is anymap taking some preferene relations (Rx)x2Vand returning a single preferene relation. (V may be in�nite.)Of partiular interest are operators whih ombine preferene relations aordingto some priority, whih is a strit partial order on V .The lexiographi ombination of (Rx)x2V (V 6= ;) aording to priority < on Vis the relation R given bymRn() 8x 2 V: (mRxn _ 9y 2 V: (y < x ^mR<y n)): (�)This generalises the familiar rule used for the alphabeti ordering of words in aditionary, by allowing the priority < (position of letter in word) to be an arbitrarypartial order, and by allowing the preferene relations (ordering of letters in alphabet)to be an arbitrary relation. Intuitively, the lexiographi rule says that m is preferredto n overall if it is preferred at eah index, exept possibly those for whih there isan index of greater priority at whih m is stritly preferred to n. To understand howthis redues to the familiar alphabeti ordering when < is a �nite total order (amongpositions in the word), observe that it says: in order that word m omes before (orequal) word n, we must have that for any x, the xth letter of m preedes or equalsthe xth letter of n, unless there was a smaller y suh that the yth letter of m stritlypreedes the yth letter of n.A number of de�nitions of the lexiographi ordering, whih are all equivalentwhen used with a �nite linear priority, an be found in the literature:6



1. aR<b i� 9z : aR<z b and 8x < z; aR�x b [23, p.49℄2. aR<b i� D = fxjaR�x bg is not empty and aR<z b, where z is the <-minimumelement of D [12, p.1442℄3. aRb i� 8x(8y < xaR�y b)) aRxb [14℄When we generalise to a partially ordered priority:� De�nition 1 may yield both aR<b and bR<a, and is thus not useful in thisontext.� De�nition 2 needs to be generalised, sine D will not have a single minimumbut a set of minimals. So we ould require that aR<z b for all these minimals.� De�nition 3 is diretly usable.De�nition 3, and our generalisation of de�nition 2, are eah equivalent to our de�ni-tion in equation (�) under the assumption that < is well-founded (see theorem 12).This is an assumption we will make frequently in the paper; it is generally valid forappliations.The formulation (�) of the lexiographi ombination is not as general as we wouldlike, however, beause it forbids us from repliating an argument Rx several times inthe prioritisation. We an generalise it by onsidering the following notion of prioritygraph.De�nition 5 A priority graph is a tuple (N;<; v) where N is a set (of `nodes'), <is a strit partial order on N (the `priority relation') and v is a funtion from N to aset of variables. N may be in�nite.This de�nition and the following one are the most fundamental in the paper;everything else depends on them. So, what is a priority graph? It is just an orderingof variables, but ruially it allows some variables to be represented several timesin the ordering, simply by repeating the variable in the priority graph. (A prioritygraph essentially represents a poliy for prioritising ertain things represented by thevariables, and the ability to allow repetition of the variables greatly inreases theexpressive power of the representation. We will prove this later.)A priority graph denotes an operator on preferene relations. The operator itdenotes ombines its arguments aording to the given priority, using the lexiographirule.De�nition 6 The V -ary operator o denoted by the priority graph (N;<; v) is givenby m o((Rx)x2V ) n() 8i 2 N: (mRv(i)n _ 9j 2 N: (j < i ^mR<v(j)n))where V = v[N ℄, the variables that our in the graph.This says that the variables in the priority graph are instantiated to be the ar-gument preferene relations. The operator returns the preferene relation, whih istheir prioritised ombination aording to <, using the lexiographi rule.7



The di�erene between de�nition 6 and equation (�) is that the elements of N areordered, rather than the elements of V diretly. The onus is on us to show that thisadded ompliation is really useful. It turns out to be useful beause the ability todupliate one of the arguments Rx in the ordering inreases the expressive power weare giving to priority operators. This is shown by example 9 below.Our notion of priority operator an now be seen to generalise the notion of ir-umsription poliy [20℄ in three ways.� It works for arbitrary preferential logis;� It allows the priority to be partial;� It allows repetition of the prioritised riteria in the ordering; and this inreasesthe expressive power (example 9 below).Example 7 Consider the priority graph g1 = (N;<; v) given by N = f1; 2; 3g with1 < 2 and 1 < 3 and v(1) = y, v(2) = x and v(3) = y. Priority graphs will normallybe written using a graphial notation in whih we leave out the names of elementsof N , showing the base of the partial order < on the variables given by v (Thisis usually alled the Hasse diagram of the priority). Reall that elements with thehighest priority are, surprisingly perhaps, written at the bottom of our diagrams. Thepriority graph g1 is: x yy>>>>>> �����This denotes a binary operator sine there are only two distint variables in the graph.It takes two preferene relations, say R and S, and returns a preferene relation whihrepresents the ombination of R and S with the priority whih represents R one andS twie. One of the representations of S has priority over the other and over R. Thus,if o1 is the operator denoted by the graph, then o1(R;S) is the following prioritisedombination of R and S: R SS????? �����Applying the de�nition of the lexiographial rule (and simplifying), we obtain thato1(R;S) = (R\S)[S<. We may also write o1 = �x; y: (x\y)[y< , although we willgenerally leave out �'s and details of variable binding, and write o1 = (x \ y) [ y<.There may be several graphial representations of the same operator. As a trivialexample, any priority graph whose nodes are all labelled by the same variable xdenotes the identity operator, whih is the only unary priority operator.De�nition 8 Priority graphs g1; g2 are said to be equivalent, written g1 � g2, if theydenote the same operator on preferene relations.
8



The graph g1 in the preeding example is equivalent to the graph g2xy(whih does not have any repetition of variables), in the sense that the two graphsdenote the same operator o1 = (x \ y) [ y<.Example 9 The priority graph g3 x xy zdenotes the operator o3 = [x [ (y< \ z<)℄ \ y \ z, and is not equivalent to any graphwhih does not repeat the variable x (this will be proved later, in example 23). Inpartiular, it is not equivalent to xy z����� ??????whih denotes [x[ (y\z)<℄\y\z. To see that these expressions may be di�erent, tryM = f1; 2g, x = ;, y = M �M , z = f(1; 1); (1; 2); (2; 2)g. Then the �rst expressionyields ;, while the seond one yields f(1; 2)g.Example 10 The graphsx yz z and x yz?????? �����denote the same operator, namely (x \ y \ z) [ z<.The lexiographi rule applied to graphs is not the only way of de�ning operatorson relations, but is an important one:De�nition 11 A priority operator is an operator whih is denoted by some prioritygraph.By onvention, we extend the usual properties of posets to priority graphs andthene to operators in the obvious way: for instane, we say that a priority operator iswell-founded i� there is a graph (N;<; v) denoting it suh that (N;<) is well-founded,(i.e. there is no in�nite desending sequene i1 > i2 > i3 > � � �, in 2 N). An V -aryoperator is �nitary if V is �nite.Notie that the identity of nodes (elements of N) in a priority graph is irrele-vant. For this reason we an think of priority graphs as partially ordered multisets(pomsets [24℄) of variables. 9



The following theorem is useful in two respets. First, it should help the readerbuild up intuitions for the behaviour of the lexiographi rule oded into de�nition 6.Seondly, it will be used for proving most results in all later setions, e.g. theorems 14and 15.Theorem 12 Suppose (N;<) is well-founded, and let R = o((Rx)x2V ). Then1. mRn i� 8i 2 N: (8j < i: mR�v(j)n) implies mRv(i)n.2. mRn i� 8i 2 N: (mRv(i)n or (9j < i: mR<v(j)n and 8j0 < j: mR�v(j0)n)).3. mR<n i� mRn and 9i 2 N: mR<v(i)n.4. mR�n i� 8i 2 N: mR�v(i)n.3 Canoniity of the lexiographi ruleWe have de�ned priority operators, whih take as arguments some preferene relationsand ombine them aording to some priority, using the lexiographi rule. Arrow [1,2℄ has studied operators taking sets of preferene relations to preferene relations, andproposed natural onditions that they should satisfy. Our aim in this setion is toshow that priority operators an be de�ned by a variant of Arrow's onditions, whihis also very natural. Historially, we arrived at these onditions when looking forfurther preferential operators, mainly a ounterpart for disjuntion, only to disoverthat there are no further operators.Let o be an operator taking (Rx)x2V and returning R = o((Rx)x2V ). To benatural, the operator o should:I. be independent of irrelevant alternatives: the resulting preferene on elementsin M depends only on the argument preferenes on these elements. That is,8M 0 �M; o((Rx)x2V )jM 0 = o((RxjM 0)x2V ):This is ondition 2 in [1℄ and [2℄.B. be based on preferenes only: o is a funtion of the Rx's only, and may not takeinto aount the identity of any element ofM . That is, if there is an isomorphismf between M and M 0 (i.e. a bijetion f suh that 8x 2 V;8a; b 2 M;aRxb i�f(a)R0xf(b)) then the results are the same: aRb i� f(a)R0f(b). This onditionis alled permutation invariane in algebrai logi. It was not used by Arrow,but by algebraists, order theorists, and eonomists [12, p. 1448℄ and seems verynatural.U. be unanimous with abstentions: For intuition, we use here analogies from thetheory of soial hoie. Let us onsider that eah Rx represents the preferene-or-indi�erene relation of the person alled x, member of a group V of voters.To establish the preferene of the group, eah pair of alternatives a; b will bepresented in a vote, where the members an vote on whether a is preferable tob. For a given pair, eah member x has four possible votes, orresponding to the10



ases of de�nition 3: vote for a (aR<x b); vote for b (bR<x a); a; b are onsideredinomparable (aR#x b); or indi�erent (also alled equivalent) (aR�x b). In thislast ase, we say that x abstains in the vote of a against b. Inomparability, onthe ontrary, is a strong opinion here: it means that the two alternative annotompete, and this vote will override deided votes of the same priority. In the�rst two ases, we say that x is deided.If all the Rx's determine a ertain vote between a and b (whih ould be aR<x b,aR#x b, bR<x a, or aR�x b) apart from those whih abstain (aR�x b), then the ondi-tion of unanimity states that R also determines the same vote between a and b.That is, for all � 2 f<;>;�;#g if 9V 0 � V suh that V 0 6= ; and 8y 2 V 0; aR�yb,and 8x 2 V � V 0; aR�x b, then aR�b.Respeting unanimity is the motivation for ondition 4 of [1℄, but after moti-vating this ondition, [1℄ writes a muh weaker mathematial ondition.T. preserve transitivity: if all the argument preferenes (Rx)x2V are transitive,then the resulting preferene R is also transitive. This ondition is not statedin [1℄ but is impliitly used.N. be non-ditatorial: it does not simply return a �xed one of its arguments withoutregard to the others. We formulate this tehnially as follows: if jV j > 1 thenthere is no z 2 V suh that R = Rz for all possible values of the other Rx's.This de�nition omes from [2℄.In the ase of total pre-orders, Arrow's well-known theorem shows that the prop-erty of non-ditatoriality is inompatible with the other onditions. In our ase ofarbitrary relations in whih we have generalised his onditions, it is easy to show anopposite result:Theorem 13 Every operator satisfying unanimity with abstentions is non-ditatorial.More generally, the result of suh an operator annot be independent of any of itsarguments.Proof Assume o is ditatorial in z; thus V r fzg is not empty. Take some non-fullrelation S and de�ne Rz = F andRx = S for all other x. By U, o((Rx)x2V ) = S 6= Rz.Thus non-ditatorial is not only ompatible with IBUT, but implied by U. Thereare two explanations for this inversion, depending on the version ([1℄ or [2℄) to whihwe ompare:1. Unanimity with abstentions is a powerful and natural ondition, for pre-orders.The proof of [2℄ relies strongly on linear orders, where abstentions are impossible.2. The de�nition of ditatoriality [2℄ we use is natural but restritive: some of ouroperators would be ditatorial under the wider de�nition of [1℄. Arrow (in bothversions) uses a supplementary unstated ondition: the preservation of totality.As shown in theorem 15 below, this amounts to requiring a linear (total) priority.In this ase, the relation with highest priority is a ditator in the sense of [1℄,but not of [2℄. 11



So, of ourse, there is no mathematial ontradition between Arrow's results andours. But uriously, all informal explanations of [1℄ ould be retained to justify theonditions of our inverse result { just draw opposite extra-mathematial generalisa-tions.The main result of this setion shows that only lexiographi ombinations ofpreferenes satisfy onditions IBUT (or equivalently IBUTN). We may state it asfollows.Theorem 14 A �nitary operator satis�es onditions IBUT i� it is a priority operator.The proof, found in setion A.3 in the Appendix, works by performing `tests' onthe operator in order to �nd a priority graph whih denotes it.It is not obvious that the onditions IBUT are all we should require; we ould alsothink that a natural operator should:1. preserve reexivity: usually, one onventionally onsiders that preferenes arereexive. This onvention should be preserved by the operator.2. preserve irreexivity: if we take the opposite onvention, it should also be pre-served;3. preserve antisymmetry: often preferenes are taken to be antisymmetri; thenthe result should also be.4. preserve well-foundedness: the goal of preferenes is to �nd minima, and toensure their existene we must forbid in�nite regression. It is learly importantthat this property is preserved.5. allow majority extension or respond positively [2℄: Given a situation where theresult is some vote (for instane, that a and b are indi�erent), then any situationidential exept that more individual preferenes give that vote, should have thesame resulting vote.6. be justi�ed: if the result is to prefer one of the interpretations, then at least onedefault (alled the justi�ation) must prefer this interpretation.7. obey Pareto rule or be benevolent: if one riteria stritly prefers an alternative,and the other ones prefer it, it should be stritly preferred globally. 8xaRxb ^9yaR<y b) aR<b.Fortunately, all these onditions an be derived from the 4 basi ones (at leastfor �nitary operators). The preservation properties (1-4) are theorems of the nextsetion. Properties (5-6) are proved in lemmas 63 and 61, respetively, of appendixA.3. The Pareto rule is a speial ase of U. There is, however, one ondition (proposedby [10℄) that we annot add, namely deidedness: that the global preferene is deided(prefers one of the two interpretations to be ompared) as soon as one of the individualpreferenes is deided. Intuitively, this ondition seems rather strong: for instane,the operator annot deide that two interpretations are inomparable, even if a vastmajority of defaults share this opinion or if two equally important sets of defaults holdopposite opinions. If we add deidedness, no ombination operator an be found, sinewe fall bak in the onditions of the original Arrow theorem: the operator will preservetotality. 12



Table 2: Properties of a relation R and their losuresProperty De�nition `Closure(s)'Reexive 8m 2M:mRm mR�n i� mRn or m = nIrreexive 8m 2M:mRm mR 6=n i� mRn and m 6=nSymmetri 8m;n 2M: (mRn) nRm) mR_n i� mRn or nRmmR�n i� mRn and nRmmR#n i�mRn and nRm.Antisymmetri 8m;n 2M: (mRn ^ nRm) m =n) mR<n i� mRn and nRmTransitive 8m1;m2;m3 2M: (m1Rm2 ^m2Rm3 ) m1Rm3) mR+n i� 9n: mRnyTotal 8m;n 2M: (mRn _ nRm)Empty 8m;n 2M: mRn ; (the empty relation)Full 8m;n 2M: mRn F (the full relation)Well-founded transitive, and there is noR<-sequene� � �m3 R< m2 R< m1#Zorn R transitive, and eah hain (to-tally R-ordered subset) in M hasa lower bound.4 Propagation of Properties via priority operatorsGrosof [14℄ has shown that a lexiographi ombination of transitive preferenes istransitive, provided the set of nodes is well-founded. A more systemati treatmentof suh properties is summarised in table 3, for the lassial properties desribed intable 2. For example, Grosof's result is represented as line 5 of table 3. This saysthat for any priority operator o and non-empty family (Rx)x2V of arguments, theresultant relation R = o((Rx)x2V ) is transitive if eah of the argument relations Rxis transitive, and also the priority < on N is well-founded.Other onditions, suh as reexivity, irreexivity and symmetry, propagate moresimply, without extra onditions on the priority relation.Theorem 15 Table 3 holds; i.e. the properties are propagated by the lexiographiombination in the manner shown in the table.In preferential logis, we are interested in �nding the minimals of preferene rela-tions. A strong property guaranteeing the existene of minimals is well-foundedness.Assuming that the relation R is transitive, well-foundedness is equivalent to sayingthat R restrited to any non-empty subsetM 0 ofM has minimals, i.e. MinR(M 0) 6= ;.13



Table 3: How the properties propagate through priority operatorsLet (N;<; v) be a priority graph denoting the priority operator o.The result of o is. . . if. . . argument is, and also . . .1. reexive eah2. irreexive some3. symmetri eah4. antisymmetri some there is no in�nite <-hain below it.5. transitive eah the priority is well-founded.6. total eah the priority is total.7. empty some its node is minimal in (N;<).8. full eahNow suppose N is �nite, and eah Rv(i) is transitive.9. well-founded eah10. #Zorn eah for eah K � N the relation Ti2K Rv(i) is#Zorn.Table 3 shows that well-foundedness is propagated by the lexiographi rule undersimple assumptions.However, well-foundedness may be rather stronger than we atually need. This isbeause we do not require the existene of minimals in any non-empty set M 0 �M ,but only in those sets whih are denoted by a theory in the logi. This is the motivationbehind the ondition of stopperedness [21℄ (aka smoothness [16℄) in the literature.To study the propagation of stopperedness, let C be the set of subsets of M whihare losed, i.e. whih are the denotation of a theory. Take any M 0 2 C. We say thatR has the #Zorn property (pronouned downwards-Zorn) with respet to M 0 if eahR hain in M 0 has a lower bound in M 0. That is the ondition that is required inorder to apply Zorn's lemma to �nd minimals in M 0. Thus, to study the propagationof stopperedness it is suÆient to study the propagation of #Zorn in eah of the setsin C. The propagation of #Zorn in any set is desribed in table 3.Theorem 16 Well-foundedness and #Zorn are related as follows. Let R be a transi-tive relation on M . R is well-founded i� (for all N �M RjN is #Zorn).Line 10 of table 3 is onsiderably harder to prove than the others, and requiresseveral lemmas. The proofs are in setion A.4.5 Proof Rules for Priority Graphs5.1 Re�nement and equivaleneCheking equivalene between priority graphs by applying the lexiographi rule toonvert them into priority operators is a time-onsuming and error-prone proess.14



Fortunately, there are some syntatial rules whih an help us. We onsider only well-founded priority graphs with �nitely many variables. As well as heking equivalene,we develop proof rules for heking re�nement between priority operators.De�nition 17 We say that o1 re�nes o2 and write o1 v o2 if, for all argument tuples(Rx)x2V , we have o1((Rx)x2V ) � o2((Rx)x2V ) as relations. This notion is liftednaturally to priority graphs: g1 v g2 if g1; g2 denote operators o1; o2 and o1 v o2.If (N;<; v) is a priority graph and i 2 N , we write #i for the set fj 2 N j j < igand v[N 0℄ for fv(j) j j 2 N 0g for any N 0 � N . Thus v[#i℄ = fv(j) j j < ig is the setof variables ourring below the node i.Theorem 18 g1 v g2 i� for eah j 2 N2, there is a i 2 N1:� v1(i) = v2(j); and� v1[#1i℄ � v2[#2j℄.Corollary 19 (Cf. Grosof [14℄, Theorem 3) If N1 = N2 and v1 = v2 and <1 � <2then g1 v g2.Corollary 20 If g1 v g2, then v2[N2℄ � v1[N1℄.The theorem is easily extended to simple and e�etive test for equivalene betweenpriority graphs (reall that two graphs are said to be equivalent if they denote thesame operator):Corollary 21 g1 � g2 i�� for eah i 2 N1, there is a j 2 N2 suh that v1(i) = v2(j) and v2[#2j℄ � v1[#1i℄,and� for eah j 2 N2, there is a i 2 N1 suh that v1(i) = v2(j) and v1[#1i℄ � v2[#2j℄.Proof Simply apply theorem 18 to the re�nements g1 v g2 and g2 v g1.Example 22 Some re�nement and equivalene relationships between priority graphs,whih are easily hekable using the rules expressed by these theorems:x zy � x y � xy � yx xy zz y � xy z���� ???? x yz???? ���� � x yz zx xz zy � x yz � x yz???? ���� � xyz15



Example 23 The priority graph g1 x xy zwas presented in example 9, and it was stated that it ould not be written with justone ourrene of the variable x. Corollary 21 an be used to prove this. Suppose g2has just a single ourrene of x, say at node i 2 N2, and g1 � g2. Then by the �rstpart of 21, v2[#2i℄ must be a subset of fyg and of fzg, hene (sine y; z are distintvariables) it must be empty. By the seond part, either fyg � v2[#2i℄ or fzg � v2[#2i℄,so v2[#2i℄ annot be empty. Contradition.Corollary 24 If g1 � g2, then v1[N1℄ = v2[N2℄.We are interested in simplifying priority graphs without hanging the operatorthey denote. To this end, we de�ne the notion of a priority graph normal form;the normal form of a graph is the `simplest' graph whih is equivalent to it. (Here'simplest' means with a minimal number of nodes, but surprisingly, with a maximalnumber of links.)De�nition 25 Let g = (N;<; v). A node i 2 N is ritial if for all k 2 N withv(i) = v(k), we have v[#k℄ 6� v[#i℄.That is to say, a node i is ritial if the set of variables beneath it (v[#i℄) is minimalompared with other nodes k labelled by the same variable. The importane of ritialnodes an be seen in de�nition 6: the 8i need only range over ritial nodes, beauseif i is not ritial then the existene of an appropriate j beneath it is guaranteed byits existene for a ritial node.De�nition 26 The normal form of a priority graph g = (N;<; v) is the graph(N 0; <0; v0) where N 0 = f(v(i); v[#i℄) j i ritial in gg(v(j); v[#j℄) <0 (v(i); v[#i℄) , v[#j℄ [ fv(j)g � v[#i℄v0((v(i); v[#i℄)) = v(i)(We will soon justify the term `normal form' by giving rewrite rules for prioritygraphs.)Theorem 27 1. Any priority graph is equivalent to its normal form;2. Two priority graphs are equivalent i� their normal form is the same.Corollary 28 The normal form operator is idempotent.We now give rewrite rules for transforming a �nite graph into its normal form, up torenaming of the nodes.De�nition 29 The rewrite rules for priority graphs are16



(link) Link j below i if this does not hange the down-set of i.More formally: g link=) g0 if: there are i; j 2 N with i 6� j, v[#j℄ [ fv(j)g �v[#i℄ [ fv(i)g, and <0 is the transitive losure of < [ f(j; i)g.(del) Delete a node if:� it is not ritial or there is an equivalent node, and� deleting it does not hange the down-sets of other nodes. Note that thislast ondition will eventually be obtained by appliation of (link), so thatonly one opy of eah ritial node will be kept.More formally: g del=) g0 if: there are distint i; j 2 N with v[#j℄ � v[#i℄[fv(i)gand v(i) = v(j) = x for some x, and for all i0 > i there exists i00 < i0 withv(i00) = x, and N 0 = N � fig, and <0 = <jN 0 (the restrition of < to N 0), andv0 = vjN 0 .Example 30x xy zz y
link=) x xy zz y

?????? del=) xy zz y
??????

del=) x zz y
����� del=) x

z y00000000000ÆÆÆÆÆÆÆÆÆÆÆTheorem 31 By applying rules (link) and (del) repeatedly in any order until noneapplies, any �nite priority graph is brought into a form whih is equal to its normalform, up to renaming of elements of N .Corollary 32 Any priority graph in whih eah variable ours at most one is innormal form.Of ourse, there are priority graphs with several ourrenes of a variable whih arein normal form, suh as the one orresponding to the term (x=y)k(x=z) (example 23).5.2 Preferential entailment and preferential equivaleneIn the setting of preferential logis, the models of interest are the minimal modelsaording to the preferene (sometimes alled preferred models).Min(R) = fm 2M j 6 9n 2M:nR<mg:17



Let us de�ne the relation of preferential entailment between operators as inlusionof preferred models.De�nition 33 o1 preferentially entails o2, written o1 j� o2 i� for any arguments(Rx)x2V , we have Min(o1((Rx)x2V )) � Min(o2((Rx)x2V )). As for re�nement, thisnotion naturally extends to priority graphs.Note that preferential entailment (j�) is distint from re�nement (v). Analogouslyto re�nement, however, we an hek preferential entailment by means of a simplesyntati haraterisation on graphs denoting the operators.Theorem 34 g1 j� g2 i� v2[N2℄ � v1[N1℄ and for eah node i 2 N1 either v[N2℄ �v1[#1i℄, or there is a j 2 N2 suh that v(i) = v(j) and v[#j℄ � v[#i℄.Corollary 35 If g1 j� g2, then v2[N2℄ � v1[N1℄De�nition 36 o1; o2 are preferentially equivalent if o1 j� o2 and o2 j� o1. Again, thisextends naturally to graphs.Although preferential entailment and re�nement are distint, it turns out rathersurprisingly that preferential equivalene and equivalene are the same:Proposition 37 Two priority graphs are preferentially equivalent i� they are equiv-alent.Proof ). Suppose without loss of generality that the graphs are in normal form. Itis impossible that v1[#1i℄ � v[N2℄ (= v[N1℄ by Cor. 35) beause i wouldn't be ritial.So we have the other ase, whih is just the haraterisation of inlusion (theorem18) in eah diretion, yielding equivalene. (. Obvious.So the omputation of the normal form an also be used for preferential equivalene.When onstants for given relations are introdued, this property may fail.The results of this setion are diretly operational, and yield algorithms for deid-ing equality, re�nement, preferential entailment, preferential equivalene and ompu-tation of the normal form.6 Composing priority graphs6.1 Composition vs graphial insertionSine an operator o maps some preferenes (Rx)x2V to a preferene o((Rx)x2V ),operators an be omposed with eah other to give further operators. Therefore,priority operators an be omposed, but are their ompositions also priority operators?In ertain irumstanes the answer is yes; indeed, we an ompose priority operatorssimply by manipulations on the graphs that denote them.De�nition 38 Let g = (N;<; v) having variables V = v[N ℄, and for eah x 2 V letgx = (Nx; <x; vx) be a priority graph. The graphial insertion g0 = g[(gx)x2V ℄ of thepriority graphs gx in the priority graph g is (N 0; <0; v0) where18



� N 0 = f(i; j) j i 2 N; j 2 Nv(i)g� (i1; j1) <0 (i2; j2) i� (i1 < i2) or (i1 = i2 and j1 <v(i) j2)� v((i; j)) = vv(i)(j)Example 39 If g, g1, g2 are respetively the priority graphsx1 x2x1CCCCCC {{{{{{ yz u vthen g0 = g[g1; g2℄ is the priority graphyz u vyz
????? �����ooooooooooooFor well-founded priority operators, graphial insertion is the syntatial ounter-part of semantial omposition of priority operators:Theorem 40 Let g be a well-founded graph denoting operator o with variables V .Let (gx)x2V be a family of well-founded graphs denoting operators (ox)x2V withvariables (Vx)x2V . Let g0 be the graphial insertion of (gx)x2V in g, and let o0 be theoperator denoted by g0.Then o0 is the omposition of o with (ox)x2V , i.e.o0�(Ry)y2SfVxjx2V g� = o�(ox((Ry)y2Vx))x2V �Corollary 41 Well-founded priority operators are losed under omposition.6.2 The binary priority operatorsThere are essentially only two binary priority operators; they are denoted by thegraphs xy and x yStritly speaking, there is also a third one, whih is like the �rst one but with x andy swapped around. All other binary priority graphs (i.e. graphs having possibly morethan two nodes but preisely two variables) are equivalent to one of these three. Sinethe third one is essentially the same as the �rst, we fous just on the �rst two.19



The two binary priority operators are of great importane for the remainder ofthe paper. We will write them respetively as x=y and xky, and all = `but' and k`on the other hand'. The reason for these names is the following. From the pointof view of default reasoning, the \but" operator ombines two defaults by puttingthe seond in a position of greater priority than the �rst. Thus, x=y means \applythe riteria x and y, and where they onit we apply y. This is like the naturallanguage onnetive `but'. The operator `k' ombines two defaults by putting themat inomparable priority. The expression `on the other hand' does the same job innatural language.Applying the lexiographi rule, we an see thatProposition 42 1. x=y = (x [ y<) \ y, whih is also equal to (x \ y) [ y<.2. x k y = x \ y.Proof Immediate from the de�nitions.The importane of these two operators is that any �nitary priority operator anbe written in terms of these two, using graphial insertion, as we now explain.The operators =; k apply to other operators in the standard ompositional way:o1=o2 and o1ko2 are de�ned by (o1=o2)((Rx)x2V ) = o1((Rx)x2V )=o2((Rx)x2V ), and(o1ko2)((Rx)x2V ) = o1((Rx)x2V )ko2((Rx)x2V ). Aording to theorem 40, the opera-tors = and k an equivalently be applied at the level of priority graphs, in whih asethey orrespond respetively to the graphial operations of linear sum and disjointunion [6℄.Theorem 43 Any �nitary priority operator is denoted by a term built from =; k andthe variables that our in the priority graph for the operator.Example 44 The 12 priority graphs in example 22 are respetively equivalent to thefollowing terms: xk(z=y), xky, x=y, y, (x=y=z)k(x=z=y), x=(ykz), (xky)=z, (x=z)k(y=z),(x=z=y)k(x=z), (x=z)ky, (xky)=z, and x=y=z.Notie how the =; k term an be obtained from the shape of the priority graph.When two equivalent priority graphs are given, we obtained the term using the se-ond one. Extrating the term from the �rst graph in the �rst example, we obtain(x=y=z)k(x=z=y), whih an be shown to be equal to x=(ykz).Example 45 We annot graphially obtain a term from the `N' shaped graphx zw y������However, it is equivalent to x zw y y~~~~~~ ?????and so it denotes the operator (x=(wky))k(z=y).20



Corollary 46 Any �nitary operator satisfying onditions IBUT is equivalent to aterm built from =; k and the variables.Proof Follows from theorems 13 and 43.The notions of re�nement, equivalene, preferential entailment and preferentialequivalene of the last setion all extend naturally to terms.Example 47 (xky)=z � (x=z)k(y=z); however, (x=y)k(x=z) v x=(ykz) but not on-versely.Example 48 x=y j� y; x=y j� x k y; x=y=z j� y k z.We note in passing that, for any relation R (and where F is the full relationM�Mand ; the empty relation):R=F = RF=R = RR=; = ;;=R = R< RkF = FkR = RRk; = ;kR = ;:7 Algebrai TreatmentNow that we have terms for desribing priority operators, we an study their algebraiproperties. Consider a set of relations onM whih is losed under the binary operators= and k, de�ned as before by x=y = (x \ y) [ y<x k y = x \ y:We all suh an algebra a preferential algebra, or PA. Preferential algebras are a speialase of algebras of binary relations, a survey on whih an be found in e.g., N�emeti[22℄ and Shein [29℄.Terms in the language of PAs are made from variables and the binary operators=; k. If V is the set of variables ourring in a term � , then � denotes the V -arypriority operator whih evaluates the term after substituting its arguments in plaeof the variables. The next theorem rephrases theorem 43 in algebrai terminology.Theorem 49 For any �nitary V -ary priority operator o there is a term � of thelanguage of preferential algebras suh that for any preferential algebra A and relations(Rx)x2V in A we have that o((Rx)x2V ) = �((Rx)x2V ).As usual with relational algebras, we may identify ertain equalities whih holdbetween terms, however their variables are substituted. For example, it was seen inexample 47 that (xky)=z = (x=z)k(y=z).The following theorem gives a �nite axiomatisation of all the equations (equalitiesbetween terms) true in preferential algebras.Theorem 50 An equation is true in all preferential algebras i� it is derivable fromthe following 7 axioms: 21



1. xkx = x (k Idempotent)2. xk(ykz) = (xky)kz (k Assoiative)3. xky = ykx (k Commutative)4. (x=x) = x (= Idempotent)5. x=(y=z) = (x=y)=z (= Assoiative)6. (xky)=z = (x=z)k(y=z) (= Distributes over k)7. (x=y)kx = xky (Absorption)Some subsets of these axioms are interesting on their own:� Two terms yield the same priority graph by graphial insertion i� they an beproved equal by the axioms 2, 3, 5;� We an de�ne the forest form of a term, as the term obtained by normalisingit using the axiom 6 from left to right.� The rules 1, 2, 3 form a omplete axiomatisation of the k-redut (a trivial lassof algebras, isomorphi to sets with intersetion);� In ontrast, the rules 4, 5 do not axiomatise the =-redut: we have to addx=y=x = y=x (example 51(3) below). This sublass is again rather trivial, sinethe free algebras are isomorphi to strings of variables without repetition.Example 51 Some interesting derived equations.1. (x=y)ky = ((x=y)=y)k(x=y) absorption= (x=y)k(x=y) = assoiative, idempotent= x=y k idempotent2. x=(ykx) = (x=(ykx))k(ykx) (1)= ((x=(ykx))kx)ky k assoiative, ommutative= ((ykx)kx)ky absorption= xky k idempotent3. x=y=x = (x=y=x)k(y=x) (1) where y = y=x= (x=y=x)k(y=x=y=x) = idempotent= y=x=y=x (1) where y = x=y=x= y=x = idempotent4. (z=(xky))ky = [(z=(xky))k(xky)℄ky (1) where y = xky= [(z=(xky))k(xky)℄ k assoiative, idempotent= (z=(xky)) (1)5. y=((x=y)kz) = (y=((x=y)kz))k(x=y) (4)= (y=((x=y)kz))k(x=y)ky (2)= ((x=y)kz)kyk(x=y) absorption= (x=y)kz (1)6. x=((x=y)kz) = x=y=((x=y)kz) (5)= (x=y)kz (3)22



7. ykzk(y=z) = ykzky absorption= ykz idempoteneThese axioms are also omplete for inlusion, sine R1 � R2 i� (R1kR2) = R2.It is also possible to onstrut a (uninteresting) proof system for inlusion withoutresorting to equalityPreferential algebras have turned out to be an interesting ase of relational alge-bras. We gave in theorem 50 a �nite set of axioms from whih all equations true ofPAs may be proved. There are many other issues in relational algebra whih an bedisussed. For example, is PA axiomatisable in the following stronger sense: is therea �nite set of equations whih are true of all and only all algebras in PA? If so, PAis a variety. The answer is no; this is proved in the appendix. However, PA is aquasi-variety (also proved in the appendix), whih means that it an be axiomatised(in this strong sense) by onditional equations.The following theorem gives a derivation system for preferential entailments truein preferential algebras.Theorem 52 A preferential entailment � j� � holds in all preferential algebras i� itis derivable from the equality axioms 1{7, together with the following:8. If x j� y then z=x j� y (C1)9. If y=x = x and x k y = y then x j� y (S1)8 ConlusionThe paper develops the theory of generalised prioritisation begun by Grosof [14℄.It introdues priority operators, an analog of irumsription poliies appliable inpreferential logis. Furthermore:� It shows that priority operators are anonial with respet to a generalisationof Arrow's onditions;� It gives riteria for deiding: re�nement, equality and preferential entailment ofpriority operators;� It shows that the two binary operators an express any priority operator, andhene any operator satisfying generalised Arrow's onditions;� It gives a omplete axiomatisation of the operators and their relationships.Topis for further study inlude investigating the supplementary laws that anbe established for spei� preferential logis, and for their ombinations. We wouldalso like to relax the requirement that operators be �nitary, and study a logi forexpressing in�nitary operators.
23



9 AknowledgementsHajnal Andr�eka aknowledges support from the Hungarian National Foundation forSienti� Researh (grant nos. OTKA T30314 and T23234). Mark Ryan and Pierre-Yves Shobbens aknowledge support from the European Union through Esprit WGsModelAge, ASPIRE and FIREworks. Mark Ryan aknowledges the NuÆeld Founda-tion, and British Teleom. Pierre-Yves Shobbens thanks the University of Birming-ham for funding and invited professorship that allowed us to �nalize this artile.A Appendix: Mathematial detailsA.1 IntrodutionThis Appendix overs many mathematial details (inluding proofs of theorems statedin the text). Its struture mirrors the struture of the main part of the paper. Newde�nitions and lemmas are given new numbers, but theorems whih are stated in thetext and proved here retain their old numbers.A.2 Priority operatorsLet g = (N;<; v) be a priority graph denoting the operator o.Theorem 12 Suppose (N;<) is well-founded, and let R = o((Rx)x2V ). Then1. mRn i� 8i 2 N: (8j < i: mR�v(j)n) implies mRv(i)n.2. mRn i� 8i 2 N: (mRv(i)n or (9j < i: mR<v(j)n and 8j0 < j: mR�v(j0)n)).3. mR<n i� mRn and 9i 2 N: mR<v(i)n.4. mR�n i� 8i 2 N: mR�v(i)n.Proof 1. ()) Suppose i is suh that 8j < i; mR�v(j)n. We require to show thatmRv(i)n. Suppose not; then 9j < imR<v(j)n, a ontradition.(() Suppose i is suh thatmRv(i)n. We require to �nd j < i suh thatmR<v(j)n.By hypothesis, 9j1 < i mRv(j1)n or nRv(j1)m. If mRv(j1)n, then nRv(j1)m somR<v(j1)n, so we set j = j1. Otherwise, again using the hypothesis, 9j2 < j1mRv(j2)n or nRv(j2)m. Again, we set j = j2 or we �nd j3 with the sameproperty. This proedure must terminate, for otherwise we have an in�nitedesending sequene j1 > j2 > � � �, ontraditing the well-foundedness of (N;<).2. (() immediate. ()) Similarly to part 1, �nd j minimal with mR<v(j)n.3. ()) Suppose m o((Rx)x2V )< n. Then m o((Rx)x2V ) n is immediate. Also,m o((Rx)x2V )< n implies n o((Rx)x2V ) m, so 9i: nRv(i)m. Sine m o((Rx)x2V )n, either mRv(i)n, in whih ase mR<i n as required; or 9j < i: mR<v(j)n, alsoproving the result. 24



(() Let i be minimal in the set fi j mR<v(i)ng. Then nRv(i)m and 8j <i: nR<v(j)m, so n o((Rx)x2V ) m4. Similar ideas.A.3 Canoniity of the lexiographi ruleOur aim in this setion is to prove theorem 14. This will involve inventing a newview of priority operators in terms of what we all votes. We do this in a sequene oflemmas. The �rst one shows that an operator that is independent, unanimous, andbased on preferenes (in short: IBU) is determined by its responses to all possiblerelations on a �xed two-point domain.Lemma 53 Let M2 = fm;ng � M;m 6= n, and o1; o2 be two IBU operators. Iffor all families of relations (Rx)x2V we have o1((Rx)x2V )jfm;ng = o2((Rx)x2V )jfm;ngthen, for all (Rx)x2V , o1((Rx)x2V ) = o2((Rx)x2V ).Proof Take any ; d 2M . We show  o1((Rx)x2V ) d i�  o2((Rx)x2V ) d.� If  = d, we have R�x d or R#x d for all x. Then by U, we have either o1((Rx)x2V )# d and  o2((Rx)x2V )# d, or  o1((Rx)x2V )� d and  o2((Rx)x2V )�d, depending on whether R#x d for some x or not. In any ase, o1; o2 agree at; d.� If  6= d: de�ne the family (R0x)x2V in terms of (Rx)x2V as follows: R0x = Rxexept at (m;n), where mR0xn, Rxd. Theno1((Rx)x2V )jf;dgd $  o1((Rxjf;dg)x2V ) d by I$ m o1((R0xjfm;ng)x2V ) n by B$ m o2((R0xjfm;ng)x2V ) n by hypothesis$  o2((Rxjf;dg)x2V ) d by B$  o2((Rx)x2V )jf;dg d by I.De�nition 54 A vote is an element of V = f#; <;>;�g.De�nition 55 A vetor of jV j votes, one per variable of V , is alled an entry.Lemma 53 tells us that an V -ary IBU operator o determines a unique funtionV jV j ! V , and onversely. The funtion takes as argument the vote eah Rx giveson the two-point domain M2 (i.e. an entry), and returns as result the vote thato((Rx)x2V ) gives on M2. Suh funtions an be represented �nitely by an operatortable. For instane, the operator \but" de�ned in setion 6.2 is desribed by table 4:Eah olumn above the line is an entry, and the element in the same olumn belowthe line is the orresponding result. For an entry e and vote v, ev is the subset ofvariables that gives vote v. In partiular, The winners er of an entry e is the subsetof V that gives the same vote as the result r; the abstainers e� is the subset of Vthat abstains, i.e., votes �; the rest is alled the opposition, whih is divided in twosubgroups, sine four votes are possible. A vote is deided if it is < or >.25



R1 # # # # < < < < > > > > � � � �R2 # < > � # < > � # < > � # < > �R # < > # # < > < # < > > # < > �Table 4: Table of \but" (=)De�nition 56 The onverse of a vote is de�ned by the table:v v�1# #< >> <� �Lemma 57 If an IBU operator gives a result r for entry e = (ei)i2V then it givesr�1 for entry e�1.Proof By B.Note that any table with this property will give us an IB operator.Corollary 58 There are 24n�3�(2n�1)�1 n-ary IBU operators.Proof The possible tables are 44n . Symmetry (lemma 57) redues this to 24n , whihis thus the number of IB operators. The ases eliminated by unanimity, are givenby hoosing a non-empty unanimous subset (there are 2n � 1), hoosing its vote (3possibilities: either <;> or #), setting the rest to �. Plus 1 for the ase where allvotes are � and the result is �.We will illustrate proofs of the next few lemmas in tabular form, whih shouldbe understood as a shemati exerpt from an operator table suh as table 4. Theleftmost olumn indiates subsets of the variables V . Eah olumn will represent apossible ombination of votes (an entry) and the result omputed by the operator.New olumns an be dedued from preeding olumns, aording to the followingrules of inferene, derived from the respetive onditions on the operators.S. Symmetry: from an entry of the table with a given result, we dedue the onverseentry with the onverse result (lemma 57). In our tabular proofs, we will omitthe entry on whih it is applied when it operates on the previous olumn of theproof table.U. Unanimity: any unanimous olumn must have the result of the unanimoussubset (unless it is empty). This rule operates on the urrent olumn.T. Transitivity: In table 5, we ompute the admissible ompositions of votes fortransitivity. The vertial dimension indiates the relation between x and y,the horizontal dimension the relation between y and z. The orresponding ellshows the implied relation between x and z. For instane, the �rst ell states26



Æ # < > �# V f<;#g f>;#g f#g< f<;#g f<g V f<g> f>;#g V f>g f>g� f#g f<g f>g f�gTable 5: Table of ompatible ompositionsthat if xR#y and yR#z, then no restrition on xRz an be dedued. The elldiagonally below states that if xR<y and yR<z, then xR<z. If two olumnsare known, and we build a third entry whih is ompatible for transitivity withthese two olumns, then the result of this entry must also be ompatible fortransitivity with the results of the two known olumns. For otherwise we wouldhave built a ounterexample to preservation of transitivity, by using a domainfx; y; zg where preferenes between (x; y) are given by the �rst olumn, between(y; z) by the seond, and between (x; z) by the third. For instane, if we omposetwo entries with results <;# respetively, we see in the table that the result ofthe omposition must be < or # for any entry whih is ompatible with the�rst two. If x is the only variable and the vote of Rx was < in the �rst entryand > in the seond entry, then any value of Rx must yield < or #. During aproof we will usually try to onstrain the result while letting the entry vary aswidely as possible to get stronger results. By default, T uses the two previousolumns of the proof table.These table exerpts will be shemati: usually, the designation on the left will notbe single variables, but sets of variables, indiating that the line has to be repliatedas many times as they are variables in the set (sometimes 0). Also, the ontent ofthe ell an be a set. We will sometimes omit the set braes, for ompatness. In theresult, the omma (e.g. in <;#) thus means \or". We onvene that e1 is the name ofthe �rst entry (the seond olumn), and ei is the name of the ith entry (the i + 1tholumn). The justi�ation will be indiated below eah entry. It will be one of thebasi rules (S,U,T) or the number of a lemma. Further examples are provided in theproofs below.For the rest of this setion, we will omit the referene to the (�xed) IBUT operator.For instane, whenever we speak of \the result of an entry", it means the result ofapplying the urrently onsidered IBUT operator.Lemma 59 The result of e is � i� all arguments are �.Proof \If": by U.
27



\Only if": e1 e2 e3 e4e� � � � �e< < > < <e> > < < <e# # # < <r � � � <by S T� U�Read this table as follows. Suppose we supply a ertain entry, e1, whih of ourseis divided in �; <;>;# votes. The result (by hypothesis) is �. Construt theonverse entry e2 = e�11 ; by S, the result is also �. Now onsider the argumentvotes e3 of the 4th olumn. Sine they are ompatible for transitivity with e1; e2,the result r3 should also be ompatible (justi�ation: T). But that means it mustbe �. Now onsider the argument votes of the last olumn, e4; by U, the resultshould be <. The last two olumns ontradit, as indiated by �, unless thesubsets e<; e>; e# of V are all empty, so that U annot be applied on e4.Hene the only way of making the result � is by having e<; e>; e# empty, i.e.all votes for �.The sequene of lemmas that follows proves that IBUT operators have many of theproperties of priority operators. For example, the next lemma says that if a de�niteresult is obtained from a given entry, then the same result will be obtained a fortioriif some abstainers join the winners, whatever the opposition does.Lemma 60 If an entry e yields <, then any entry with some arguments in e#; e>replaed by any vote, and/or some in e� replaed by <, will also yield <.Proof Let C be the names of the votes hanging from � to <, and let v; w be anytuple of votes. e< < < < <e> > < v ve# # < # we� \ C � < < <e� r C � � � �r < < < <by U T T (e1; e3)Lemma 61 If the result of e is <, then some argument must be <.Proof Assume e< empty. Then:e> > � �e# # � �e� � � �r < < �by 60� U�28



The next lemma is very similar to lemma 60: It says that if an inomparabilityresult is obtained from a given entry, then the same result will be obtained a fortioriif some abstainers or opposition join the winners. But here, the opposition ouldhange the result by making a oalition.Lemma 62 If an entry yields #, then the entry where some elements have beenreplaed by # also yields #.Proof Assume not: it annot yield � by 59, so it yields < (or symmetrially >) asshown in e2. Then e� � � �� # �e< < < << # <e> > > >> # >e# # # #r # < <by � 60�Lemma 63 If some elements are replaed by the result (in other words, if the winnersare extended), then the result remains the same.Proof If the result is:� #, the proof follows by 62;� <;>: by 60;� �: by 59, e� = V and thus annot be extended.De�nition 64 We say an operator propagates a property of relations, if its result hasthe property as soon as one of its arguments relation has it.An operator preserves a property of relations, if its result has the property whenall its argument relations have it.Clearly, propagation implies preservation unless V is empty.Corollary 65 Any IBU operator preserves reexivity; propagates irreexivity; pre-serves symmetry. Any IBUT operator propagates antisymmetry.Proof By U and 59.(These fats are realled in theorem 15 for the narrower lass of priority operators.)De�nition 66 Let S;X � V suh that S is disjoint from X . S shows X i� the entrywhere all arguments in S are �, all arguments in X are >, all other ones are <, yieldseither > or #. This result is alled the show-result.Lemma 67 If S �W;W disjoint from X , S shows X , then W shows X .29



Proof Suppose that W does not show X , as indiated in e1 below. Let H =V rW rX be the rest of the variables.X > >S � �W r S � <H < <r < <by 60The seond entry ontradits the hypothesis that S shows X .Lemma 68 If X � Y , Y disjoint from S, S shows X , then S shows Y .Proof Suppose that S does not show Y , as in e1. Let H = V r Y r S be the restof the variables. X > >Y rX > <S � �H < << <by 60Again, e2 ontradits the hypothesis that S shows X .Lemma 69 If A 6= ;, V rA shows A.Proof By U.Lemma 70 If X is �nite and disjoint from A, A shows X i� for some xi 2 X;Ashows fxig.Proof For the impliation: We treat the ase of X = fx1; x2; x3g for notationalonveniene, but the indution will work for any �nite set. Let H = V r A r X .Assume (H1) A shows X and for all xi 2 X , (H2.i) A doesn't show fxig.A � � � � � �x1 < > < > < <x2 > < < > < <x3 > > > < < <H > > > > > >> > > > > <;#by H2:1 H2:2 T H2:3 T� H1�The other diretion is just lemma 68.Lemma 71 If A shows disjoint X;Y , then both show-results are #.Proof Sine, a priori, there 2 possibilities for both show-results, we have to exlude3 ases, but 2 are symmetri. Let H = V rX r Y rA be the rest.30



1. Both show-results are <. A � � � �X < > � �Y > < � �H > > > >< < < >;�by H1 H2 T� U�2. One show-result (say X) is <, the other is #.A � � � �X < > � �Y > < � �H > > > >< # <;# >;�by H1 H2 T� U�The lemmas above demonstrate that \shows" is ompletely determined by thesentenes of the form \S shows fxg" where S is minimal. We will now prove thatthese sentenes an be enoded in a priority graph, and �nally, that this graph anreonstrut the operator, whih loses the yle and proves the equivalene of all theserepresentations (for V �nite).De�nition 72 The priority graph of an IBUT operator is de�ned by:� N = f(x; S) j S is a minimal subset of V showing fxgg� (x1; S1) < (x2; S2) i� (fx1g [ S1) � S2.� v((x; S)) = x.Note that the node ordering < is irreexive and transitive and thus ayli.Lemma 73 If (x; S) 2 N , then for any z 2 S, S r fzg shows fzg.Proof (H1) S shows fxg. Sine S is a minimal showing set, (H2) S r fzg does notshow fxg. Now assume (H3) S r fzg shows fzg is false:x < < > <z � > < �S r fzg � � � �Rest > > > ><;# > > >H1� H2 H3 T�Corollary 74 If V is �nite, then for any (x; S) 2 N , S = fz j 9Sz (z; Sz) < (x; S)gProof Clearly fz j (z; Sz) < (x; S)g � S by the de�nition of the order. Conversely,take z 2 S. By 73, S r fzg shows z. Sine S is �nite, it is Zorn, and so there is aSz � S minimal suh that Sz shows z, and (z; Sz) < (x; S).31



Lemma 75 Assume V is �nite. A shows fxg i� x is minimal in V r A, i.e. 9i 2N (v(i) = x^ 6 9i0:v(i0) 62 A ^ i0 < i).Proof By ontraposition, assume A doesn't show fxg. Sine V r fxg shows fxg by69, there must be a minimal M suh that M � A;M shows fxg. Sine M 6= A, wean pik some z 2 M r A. We have (x;M) 2 N , and (z; Sz) 2 N for some Sz. By74, (z; Sz) < (x;M), ontraditing the minimality of x in V r A.Conversely, if x is minimal, all nodes below i = (x; S) are in A. By lemma 74,they form S, so S shows fxg; S � A; x 62 A. By lemma 68, A shows fxg.Theorem 14 A �nitary operator satis�es onditions IBUT i� it is a priority operator.Proof We show that the priority operator denoted by the priority graph de�ned forit in de�nition 72, is idential to the given operator. By lemma 53, it is suÆientto show this for relations on a universe of two elements (i.e. votes), that is, for anyentry e. The priority graph is well-founded, so that we an use theorem 12. Lookat the non-abstainers, A = fx 2 V j ex 6= �g and take its minimals for priorityM = Min�(A) = fx 2 A j 9i 2 N: v(i) = x ^ �i0 2 N: i0 < i; v(i0) 2 Ag. We note thatthe priority result (the result given by the priority graph) is Tv2M ev, by theorem 12,and that M = fxjA shows fxgg, by lemma 75. Consider the possible priority results:� the priority result is �: i� all arguments are � by theorem 12.4; i� the IBUTresult is � by lemma 59.� the priority result is <: i� M 6= ; and all arguments in M are < by theorem12(3). A shows M by lemma 68. By lemma 60, the IBUT result is also <.� the priority result is >: symmetrially.� the priority result is #: i� one of the two following ases arises, by theorem 12:{ some argument x in M is #. Ad absurdum, assume that the result isn't#. It an't be � either, by lemma 59. Say (H) it is >. (< is solvedsymmetrially.) then by lemma 60, A doesn't show fxg, ontraditinglemma 75. Tabularly: A = e� � �e< < >e> > >x # <e# r fxg # >> >by H 60{ some argument x 2M is <, another y 2M is >. Then let X = e<; Y = e>in lemma 71. By lemma 62, the IBUT result is #. Tabularly:A = e� � �X = e< < <Y = e> > >R = e# > ## #by 71 6232



A.4 Propagation of properties via priority operatorsWe prove the theorems implied by table 3.Theorem 15 Items 1{8 of table 3 hold; i.e. the properties reexivity, irreexivity,symmetry, antisymmetry, transitivity, totality, empty and full are propagated by thelexiographi ombination in the manner shown in the table.Proof Let g = (N;<; v) be a priority graph denoting the operator o, and let V =v[N ℄.1. Suppose for eah i 2 N , Rv(i) is reexive. We want to show that o((Rx)x2V ) isreexive. Take any m 2 M . Sine 8i 2 N: mRv(i)m, it follows by def. 6 thatm o((Rx)x2V ) m.2. m o((Rx)x2V ) m i� 8i 2 N: mRv(i)m by def. 6, sine mR<v(j)m is always false.But 8i 2 N: mRv(i)m is false if there there is an irreexive preferene.3. m o((Rx)x2V ) n implies 8i: mRv(i)n sine eah Rv(i) is symmetri. Therefore8i: nRv(i)m, so n o((Rx)x2V ) m.4. Let i be suh that Rv(i) is symmetri and there is no in�nite <-hain belowit in the priority graph. Assume m o((Rx)x2V ) n and n o((Rx)x2V ) m andm 6= n. We will derive a ontradition. If mRv(i)nRv(i)m then by symmetry ofRv(i) we have m = n, a ontradition. Suppose (without loss of generality) thatmRv(i)n. Then there's some j < i suh that mR<v(j)n. Therefore, nRv(j)m, sothere is some k < j suh that nR<v(k)m. Therefore, mRv(k)n, and by ontinuingin this way an in�nite hain of nodes below i is produed { a ontradition.5. Suppose m1 o((Rx)x2V ) m2 o((Rx)x2V ) m3; we will show m1 o((Rx)x2V ) m3.Let i 2 N ; we show m1Rv(i)m3 or m1R<v(j)m3 for some j < i.Suppose m1Rv(i)m2. If m2Rv(i)m3 then m1Rv(i)m3. Otherwise, m2Rv(i)m3, solet i0 < i be suh that m2R<v(i0)m3, and let i0 be minimal with this property,that is, we have m2Rv(i00)m3 for i00 < i0; here we make use of the fat that <is well-founded. If m1Rv(i0)m2, then let j < i0 be suh that m1R<v(j)m2. Thenj < i and m1R<v(j)m3 follows from m1R<v(j)m2 and m2Rv(j)m3. If m1Rv(i0)m2,let j = i0. Then j < i, and m1R<v(j)m3 follows from m1Rv(j)m2 and m2R<v(j)m3.On the other hand, suppose m1Rv(i)m2 and let i0 < i be minimal suh thatm1R<v(i0)m2 (so again we have m1Rv(i00)m2 for all i00 < i0). Again, onsiderseparately the two ases m2Rv(i0)m3 and m2Rv(i0)m3. If m2Rv(i0)m3, set j = i0;then j < i, andm1R<v(j)m3 follows fromm1R<v(j)m2 andm2Rv(j)m3. Otherwise,m2Rv(i0)m3 so let j < i0 be suh that m2R<v(j)m3; then j < i, and m1R<v(j)m3follows from m1Rv(j)m2 and m2R<v(j)m3.6. Suppose n o((Rx)x2V ) m. We show that m o((Rx)x2V ) n. Sine n o((Rx)x2V )m, there is i suh that nRv(i)m and 8j < i: nRv(j)m. But sine these are totalorders, this implies mR<v(i)n and 8j < i: mRv(j)n. But < is also total, so thisproves that m o((Rx)x2V ) n. 33



7. Let i be the minimal node suh that Rv(i) is empty. Suppose m o((Rx)x2V )n. Then either mRv(i)n, or 9j < i � � �, both alternatives ontraditing ourhypothesis.8. Let m;n 2 M . Sine eah Rv(i) is full, mRv(i)n. Thus, by de�nition 6,m o((Rx)x2V ) n.9,10. The last two ases are treated separately below due to their length.Lemma 76 Item 9 of table 3 holds; i.e. if N is �nite, and eah Rv(i) is transitive andwell-founded, then o((Rx)x2V ) is well-founded.Proof Suppose not, i.e. suppose � � �m3 o((Rx)x2V )< m2 o((Rx)x2V )< m1 isan o((Rx)x2V )<-sequene. Eah mn+1 o((Rx)x2V )< mn gives us an in (by theorem12(3)) suh that mn+1R<v(in)mn. Let N1 = fi 2 N j fn j i = ing is in�niteg. SineN is �nite, N1 6= ;. Let N2 � N1 be the <-minimal points of N1; also N2 6= ;. Leti 2 N2; n0 be the last n where in 62 N1. We have 8n: > n0mn+1Rv(i)mn and forin�nitely many n, mn+1R<v(i)mn. Sine Rv(i) is transitive, it is easy to pik a sequeneshowing that Rv(i) is not well-founded, ontraditing the hypothesis.Theorem 16 Well-foundedness and #Zorn are related as follows. Let R be a transi-tive relation on M . R is well-founded i� (for all P �M RjP is #Zorn).Proof ().) Let P � M , and let C be an R hain in P . Sine C � M and R iswell-founded, C has a minimal element, say . We now show that  is a lower boundfor C. Let m 2 C. We must show that Rm. Sine C is a hain, either mR or Rm.If mR then Rm. But also, if mR, then Rm, otherwise we would ontradit 'sminimality.((.) Suppose not; let P be an in�nite desending R sequene. As R is transitive,it is an RjP -hain, but has no RjP -lower bound, so RjP is not #Zorn.Theorem 82 requires several lemmas. Fix a �nite graph (N;<; v) denoting operatoro. Let us write Ri instead of Rv(i) and R instead of o((Rx)x2V ), in order to keep thenotation lighter.De�nition 77 Let m;n 2 M . The m;n-frontier, written fr(m;n), is the set of <-minimal elements of the set fi 2 N j mR�i ng.Note that if fi 2 N j mR�i ng = ; then fr(m;n) = ;.Lemma 78 Suppose mRn. Then i 2 fr(m;n) i� mR<i n and 8j < i: mR�j n.Proof (If) Immediate. (Only if) Let mRn and i 2 fr(m;n). (1) We prove mRin;for if not, by de�nition, 9j < i: mR<j n, i.e. mR�j n, ontraditing s's minimality. (2)Sine i 2 fr(m;n), mR�i n. Thus mR<i n.Now suppose j < i. Sine i is minimal in fi 2 N j mR�i ng, we have mR�j n.De�nition 79 Let K � N . We write mRKn if 8j 2 K: mRjn. We also write + Kfor fi 2 N j 9j 2 K: i � jg. 34



Now, and for the remainder of this subsetion, suppose Ri is transitive for eahi 2 N and N is �nite.Lemma 80 Let P � M be a R-hain with no minimal element. Then there existsK � N and a 2 P suh that1. 8j 2 K: 8i 2 N: 8m;n 2 P: (nRmRa and i � j) implies nRim | that is,fn 2 P j nRag forms a R+K-hain.2. 8j 2 K: 8m 2 P: mRa implies 9p 2 P: (pR<m and pR<j m) | that is, the sameset also forms a RK-hain with no minimal element.3. 8i 2 N: 8m;n 2 P: nRmRa implies (nRim or 9j 2 K: j < i).Proof The idea of the proof is the following. First, we obtain a set N 0 � N whihontains those i whih partiipate in frontiers all the way down the hain P . Then�nd an element a of P below whih all the frontiers are in N 0. K is de�ned as theminimal elements of N 0. Then it is possible to prove property 1. Property 2 followsbeause we have stipulated that P have no minimal element; that is, for eah n 2 Pthere is a n0 2 P with n0R<n. Property 3 follows beause K is the set of minimalelements of N 0.Let N 0 = fi 2 N j 8m 2 P: 9n; p 2 P: pR<nRm and i 2 fr(n; p)g.� If N 0 = N then let a be an arbitrary element of P .� Otherwise, for eah i 2 N �N 0 let mi 2 P be suh that 8n; p 2 P , if pR<nRmithen i 62 fr(n; p), and let a = minRfmi j i 2 N � N 0g. That eah mi an befound follows from the de�nition of N 0, and that their minimum an be foundis guaranteed by the fats that P is a hain and N is �nite.Now we show that N 0 is non-empty. Let m;n 2 P be suh that nR<mRa. The fatthat P has no minimal element guarantees that these an be found. Sine nR<m,fr(m;n) 6= ;, and sine m;nRa, we have fr(m;n) � N 0.1. Let j 2 K, i 2 N and m;n 2 P be suh that i � j and nRmRa. If i 2fr(m;n) then nR<i m (lemma 78); otherwise, if i 62 fr(m;n) and nRim then9j0 < i: nR<j0m, ontraditing the minimality of j in K.2. Let j 2 K and m 2 P with mRa. Sine j 2 N 0, we an pik n; p 2 P withpR<nRm and j 2 fr(n; p). By part 1, pRjnRjm; and sine j 2 fr(n; p) we havepR<j n. By transitivity, pR<j m.3. If nRim then 9j0 2 fr(m;n) � N 0: j0 < i (theorem 12(2)), and sine K onsistsof the minimal elements of N 0 (and, sine N is �nite, < is well-founded), 9j 2K: j < j0.Now we show, subjet to a ertain ondition, that it is possible to �nd a lowerbound for any R-hain. The ondition says that lower bounds an be found forintersetions (i.e. onjuntions) of the Ri relations.Lemma 81 Suppose for every K � N , every RK-hain has a lower bound. Thenevery R-hain has a lower bound. 35



Proof Let P be a R-hain. If P has a minimal element, then that serves as its lowerbound. Suppose, then, that P has no minimal element. Let K � N and a 2 P be asde�ned in lemma 80. Let U = K [ fj0 2 N j 8j 2 K: j 6� j0g. We now show that theset fm 2 P j mRag forms a R+U hain. Without loss of generality, let m;n 2 P besuh that nRmRa, and i 2 N and j0 2 U be suh that i � j0. We need to show thatnRim. If j0 2 K then nRim by lemma 80(1). Otherwise, 8j 2 K: j 6� j0 (de�nition ofU). Therefore, j 6� i. Suppose nRim. Then by 80(3), 9j 2 K: j < i, a ontradition.So nRim.Now let b be a R+U lower bound for fm 2 P j mRag. We show that it is also aR lower bound for that set, and hene for P . Let m 2 P with mRa; we show thatbRm, using the lexiographi rule.First note that (i) j 2+ U implies bRjm (by de�nition of b). Also, (ii) j 2 Kimplies mR<j b. To see this, take n suh that nR<j m by lemma 80(2); but then bRjn,so bR<j m.Now let i 2 N . We show that either bRim or 9j < i: bR<j m. If i 2+ U , bRim by(i). If i 62+ U , then i 62 U . By de�nition of U , 9j 2 K: j < i; by (ii), bR<j m.Hene we have:Lemma 82 Item 10 of table 3 holds; i.e. if N is �nite, and eah Rv(i) is transitiveand for eah K � N the relation Ti2K Rv(i) is #Zorn, then R is #Zorn.A.5 Proof rules for Priority GraphsTheorem 18 g1 v g2 i� for eah j 2 N2, there is a i 2 N1:� v1(i) = v2(j); and� v1[#1i℄ � v2[#2j℄.Proof Let o1; o2 be the operators denoted by g1; g2.): Suppose not, i.e. suppose there's an j in N2 s.t. for every i in N1 with v1(i) =v2(j) = z there is a k < i in N1 with v(k) = y s.t. y 62 v[#j℄.� Either there is no suh i; then let us set Rx = F for all x 2 V exept z, andRz = ;. So o1((Rx)x2V ) = F (sine z doesn't our in it), and o2((Rx)x2V ) = ;(sine z does our in it): but learly F 6� ;, so ontradition.� Or, if some i exists, eah i might give us a di�erent y. Let Rz = ;; for eahof those ys, let Ry = R for some relation R s.t. R< 6= ; (suh a relation existssine M ontains two elements); and let Rx = F , the full relation, for everyother variable x.Then o1((Rx)x2V ) is just the relation R<. That is beause, graphially, it has aolletion of F s, ;s and Rs (the last two ourring at least one), but there is anR below eah ;; so we just use de�nition 6. On the other hand, in the graph foro2((Rx)x2V ) we have an ; with only F ourring below it, and by de�nition 6the result is ;. Therefore, o2((Rx)x2V )= ;, so the inlusion fails; ontradition.36



(: Suppose m o1((Rx)x2V ) n. We show m o2((Rx)x2V ) n. Suppose for somenode j in N2 we have mRv2(j)n. By the hypothesis, 9i 2 N1: mRv1(i)n, and sinem o1((Rx)x2V ) n, there is a k <1 i s.t. mR<v1(k)n. But v1[#1i℄ � v2[#2j℄, so there is ak0 2 N2 with v2(k0) = v1(k) and therefore, mR<v2(k0)n. Therefore, m o2((Rx)x2V ) n.Normal formsIn the main text, a anonial form of priority graphs was de�ned. An importantproperty of this de�nition is that the variables below a ritial node in a graph arethe same as those below the orresponding node in the normal form. This lemma willbe used in the proof of the theorem that follows.Lemma 83 Let g0 = (N 0; <0; v0) be the normal form of g = (N;<; v). If i 2 N isritial, then v[#i℄ = v0[#0(v(i); v[#i℄)℄.Proof Suppose that x 2 v[#i℄. Then there's a node k 2 N with k < i and v(k) = x. kneed not be ritial, but we know that there is a j 2 N ritial with v[#j℄ � v[#k℄, andv(j) = v(k). Therefore, v(j) 2 v[#i℄ and v[#j℄ � v[#i℄, so x 2 fv(j) j v[#j℄ [ fv(j)g �v[#i℄g = v0[#0(v(i); v[#i℄)℄.Conversely, if x 2 v0[#0(v(i); v[#i℄)℄ then there's a j 2 N with v(j) = x andv[#j℄ [ fv(j)g � v[#i℄, so x 2 v[#i℄.Theorem 27 1. Any priority graph is equivalent to its normal form;2. Two priority graphs are equivalent i� their normal form is the same.Proof 1. We apply Cor. 21. Suppose g0 = (N 0; <0; v0) is the normal form ofg = (N;<; v), as given in de�nition 26.g v g0: If (v(i); v[#i℄) is a node in N 0 then we pik the ritial node i in N . Wemust show (i) that v0(v(i); v[#i℄) = v(i), whih is immediate, and (ii) thatv[#i℄ � v0[#0(v(i); v[#i℄)℄, whih follows from the lemma 83.g0 v g: If i is a node in N , we must �nd a node in N 0 with the relevant prop-erties. First, if i is not ritial in N , then pik a ritial node i0 suhthat v(i) = v(i0) and v[#i0℄ � v[#i℄. Now take (v(i0); v[#i0℄) 2 N 0. Wemust show (i) that v(i) = v0(v(i0); v[#i0℄), whih is immediate, and (ii)that v0[#0(v(i0); v[#i0℄)℄ � v[#i℄. For that, it is suÆient to show thatv0[#0(v(i0); v[#i0℄)℄ � v[#i0℄, whih follows from the lemma 83.2. ) Let g1; g2 be two equivalent graphs, g01; g02 their normal forms. By 1., thenormal forms are equivalent, so by orollary 21, we have two funtions, sayf : N 01 ! N 02 and g : N 02 ! N 01, that respet labels (v(i) = v(f(i))) andderease down-sets (v[#f(i)℄ � v[#i℄). Let k = g(f(i)); v[#k℄ � v[#i℄. Butv[#k℄ � v[#i℄ is impossible, for then i would not be ritial. So v[#k℄ = v[#i℄.Thus v[#f(i)℄ = v[#i℄; symmetrially v[#g(j)℄ = v[#j℄. Using the de�nitionof normal form, we get f(i) = i and g(j) = j. Thus g01 = g02.( from 1.Lemma 84 37



1. If g link=) g0 by linking j below some i, then v[#i℄ � v0[#0i℄ � v[#i℄ [ fv(i)g; and,for all for all k 2 N with k 6= i, v[#k℄ = v0[#0k℄.2. If g del=) g0 then, for all k 2 N 0, v[#k℄ = v0[#0k℄.Proof 1. In the ase of i, v0[#0i℄ = v[#i℄ [ v[#j℄ [ fv(j)g � v[#i℄ [ fv(i)g. In thease of other ks, the only non-trivial ase is where k > i. But then, the fatthat v[#i℄ [ fv(i)g hasn't hanged guarantees that v[#k℄ hasn't either.2. The only non-trivial ks are those above the deleted i; we must show that v(i) 2v[#k℄ for those. But that is what is guaranteed by the ondition that for alli0 > i there exists i00 < i0 with v(i00) = x.Theorem 31 By applying rules (link) and (del) repeatedly in any order until noneapplies, any �nite priority graph is brought into a form whih is equal to its normalform, up to renaming of elements of N .Proof First we show that (link) and (del) are sound. This an be done using orol-lary 21. Suppose g rewrites to g0by (link). Corollary 21 requires us to �nd a orrespondent in N 0 for eah node in N ,and vie versa. Lemma 84 tells us that usually v0[#0i℄ = v[#i℄ for all i 2 N , andhene the orrespondent of a node an be the node itself. The only exeptionours in the ase that in the link of j below i, we had v(i) = v(j). In thatase, v0[#0i℄ = v[#i℄ [ v(i), and the orrespondent of i 2 N should be hosen tobe j 2 N 0.by (del). Again, we must show how to pik the orrespondents for orollary 21. Foreah node in N other than the deleted node, pik the same node in N 0. For thedeleted node, pik the node in N 0 referred to as j in the (del) rule. For eah nodein N 0 pik the same node in N . Lemma 84 ensures that these orrespondentshave the right properties.To show that the order of appliation does not matter, we must also show thatthe term-rewriting system onsisting of the set of V -ary �nite priority graphs withthe rules (link) and (del) is terminating and onuent [8℄.Terminating. Sine the graphs are �nite, and (link) adds one edge and (del)removes one node, the number of rewrites is bounded by n2 + n, where n = jN j.Conuent. We show that a rule applies unless g is a renaming of the normal form,so that we annot terminate elsewhere. This implies onuene. Let g be distintfrom its normal form.� Either a node i of g is not ritial: (for instane, the node y at mid-height inexample 30.1) then by de�nition 25 of ritial, there is a k that either an belinked below i (in example 30.1, the low y), or is already below i, and then ian be deleted.� Or, several i; j are mapped to the same node of the normal form: (for instane,the two nodes x in example 30.1) if they are not linked, any of them an belinked below the other; else the top one an be deleted.38



� Or, all nodes are ritial and orrespond to a single node of the normal form,but some links are di�erent: In this ase, the links of g are a subset of those ofthe normal form. Then we an add a missing link.In all three ases, an appliation of link or del was possible.A.5.1 Preferential entailmentTheorem 34 g1 j� g2 i� v2[N2℄ � v1[N1℄ and for eah node i 2 N1 either v[N2℄ �v1[#1i℄, or there is a j 2 N2 suh that v(i) = v(j) and v[#j℄ � v[#i℄.Proof Let o1; o2 be the operators denoted by g1; g2.). Choose some relation S suh that MinS(M) 6= M . (This is possible; as thereare at least two elements a; b in M , we ould take mSn i� m = a ^ n = b.) Supposethe RHS is false, i.e. either� v2[N2℄ r v1[N1℄ 6= ;. Choose z in this di�erene, and set Rz = S, Rx = F forany other x.� there is i 2 N1 suh that v2[N2℄ 6� v1[#1i℄ and for all j 2 N2 suh that v1(i) =v2(j), there is a xj 2 v2[#2j℄ � v1[#1i℄. If there is suh a j, set Rv1(i) = ;;for eah j set Rxj = S; and Rx = F for all other variables x. Else, piky 2 v2[N2℄ r v1[#1i℄, set Ry = S, set again Rv1(i) = ;, and set everything elseto F .In either ase, by an argument similar to that in the proof of theorem 18, we haveo1((Rx)x2V )= ; and o2((Rx)x2V )= S. But Min(o1((Rx)x2V )) = M 6�o2((Rx)x2V ),so the LHS is false.(. Suppose RHS and n 2 Min(o1((Rx)x2V )). We show that n 2 Min(o2((Rx)x2V )). Suppose not, i.e. there is an m suh that m o2((Rx)x2V )< n, i.e. m o2((Rx)x2V ) nand 9j 2 N2: mR<v2(j)n. We'll show m o1((Rx)x2V )< n, i.e. (a) m o1((Rx)x2V ) n and(b) 9j0 2 N1: mR<v1(j0)n.(a) Suppose mRv1(i)n; then by hypothesis, either v2[N2℄ � v1[#1i℄, so 9j1 <1i:mR<v1(j1)n; or there is a j 2 N2 suh that v1(i) = v2(j) and v2[#2j℄ � v1[#1i℄;so mRv2(j)n so 9k <2 j with mR<v2(k)n, but using v2[#2j℄ � v1[#1i℄ we have that9k0 <1 i with mR<v1(k0)n.(b) Either ase of the hypothesis again provides j 2 N2 suh that mR<v2(j)n andv2[N2℄ � v1[N1℄.A.6 Composing priority graphsTheorem 40 Let g be a well-founded graph denoting operator o with variables V .Let (gx)x2V be a family of well-founded graphs denoting operators (ox)x2V withvariables (Vx)x2V . Let g0 be the graphial insertion of (gx)x2V in g, and let o0 be theoperator denoted by g0.Then o0 is the omposition of o with (ox)x2V , i.e.o0�(Ry)y2SfVxjx2V g� = o�(ox((Ry)y2Vx))x2V �39



Proof First observe that if g; g1; : : : ; gn are well-founded, then so is g0. This enablesus to use theorem 12. Let us write g = (N;<; v) and gx = (Nx; <x; vx) for eahx 2 V = f1; : : : ; ng. Now,m o0((Rx)x2V ) n() 8i 2 N: 8i0 2 Nv(i):�mRvv(i) (i0)n_ 9j0 2 Nv(i):(j0 <v(i) i0 ^mR<vv(i) (j0)n)_ 9j 2 N:9j0 2 Nv(j):(j < i ^mR<vv(j) (j0)n)�We simplify notation for this proof, by writing Ni and <i in plae of Nv(i) and <v(i),and by writing Rij0 instead of mRvv(i) (j0)n (m;n are �xed). We will onsistently useunprimed variables for the `outer' level indies, and primed variables for the `inner'ones. Thusm o0((Rx)x2V ) n() 8i 2 N: 8i0 2 Ni:�Rii0 (1a)_ 9j0 2 Ni:(j0 <i i0 ^R<ij0) (1b)_ 9j 2 N:9j0 2 Nj :(j < i ^R<jj0)� (1)() 8i 2 N: 8i0 2 Ni:�Rii0 (2a)_ 9j0 2 Ni:(j0 <i i0 ^R<ij0) (2b)_ 9j 2 N:9j0 2 Nj :(j < i ^R<jj0 (2)^ 8k 2 N:(k < j ! 8i0 2 Nk:Rki0)��, (2d)version (2) following from version (1) by theorem 12(2). But now,m o(o1((Rx)x2V ); : : : ; on((Rx)x2V )) n() 8p 2 N: (m ov(p)((Rx)x2V ) n _ 9q 2 N:(q < p ^m (ov(q)((Rx)x2V ))< n))() 8p 2 N:�(8p0 2 Np:(Rpp0 _ 9q0 2 Np:(q0 <p p0 ^ R<pq0))) (3a)_ 9q 2 N:�q < p ^ 8p0 2 Nq:�Rqp0 (3b)_ 9q0 2 Nq :(q0 <q p0 ^ R<qq0)� (3)^ 9q0 2 Nq:R<qq0�� (3d)3b-d omes from the expansion of m (ov(j)((Rx)x2V ))< n using theorem 12(3).That (3) implies (1) is easy: if 1a and 1b are not satis�ed, set j = q in 3b andj0 = q0 in 3d to satisfy 1. So all that remains is to show that (2) implies (3).Suppose we have p; p0 whih do not satisfy the disjunts in 3a. We need to �nd anappropriate q. Setting q = j from 2 might work; if it does, we are home. If it doesn't,we have a troublesome p0 2 Nq for whih not Rqp0 and there is no appropriate q0.Use (2) again with i = q and i0 = p0, to obtain a j < q and j0 2 Nj , whih we willall r < q, r0 2 Nr. Sine r < q, we have by 2d 8s0 2 Nr:Rrs0; and by transitivitywe have r < p, so r satis�es the onditions for q in 3b. Moreover, R<rr0 (from 2)guarantees 3d. 40



The extration of terms from priority graphs was given by example in the maintext. Here, we give formal de�nitions in order to prove theorem 43.De�nition 85 To eliminate suh shapes as the N shape in example 45, we de�ne theforest form g0 = F (g) of g as:� N 0 is the the set of maximal up-branhes in G. Formally:N 0 = f(i1; : : : ; in) j n > 0;8l < n(il < il+1 ^�j 2 N:(il < j < il+1) ^ �j 2 N:(in < j))g:� <0 is the suÆx ordering. Formally � <0 � i� there is a non-empty sequene ofnodes � suh that � = �; � .� v0 takes the label where the branh starts, i.e. if � = (i1; : : : ; in) then v0(�) =v(i1).Atually this de�nition simply removes any \V" shape from the graph by repliat-ing the node at the bottom of the \V" that beomes \II". In partiular, we replae any\N" shape by a \� I" shape. This is not always neessary, for instane in example 22the V-shaped example ould be expressed diretly as (xky)=z.Proposition 86 g � F (g).Proof All down-sets are preserved, so we an use orollary 21.De�nition 87 Termifying a �nite priority graph g to T (g) is done as follows:� if g is made of a single node labelled by x, set T (g)x;� if g is made of disjoint omponents g1; : : : ; gn, then we set T (g) = T (g1)k : : : kT (gn);� else, �nd a M � N suh that 8m 2M; n 2 N rM we have n < m, as follows:Start by setting M to the maximal nodes of N ; and while there is a node whihis not below all elements of M , add it to M . This algorithm may stop withM = N , in whih ase it signals failure; else, we set T (g) = T (M)=T (N rM).We see that the algorithm sueeds exatly when g is the graphial insertion of someterm (equivalently, when no N shape is inluded in g); this term is unique up toassoiativity of = and k, and ommutativity of k. (T (g) will have = assoiated to theleft, sine we started from top.)Theorem 43 Any �nitary priority operator is denoted by a term built from =; k andthe variables that our in the priority graph for the operator.Proof Take any �nitary V -ary operator o. Let g be a graph denoting o. Let g0 bethe forest form of g. It is easy to hek that we an always termify a forest form: Thelast step sueeds immediately, and M ontains the single maximum element (theroot of the tree). So o an be expressed by T (g0).41



A.7 Algebrai TreatmentDe�nition 88 ` denotes equational derivation from axioms 1-7. This means that aproof an use axioms 1-7, and the lassial rules of equality:Reexivity ` � = �Symmetry � = � ` � = �Transitivity � = �; � = � ` � = �Congruene � = � ` �[x := � ℄ = �[x := �℄In order to prove the soundness and ompleteness of the axioms of theorem 50,we need a lemma.Lemma 89 ` �=� = � , if v(�) � v(�).Proof (Note that this is obviously valid semantially, sine all ourrenes in the �part of �=� are non-ritial.) We �rst indue on the struture of �:1. if � is the variable x: we proeed by indution on the struture of the term � .(a) � is a variable; sine x 2 v(�), � is the variable x, so use idempotene of =.(b) � = (�k�): Then x 2 v(�) or x 2 v(�). Without loss of generality, assumex 2 v(�). Then ` � = x=� by the indutive hypothesis, and thus ` x=� =x=((x=�)k�).But ` x=((x=y)kz) = (x=y)kz is derivable (example 51(6)), thus ` x=((x=�)k�) =(x=�)k� = �k� = � .() � = �=�.� x 2 v(�). Then x=� = x=�=� def. �= x=�=x=� ind. hyp.= �=x=� example 51(3)= �=� ind. hyp.= � def. � .� x 2 v(�). Then x=� = x=�=� def. �= �=� ind. hyp.= � def. � .2. � = (�1=�2): we use assoiativity of = to obtain �1=(�2=�), and �rst eliminate�1 indutively, then �2.3. � = (�1k�2): we use distributivity to obtain (�1=�)k(�2=�), and proess indu-tively eah part.Theorem 50 An equation is true in all preferential algebras i� it is derivable fromthe following 7 axioms: 42



1. xkx = x (k Idempotent)2. xk(ykz) = (xky)kz (k Assoiative)3. xky = ykx (k Commutative)4. (x=x) = x (= Idempotent)5. x=(y=z) = (x=y)=z (= Assoiative)6. (xky)=z = (x=z)k(y=z) (= Distributes over k)7. (x=y)kx = xky (Absorption)Proof The soundness of the axioms is obvious. (For example, apply orollary 21 tothe graph forms of eah side of the axioms.)Completeness: Let ` � v Æ abbreviate ` �kÆ = � (Indeed, this use of v mathesthat in the semantis). We need only prove statements of the form ` � v Æ, sine toprove ` � = Æ we just prove ` � v Æ and ` Æ v � , whih expands to � = �kÆ = Æ.Suppose � v Æ semantially. We prove ` � v Æ by indution on Æ.1. Æ is the variable x. We perform indution on � .(a) � is a variable. Sine � v Æ, � must also be x (by theorem 18). Idempotene�nishes the proof.(b) � = �1=�2. By theorem 18 we know �1=�2 v x i� �2 v x, and by indutivehypothesis ` �2 v x. We prove ` �1=�2 v x as follows:(�1=�2)kx = (�1=�2)k�2kx example 51(1)= (�1=�2)k�2 sine ` �2 v x= �1=�2 example 51(1)() � = �1k�2. By theorem 18 we know �1k�2 v x i� �1 v x or �2 v x. Withoutloss of generality we suppose it's �1, and by indutive hypothesis we have` �1 v x. Now ` �1k�2kx = (�1kx)k�2 = �1k�2, so ` �1k�2 v x.2. Æ = k�. By the semantis we know that � v (k�) is valid i� � v  and � v �,so by indutive hypothesis we prove ` � v  and ` � v �, whih expand to�k = � and �k� = � , from whih we prove � = �k(k�) using assoiativity,ommutativity and idempotene.3. Æ = =�: By indution on .  an be:(a) 1k2: then we use distribution.(b) 1=2: then we use assoiativity to obtain Æ = 1=(2=�).() a variable x. If x ours in �, we suppress it using lemma 89. The remainingase is to prove inequalities of form � v x=�, where x is a variable notourring in �. By theorem 18, an inequation of this form is valid i� � v �and in the graph of � there is a node labelled by x suh that v[#x℄ � v[�℄.We an assume without loss of generality that � is in forest form, sinewe just have to apply distribution repeatedly to obtain this form. Let �denote the subterm below x in the forest form (� = : : : =(: : : k(x=�))). Byonvention, we treat the ase where � is empty uniformly.i. we prove ` � v x=� by indution on � . Sine it is in forest form, � anbe: 43



A. y=�2: If y = x and �2 = � we are done.Otherwise we rewrite � to (y=�2)k�2 using example 51(1) bak-wards, and we proeed on this last �2 whih must have an our-rene of x=� sine y 6= x. Then theorem 18 gives �2 v x=�, whihby indutive hypothesis gives ` �2 v x=�, thus ` (y=�2)k�2 v x=�using assoiativity of k.B. �1k�2: We know x=� must our in �1 or �2 (or both); we proeedindutively on that part, say �2. Again �2 v x=� implies ` � v x=�using by theorem 18, indutive hypothesis, and assoiativity of k.ii. Let's put this together:` � v x=� just proved` � v � by indutive hypothesis` � v (x=�)k� as in ase 2` � v x=�=� by 51(7)` � v x=� = Æ by lemma 89Example 90 We apply the algorithm of the proof of theorem 50 to onstrut a proofof x=(ykz) = (x=y=z)k(x=z=y):x=(ykz) = (x=(ykz))kykz 51(1)= (x=(ykz))kykzk(z=y) 51(7)= (x=(ykz))k(z=y) 51(1)= (x=(ykz))k((x=(ykz))=(z=y)) axiom 7= (x=(ykz))k(x=z=y) 89= (x=(ykz))kykzk(x=z=y) 51(1)= (x=(ykz))kykzk(y=z)k(x=z=y) 51(7)= (x=(ykz))k(y=z)k(x=z=y) 51(1)= (x=(ykz))k((x=(ykz))=(y=z))k(x=z=y) 51(1)= (x=(ykz))k(x=y=z)k(x=z=y) 89= ((x=z=y)=(ykz))k(x=y=z)k(x=z=y) 89= (x=y=z)kzk(x=z=y)ky axiom 7= (x=y=z)k(x=z=y)ky 51(1)= (x=y=z)k(x=z=y) 51(1)This identity is the basis of the Tusan form: given a term, rewrite it �rst usingdistributivity, and then this identity. By this proess, any term is brought in a formwhere k are outside and = inside. We an use 3, 4, 1 and 7 to eliminate some dupli-ates, but this will not yield some unique normal form. For instane, x=(ykz)=w =x=((y=w)k(z=w)) = (x=y=w=z=w)k(x=z=w=y=w) = (x=y=z=w)k(x=z=y=w) = (x=y=z=w)k(y=w) =(z=w)k(x=z=y=w); the last 4 are Tusan forms, the last 2 are simpli�ed.The equations 1{7 given in theorem 50 are not omplete, however, with respetto onditional equations (impliations between equations).Theorem 91 There is a onditional equation true in all preferential algebras whihis not a onsequene of 1{7; for example, x=y=z = z=y=x ` x=z = z=x is suh aonditional equation. 44



Proof The onditional equation is true in all PAs : Expand =; k using the equationsin prop. 42; now, we want to prove that (x \ y \ z) [ (y< \ z) [ z< = (x \ y \ z) [(y< \ x) [ x< implies (x \ z) [ z< = (x \ z) [ x<. Suppose the premise and thatm ((x \ z) [ z<) n. Then either m (x \ z) n, so m ((x \ z) [ x<) n, and we are done;orm z< n and m (x \ z) n. m z< n implies m (x \ y \ z) [ (y< \ z) [ z< n, sine thelast disjunt is true. m (x \ z) n meansm x n orm z n. Sine z< � z, the seond halfis impossible and we have m x n. Using the premise, m (x \ y \ z) [ (y< \ x) [ x< n,so m x n, a ontradition.The onditional equation annot be derived from the axioms 1{7 : In axioms 1{7,and here in the anteedents, the same variables our in the left- and right-hand side.By examining the rules for deriving equations (de�nition 88), we notie that no rulean eliminate a variable from the anteedent; thus the onlusion must ontain y ifthe proof uses the anteedent. On the other hand, the proof must use the anteedent,sine the onsequent is not valid and thus not a onsequene of axioms 1{7.This means that the lass PA of all isomorphi opies of preferential algebras isnot axiomatisable by equations, but we now show that PA an be axiomatised byonditional equations:Theorem 92 PA is a quasi-variety.Proof We use standard tehniques [22℄ of algebras of relations, namely, we provethat the lassK of algebras isomorphi to a preferential algebra is losed under takingsubalgebras, diret produts, and ultraproduts.� K is losed under taking subalgebras, by de�nition.� K is losed under taking diret produts: Let I be a set and for eah i 2 Ilet hAi;\; =i be a preferential algebra. That is, Ai is a set of binary relationson some Ui losed under intersetion and lexiographi ombination. We mayassume that the Ui's are pairwise disjoint. Let U be the union of these Ui's.For any tuple a = hai : i 2 Ii of elements of the produt (ai 2 Ai), let f(a) bethe union of ai's, whih is indeed a binary relation on U . Let A be the set ofthe all these f(a)'s. Then A is losed under:{ intersetion: (Si ai) \ (Si bi) = Si(ai \ bi), sine the Ui are disjoint. Nowsine eah Ai is losed, A is.{ lexiographi ombination: (Si ai)=(Si bi) = Si(ai=bi), for if m(Si bi)�n,it means that m;n 2 Ui for some unique i, and thus mb�i n.The funtion f is an isomorphism from the diret produt of the algebras Ai tothe algebra hA;[; =i: its inverse is just the tuple of projetions on the Ui's.� K is losed under taking ultraproduts: The operations of K are de�nable inBRA, the lass of binary relation algebras (i.e. K is a generalised redut ofBRA). It is known that BRA is losed under taking ultraproduts (laim 1.1of [22℄). Hene K is losed under taking ultraproduts.The axioms presented in theorem 50 are also omplete for inlusion, sine R1 � R2i� (R1kR2) = R2. It is also possible to onstrut a proof system for inlusion withoutresorting to equality: 45



1. x v x (reexivity)2. x v y; y v z implies x v z (transitivity)3. x v y implies xkz v ykz (monotoniity k)4. x v y implies x=z v y=z (monotoniity =a)5. x v y; y v x implies z=x v z=y (monotoniity =b)6. x v xkx (k Idempotent)7. xk(ykz) v (xky)kz (k Assoiative)8. xky v ykx (k Commutative)9. x v (x=x) (= Idempotent)10. x=(y=z) v (x=y)=z (= Assoiative)11. (x=y)=z v x=(y=z) (= Assoiative)12. (xky)=z v (x=z)k(y=z) (= Distributes over k)13. (x=z)k(y=z) v (xky)=z (= Distributes over k)14. xky v (x=y)kx (Absorption)15. x=y v y (=-re�nement)Theorem 52 A preferential entailment � j� � holds in all preferential algebras i� itis derivable from the equality axioms 1{7, together with the following:16. If x j� y then z=x j� y (C1)17. If y=x = x and x k y = y then x j� y (S1)Proof (. We hek the soundness of the two new rules.C1. If Minx(M) � Miny(M), then indeed Minz=x(M) � Miny(M), sine the mini-mals of z=x are among the minimals of x.S1. x k y = y means that y v x. y=x = x means that mx�n ) my�n. So ifm0y<m, then also m0x<m, for all three other possibilities are exluded. So if mis not minimal for y, it means that 9m0:m0y<m, thus m0x<m, and m is neitherminimal for x.) : We want to prove, say, � j� �. Let g1; g2 be their graphs. We use theorem34. First let I = fi j v[#i℄ � v(N2)g. I is upward-losed. If I = ;, let �2 be a termrepresenting �. Otherwise we onstrut �2 as follows:For all k 62 I , if i < k then i 62 I , so that by 34 v(i) = v(j) for some j 2 N2;therefore we have v[#k℄ � v(N2) � v(i), for any i 2 I , so that we link any node k 62 Ibelow eah minimal i 2 I using rule (link). Therefore, the graph is now of the formg1=g2 where g1 ontains all nodes of I and g2 the rest. We �nd terms �1; �2 expressingg1; g2 by theorem 43. Sine � is equivalent to �1=�2 by their onstrution, this isprovable by ompleteness (theorem 50).Sine �2 only ontains nodes outside I : By theorem 34, v(�2) � v(�). Also,by theorem 18, � v �2. By ompleteness, �2k� = � is provable. By orollary 20,v(�2) � v(�) and thus v(�2) = v(�). So in �=�2, all ourrenes in � are non-ritial,implying that �=�2 = �2 is valid, and thus provable by ompleteness. Thus, we anuse rule S1 to prove �2 j� �, and then rule C1 to prove �1=�2 j� �.
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