
The feature construct for SMV: semanticsMalte Plath and Mark RyanSchool of Computer ScienceUniversity of BirminghamBirmingham B15 2TTUKhttp://www.cs.bham.ac.uk/f~mcp,~mdrg1 IntroductionThe concept of feature has emerged in telephone systems analysis as a way of describingoptional services to which telephone users may subscribe [1, 3, 5]. Features o�eredby telephone companies include call-forwarding, automatic-call-back, and voice-mail.Features are not restricted to telephone systems, however. Any part or aspect of aspeci�cation which the user perceives as having a self-contained functional role is afeature. For example, a printer may exhibit such features as: ability to understandPostScript; Ethernet card; ability to print double-sided; having a serial interface; andothers. The ability to think in terms of features is important to the user, who oftenunderstands a complex system as a basic system plus a number of features. It is alsoan increasingly common way of designing products.To support this way of building a system from a basic system by successively addingfeatures, we have extended the syntax of SMV1 with a feature construct that allowsfeatures to be described in a compact way, and we have developed the tool SFI (`SMVfeature integrator') that compiles the extended SMV code into simple SMV code whichthe model checker can work with. We handle the potential inconsistency between afeature and the base system by allowing features to override existing behaviour in atightly controlled way. We have used SMV to verify a lift system (elevator system inthe US) together with �ve features and their interactions [9]. We have also veri�ed amodel of the telephone system together with about seven features [8], and the featureinteractions between them.The results in those papers were entirely experimental. Our goal in this paper is togive precise semantics to the feature construct for SMV. Using such semantics, we canexplore in what circumstances the feature construct is independent of the syntax of thebase program to which the feature is applied, and other properties of features. Thisallows us to explore when features commute with each other, and, more generally, toexplore what classes of features are `interaction-friendly' with respect to other classes.It is also a step towards being able to verify the feature itself, independently of thesystem to which it is added.1SMV (`Symbolic Model Veri�er') is a model checker developed by Ken McMillan at Carnegie MelonUniversity [7]. It may be obtained from www.cs.cmu.edu/~modelcheck. Until 1998 there was justone SMV, but now there are three. CMU SMV is the original one and is the subject of this paper.NuSMV is a re-implementation being developed in Trento [2], and is aimed at being customizable andextensible. Cadence SMV is an entirely new model checker focussed on compositional systems. It isalso developed by Ken McMillan, and its description language resembles but much extends the originalSMV [6].



The paper is structured as follows. The remainder of this section describes somefeatures from a motivational point of view. Section 2 recalls the feature construct forSMV, �rst presented in [8]. In order to develop its semantics as a transition systemtransformer, we �rst de�ne the semantics of an SMV program as a transition system(section 3). Section 4 then develops the semantics of the feature construct. The con-clusions are in section 5.1.1 Experimental results using the feature constructOne of our case studies with the feature construct is a simple version of the PlainOld Telephone System (POTS). We brie
y recall the features we have modelled andintegrated (under various combinations) into our model of POTS:� Call Waiting (CW)� Call Forward Unconditional (CFU)� Call Forward on Busy (CFB)� Call Forward on No Reply (CFNR)� Ring Back When Free (RBWF)� Terminating Call Screening (TCS)� Originating Call Screening (OCS)A feature comprises two components: the feature implementation � (described interms of the keywords `treat' and `impose', detailed the next section), and the featurerequirements as a CTL formula �. When we integrate a feature (�; �) into a base systemP , we want to test the following:� P + � j= �: Feature � has been successfully integrated.� (P + �1)+ �2 j= �2: Feature �2 can be integrated into the extended system P + �1.� (P + �1) + �2 j= �1: Feature �2 does not violate the requirements of �1.Of course these tests will not necessarily succeed. We shall however assume that allfeatures are correct wrt. the base system, i.e., P + � j= � for any feature (�; �). Thenwe can test for the presence of feature interaction in the following forms:� Type 1: (P + �1) + �2 6j= �2:Earlier feature breaks later one.� Type 2: (P + �1) + �2 6j= �1:Later feature breaks earlier one.� Type 3: P; P + �1; P + �2 j=  but (P + �1) + �2 6j=  :(where  is a property of the base system.)Features combine to break system.� Type 4: 9�:(P + �1) + �2 j= � but (P + �2) + �1 6j= �:(where � is a property of P , �1 or �2)Features do not commute.Details of the results of the case study may be found in [8].



Superimposition. Our concept of feature construct is similar to the notion of superim-position [4]. A superimposition is a syntactic device for adding extra code to a givenprogram, usually to make it better behaved with respect to other concurrently runningprograms. In the classic example of superimposition, extra code is added to enableprocesses to respond to interrogations from a supervisory process about whether theyare awaiting further input, and this enables smooth termination of the system.The superimposition construct proposed in [4] is suited to imperative languages, andtherefore cannot be used directly for SMV. In imperative languages data and control
ow are explicit, and the superimposition construct works by modifying them. For adeclarative language like SMV data and control 
ow are implicit.2 The feature construct for SMVIn our other papers [8, 9], we introduced two ways of introducing a feature in a SMVprogram: using impose and treat. Impose allows us to conditionally override the valueof a variable with a new value. The syntax of impose features isif � then impose next(x) := f.The intuitive meaning is that, whenever � is true in a state, the value of x in the nextstate will be whatever the expression f evaluates to.Treat allows us to behave as if a variable had a certain value, disregarding theactual value that the variable has. It thus introduces a mask on the variable. Thesyntax is: if � then treat x = fIntuitively, when � is true and the program reads the value of x, it gets the value ofthe expression f instead.Clearly, impose and treat are in some sense dual of each other: impose a�ects theway a variable is written to, while treat a�ects the way it is read. This duality will beseen precisely in the semantics.The tool SFI complies the feature construct into pure SMV as follows.� For features of the form if � then impose next(x) := f :In assignments next(x) := oldexpr, replace oldexpr bycase� : f;1 : oldexpr;esac� For features of the form if � then treat x = f :We rewrite f as f1 union f2 union : : : union fn such that each fi is deterministic(see lemma 3.11). For each assignment next(x) := e, we replace e by e1 union: : : union en where ei is e with x replaced bycase � : fi;1 : x;esacThis complicated procedure is equivalent, i� f is a deterministic expression, tothe following simpler one: replace all occurrences of x in expressions by



case� : f;1 : x;esacWhenever x is read, the value returned is not x's value, but the value of thisexpression. The reason for adopting the more complicated procedure will be clearin section 4.Given an SMV program P and a feature �, we write P + � for the result of integrating� into P in this way.3 The semantics of SMVOur aim in this paper is to understand when we can guarantee that certain classesof features written with our construct will not interact. To do this, we need �rst toanalyse the theoretical properties of the feature construct. We explore this in Section4. To set the stage for this, we have developed a semantics for SMV which we nowdescribe. Our semantics are quite di�erent in character (more denotational) than thatgiven in [7]. Our semantics make it easier to deal with the \next" operator on the righthand side of assignments, a feature which SMV supports for a large class of programs,but which Ken McMillan does not cover in his semantics. A further extension (whichis not supported by CMU SMV) is that we can allow non-deterministic expressions asconditions in \case" statements.3.1 The syntax of SMVBefore we de�ne the semantics of SMV, let us brie
y review the syntax. We assumethat only one module is de�ned (since, anyway, in the synchronous case the SMV modelchecker 
attens a multi-module system to a single large module). An SMV programthen consists of variable declarations, \x : type", and assignments, \next(x) := e" and\init(x) := e". The latter kind of assignment serves to de�ne the set of initial states ofthe resulting automaton.Types are (essentially) �nite sets of values with certain operations on them. Ex-pressions take the forme ::= c j x j next(x) j e1 � e2 j e1 union e2 j casece1 : e1;ce2 : e2;...cen : en;esacwhere c is a constant, x a variable, and cei is a conditional expression (i.e. an expressionof boolean type). We often write next(e) for the expression e with all variables x1; : : :replaced by next(x1), : : : .



3.2 The semantics of SMVDe�nition 3.1 1. Let P be an SMV text consisting of a single module. Let n bethe number of variables which occur in P , and I = f1; : : : ; ng. We will call theith variable xi.2. Every type denotes a �nite set. The type of a variable xi is written type(xi).3. The set of states is S =Qi2I [[type(xi)]].4. If s 2 S, we write s(xi) for the value of xi in s, i.e. the ith component of s.Let e be an expression in SMV. Its denotation [[e]] is a function in S � S !P(type(e)). Applying [[e]] to (s; s0) returns the set of values that e could evaluateto if the current state is s and the next state is s0; note that, because e may referto next-state variables as well as current-state variables, both the current state andthe next state are required to evaluate it. The result of [[e]](s; s0) is a set, because theexpression e is (in general) non-deterministic.De�nition 3.2 The denotation of expressions is de�ned as follows, where e1; e2; : : :are expressions, ce1; : : : are boolean expressions and � any binary operator (such as+;�; �;&; : : : ):1. If d is a constant, then [[d]] = �ss0: fdg.2. If x is a variable, then [[x]] = �ss0: fs(x)g, and [[next(x)]] = �ss0: fs0(x)g.3. [[e1 � e2]] = �ss0:nv1 [[�]] v2 ��� v1 2 [[e1]](s; s0); v2 2 [[e2]](s; s0)o,where � is one of the operations +;�; �;&; : : : .4. [[e1 union e2]] = �ss0:�[[e1]](s; s0) [ [[e2]](s; s0)�;note that union in SMV denotes non-deterministic choice, and the expressionf1; 2; 3g is just shorthand for 1 union 2 union 3.5. [[ casece1 : e1;ce2 : e2;...cen : en;esac ]]= �ss0:� nv ��� 1 2 [[ce1]](s; s0); v 2 [[e1]](s; s0)o[ nv ��� 0 2 [[ce1]](s; s0); 1 2 [[ce2]](s; s0); v 2 [[e2]](s; s0)o[ nv ��� 0 2 [[ce1]](s; s0) \ [[ce2]](s; s0); 1 2 [[ce3]](s; s0); v 2 [[e3]](s; s0)o...[ n1 ��� 0 2 Tni=1[[cei]](s; s0)o �



Recall that in SMV, 0 denotes false and 1 denotes true; therefore, 0 2 [[ce3]](s; s0)means that ce3 can evaluate to false in (s; s0), etc. The last set in this unionre
ects the fact that if all the conditions cei evaluate to false, the case expressionis de�ned to evaluate to 1.When an expression e does not contain next(), we often write [[e]](s) rather than [[e]](s; s0)to emphasise that [[e]] depends only on the current state.Example 3.3 The expression caseb : a + 1;1 : a� 1;esacdenotes �ss0:�nv ��� 1 2 [[b]](s; s0); v 2 [[a + 1]](s; s0)o[ nv ��� 0 2 [[b]](s; s0); 1 2 [[1]](s; s0); v 2 [[a� 1]](s; s0)o�:If a and b are variables (as opposed to other kinds of expressions), then they evaluatedeterministically and we obtain�ss0: � s(a) + 1 if s(b)s(a)� 1 otherwiseThe semantics of expressions is thus quite straightforward. However, it fails animportant property of substitutivity. We might expect that if two expressions e1; e2denote the same thing, and we substitute for the variable x a third expression e, theresulting expressions should also denote the same thing. Let e1[e=x] mean the expressione1 with all occurrences of the variable x (not within next()) replaced by the expressione, and e1[e=next(x)] is e1 with all occurrences of next(x) replaced by e. Note that we cannever get nested next()s by performing these substitutions (i.e. the set of expressionsis closed under them).Remark 3.4 (Substitutivity) [[e1]] = [[e2]] does not imply [[e1[e=x]]] = [[e2[e=x]]].Example 3.5 Here is an example of the failure of substitutivity:e1 = 2 � xe2 = x+ xe = f2; 3g[[e1[e=x]]] = [[2 � f2; 3g]]= �ss0: f4; 6g[[e2[e=x]]] = [[f2; 3g+ f2; 3g]]= �ss0: f4; 5; 6g



The reason for the failure is clear: after substituting in x+x, the non-deterministicexpression will occur twice and can evaluate di�erently the two times. In 2�x it occursonly once.Substitutivity holds if e is deterministic, or e1; e2 have just one occurrence of x ornext(x). To prove this, we need the following lemmas. Write svx for the state just likes except that x has the value v.Lemma 3.6 Let e; f be SMV expressions, then[[e[f=x]]](s; s0) � [v2[[f ]](s;s0)[[e]](svx; s0)Moreover, equality holds if f is deterministic, or e has just one occurrence of x.Proof We prove the lemma by induction on the structure of e. We give only one case:� e = e1 � e2.[[(e1 � e2)[f=x]]](s; s0)= nw1 [[�]] w2 ��� w1 2 [[e1[f=x]]](s; s0)| {z }; w2 2 [[e2[f=x]]](s; s0)o by semantics of �� fw j w 2 [[e1]](svx; s0); v 2 [[f ]](s; s0)g, by Ind.Hyp.� nw1 [[�]] w2 ��� wi 2 [[ei]](svix ; s0); vi 2 [[f ]](s; s0); i = 1; 2o, Ind.Hyp.� nw1 [[�]] w2 ��� wi 2 [[ei]](svx; s0); v 2 [[f ]](s; s0); i = 1; 2o, rules of sets= n[[e1 � e2]](svx; s0) ��� v 2 [[f ]](s; s0)o, def. of �Now suppose f is deterministic. Then the �rst two occurrences of� above become= by Ind.Hyp., and the third becomes = by the fact that [[f ]](s) is a singleton.Suppose e has just one occurrence of x, say, in e1. Then e2 does not dependon x. By inductive hypothesis, [[e1[f=x]]](s; s0) = S[[e1]](svx; s0) (�rst �). Also[[e2[f=x]]](s; s0) = S[[e2]](svx; s0) = [[e2]](s; s0), i.e. [[e2]](svx; s0) is independent ofthe choice of v 2 [[f ]](s; s0), so the middle line becomes fw1 [[�]] w2 j w1 2[[e1]](sv1x ; s0); w2 2 [[e2]](s; s0); v1 2 [[f ]](s; s0)g. This justi�es = for the secondand third �. 2We can prove a similar lemma for substitutions on next(x).Lemma 3.7 Let e; f be SMV expressions, then[[e[f=next(x)]]](s; s0) � [v2[[f ]](s;s0)[[e]](s; s0vx)Moreover, equality holds if f is deterministic, or e has just one occurrence of next(x).(Proofs not given here can be found in the long version of the paper, available as atechnical report.)Corollary 3.8 Let e; f be SMV expressions. If f does not contain next(x), then[[(e[f=x])[next(f)=next(x)]]] � [v2[[f ]](s;s0)v02[[f ]](s;s0) [[e]](svx; s0v0x )



Example 3.9 We give an example of proper inclusion for Lemma 3.6. Again let e =x + x and f = f2; 3g. Note f is non-deterministic.LHS = [[(x + x)[f2; 3g=x]]](s; s0) = [[f2; 3g+ f2; 3g]](s; s0) = f4; 5; 6g.RHS = Sv2f2;3g[[x + x]](svx; s0) = f4; 6g.Corollary 3.10 If e is deterministic, or e1; e2 have just one occurrence of x, then[[e1]] = [[e2]] implies [[e1[e=x]]] = [[e2[e=x]]].The previous lemmas and examples show that the SMV language of non-deterministic expressions, although simple and intuitive, fails a property of substitu-tivity. This property is important to us because the treat feature is de�ned in termsof substitution, and we would like the property in order to guarantee that the treatfeature is nicely behaved.Our �rst approach to this problem was to restrict to the cases of lemmas 3.6 and3.7 in which f is deterministic. Looking again at the de�nition of the feature constructin section 2, this would mean that f and � in the treat feature would have to bedeterministic.We can avoid this restriction, however, by de�ning substitution in a cleverer way.First note that all the non-determinism in f can be expressed at the outermost level.Lemma 3.11 Let f be a (possibly non-deterministic) expression. Then there are de-terministic expressions f1, f2, : : : , fn such that[[f ]] = [[f1 union f2 union : : : union fn]]:Proof Induction on the structure of f . (Rewriting the expression is purely mechani-cal.) 2The new operator uses this way of rewriting expressions.De�nition 3.12 Let e; f be expressions and x a variable. The expression eff=xg isde�ned thus: eff=xg = e[f1=x] union e[f2=x] union : : : union e[fn=x]where f has been written f1 union f2 union : : : union fn with each fi deterministic (seelemma).Obtaining eff=xg is easily automated, since rewriting f according to Lemma 3.11 is astraightforward syntactic manipulation.Remark 3.13 Let e; f1; f2 be SMV expressions. If f1 does not contain next(x) andx does not occur in f2 then (eff1=xg)ff2=next(x)g = (eff2=next(x)g)ff1=xg up toreordering of subterms. This also holds for ordinary substitution �[�]. In the remainderof this paper, we will usually have f2 = next(f1), in which case the remark applies.With this new operator, we obtain the desired result for substitution:Lemma 3.14 Let e; f be SMV expressions. Then[[eff=xg]](s; s0) = [v2[[f ]](s;s0)[[e]](svx; s0)and[[eff=next(x)g]](s; s0) = [v2[[f ]](s;s0)[[e]](s; s0vx)



Proof By induction, using lemmas. 2The other side of substitutivity asks that [[e1]] = [[e2]] implies [[e[e1=x]]] = [[e[e2=x]]],i.e., substituting equivalent expressions into an expression results in equivalent expres-sions. (Analogously for e[e1=next(x)].) This holds without quali�cation in our seman-tics:Proposition 3.15 [[e1]] = [[e2]] implies [[e[e1=x]]] = [[e[e2=x]]] and[[e[e1=next(x)]]] = [[e[e2=next(x)]]].Proof Induction on the structure of e. If e is a constant a variable, or next(z) for avariable z, the result is straightforward; otherwise,� if e = f1 � f2 then[[e[e1=x]]](s; s0) = [[(f1 � f2)[e1=x]]](s; s0)= [[f1[e1=x] � f2[e1=x]]](s; s0)= [[f1[e1=x]]](s; s0) [[�]] [[f2[e1=x]]](s; s0)= [[f1[e2=x]]](s; s0) [[�]] [[f2[e2=x]]](s; s0)The last step uses the inductive hypothesis. Now this expression can be packedup again to obtain [[e[e2=x]]](s; s0).� Union, case statements, etc: similar. 2Substitutivity will be important for the application to features in a later section.We return to the main theme of this section, which is de�ning the semantics of SMV.Having examined the semantics of expressions, we now give the semantics of completeprograms. Since expressions do most of the work in SMV programs, there is not muchmore to do:De�nition 3.16 Assignments denote relations on S � S:� [[next(x) := e]] = f(s; s0) j s0(x) 2 [[e]](s; s0)g;� [[x := e]] = f(s; s0) j s(x) 2 [[e]](s; s0)g.The transition relation is given byR = \a an assignment[[a]]:An SMV program P denotes a pair [[P ]] = (S;R), where S is the set of states (givenin de�nition 3.1, and R is the transition relation. We may now apply this semantics toverify the examples given in section 2.



4 Semantics of the feature constructThe results of our previous papers are entirely experimental. In this section, we aimto apply the semantics of SMV developed so far to features, and thus to provide sometheoretical results about the feature construct. More precisely, we wish to �nd out:� When (if ever) can we guarantee that two features will commute with each other?� To what extent does the meaning of a feature depend on syntactical details of theprogram with which it is integrated?Answering questions such as these will put us in a better position to assess the usefulnessof the feature construct idea.De�nition 4.1 (Admissible SMV programs) An SMV program is admissible if:� there are no assignments to current variables;� in any assignment of the form next(x) := e, next(x) does not occur in e.We assume that the base system is an admissible SMV program, and we also makethe assumption that, in the featuresif � then impose next(x) := fif � then treat x = fthe condition � is deterministic and does not contain next(), and that next(x) does notoccur in the expression f .As stated before, we do not allow next() to occur in treat features: if, in the program,an expression referred to next(x), then the integration of such a feature would lead todouble nexts, i.e. a reference to a successor state of the next state, which cannot bedetermined from the current state. This restriction also means that for treat featureswe can write [[f ]](s) instead of [[f ]](s; s0), since f cannot depend on s0.For some proofs we will assume that the expression f occurring in the feature isdeterministic. In that case [[f ]](s) is a singleton for any s. We will write [[f ]](s) to bethe value of f in s, rather than the singleton set containing that value, in order tosimplify notation. It means we can write s[[f ]](s)x for the state like s but with x havingthe value of f in s, etc.For ease of description, we use the symbol � for features using the keyword impose,and � for features using the keyword treat.De�nition 4.2 (Semantics of features) Let A be an automaton, i.e. a binary rela-tion on a set of states.� If � is the featureif � then impose next(x) := fthen [[�]](A) = n(s; s0) ��� s 6
 �; (s; s0) 2 Ao[n(s; s0vx) ��� s 
 �; (s; s0) 2 A; v 2 [[f ]](s; s0)o:Thus, we retain transitions (s; s0) 2 A which do not trigger the feature (s 6
 �);in the case that the feature is triggered (s 
 �) we alter the target state to takeaccount of the impose.



� If � is the featureif � then treat x = fthen[[�]](A) = n(s; s0) ��� s 6
 �; s0 6
 �; (s; s0) 2 Ao [n(s; s0) ��� s 
 �; s0 6
 �; 9v 2 [[f ]](s): (svx; s0) 2 Ao [n(s; s0) ��� s 6
 �; s0 
 �; 9v 2 [[f ]](s0): (s; s0vx) 2 Ao [n(s; s0) ��� s 
 �; s0 
 �; 9v 2 [[f ]](s); v0 2 [[f ]](s0): (svx; s0v0x ) 2 AoAgain, we retain transitions (s; s0) 2 A which do not trigger the feature. Here, ifthe feature is triggered, we behave as if x had the value of f in the current or nextstate, respectively. That is, we transition from s to s0 if there was a transitionfrom s[[f ]](s)x to s0[[f ]](s)x . (Recall that we ruled out occurrences of next() in f .)Remark 4.3 The featureif � then treat x = fis equivalent to the featuretreat x = case�: f;1: x;esacwhere we have omitted \if true then" for obvious reasons. The equivalent reformulationis not as intuitive to the programmer, but it will help simplify some of the mathematicalproofs.Remark 4.4 If the expression d in the treat feature � = \if � then treat x = d"is deterministic and we rewrite � according to remark 4.3, the semantics for � simplifyto [[�]](A) = n(s; s0) ��� (s[[f ]](s)x ; s0[[f ]](s0)x ) 2 Ao:where f stands for case � : d; 1: x; esac.Our aim in this section is to show that the semantics of features given above coincideswith what SFI actually does. As indicated above, we write P + � for the result ofintegrating � into P . Thus, we aim to prove:Lemma 4.5 Let � and � be as above, let P be an admissible SMV program.1. If P is deadlock free2 and next(x) does not occur in f , then [[P + �]] = [[�]]([[P ]]).2. If f and � are deterministic and contain no occurrences of x and of the next()operator, then [[P + �]] = [[�]]([[P ]]).2i.e., from each state in the denoted transition system there is at least one successor state.



Proof 1. We show (s; s0) 2 [[P + �]], (s; s0) 2 [[�]]([[P ]]).Suppose s 6
 �. Then(s; s0) 2 [[P + �]] , (s; s0) 2 [[P ]] by construction of P + �, (s; s0) 2 [[�]](P )by def. of [[�]]([[P ]])Suppose s 
 �, and suppose the assignment to next(x) is next(x) := e. Let P 0be P without this assignment to next(x). Notice that s00[[f ]](s;s0)x = s00[[f ]](s;s00)x , sinces0 and s00 di�er only in their value for x but next(x) does not occur in f .(s; s0) 2 [[P + �]], (s; s0) 2 [[P 0]] ^ s0(x) 2 [[f ]](s; s0) by construction of P + �, 9s00; fi 2 det(f): s0 = s00[[fi]](s;s0)x ^ (s; s00) 2 [[P ]] (see next paragraph), (s; s0) 2 [[�]]([[P ]]) def. of [[�]]The middle equivalence is justi�ed as follows:). Since [[P ]] is deadlock free, there is a successor state s00 of s. Let s00 = s0vx forsome v 2 [[e]](s). Then, for some fi 2 det(f), s00[[fi]](s;s0)x = s0 since s0(x) 2 [[f ]](s; s0).We have (s; s00) 2 [[P 0]]. To show (s; s00) 2 [[P ]] it is su�cient to show that it satis�esnext(x) = e.(. Suppose s00 is as given. We easily obtain that (s; s0) 2 [[P 0]] and s0(x) 2[[f ]](s; s0).2. By remarks 4.3 and 4.4 we can assume that � has the form treat x = f . We knowthat f is deterministic and contains no x or next(). Given an assignment next(x):= e, these restrictions ensure that � will not introduce a circular dependency inthis assignment.3We �rst require the followingLemma: If f is a deterministic expression, [[�]](A \B) = [[�]](A) \ [[�]](B).Proof of lemma:(s; s0) 2 [[�]](A) \ [[�]](B), (9v 2 [[f ]](s); v0 2 [[f ]](s0): (svx; s0v0x ) 2 A)^(9v 2 [[f ]](s); v0 2 [[f ]](s0): (svx; s0v0x ) 2 B), (9v 2 [[f ]](s); v0 2 [[f ]](s0): (svx; s0v0x ) 2 A \ B), (s; s0) 2 [[�]](A \ B)The second step relies on [[f ]](s) being a singleton, i.e. on the determinism of f .Now think of P as the set of its assignments. For each a 2 P we prove [[a + �]] =[[�]]([[a]]). Then, by de�nition of [[P ]] and the lemma above,[[�]]([[P ]]) = [[�]]� \a2P [[a]]� = \a2P [[�]]([[a]]) = \a2P [[a + �]] = [[P + �]]:Let a be the assignment next(y) := e. We prove [[a + �]] = [[�]]([[a]]).3In fact, we can only prevent circular dependencies within one assignment. The next values of othervariables may depend on next(x), and vice versa; in such a case, the circular dependencies will extendover more than one assignment.



This equality holds irrespective of whether f is deterministic or not. For simplic-ity, however, we will make use of our hypothesis that f is deterministic and fcontains no next() operator.[[a + �]]= [[next(y) := e [f=x] [next(f)=next(x)]]] def. of + �= n(s; s0) ��� s0(y) 2 [[e [f=x] [next(f)=next(x)]]](s; s0)o (assignment)= n(s; s0) ��� s0(y) 2 [[e]]�s[[f ]](s)x ; s0[[f ]](s0)x �o (corollary 3.8)= n(s; s0) ��� (s[[f ]](s)x ; s0[[f ]](s0)x ) 2 [[a]]o (assignment)= [[�]]([[a]]) (remark 4.4) 2Theorem 4.6 The feature constructs are syntax-invariant. Let P1; P2 be programsand � a feature (could be �-type or �-type). Then[[P1]] = [[P2]] implies [[P1 + �]] = [[P2 + �]]:Proof Immediate corollary of the lemma. 2Note, however, that [[P1]] = [[P2]] is rather strong: it says P1; P2 denote the sametransition system, even on the non-reachable part.4.1 Properties of the feature constructTheorem 4.7 (Idempotence of feature addition)1. The assignment to next(x) in P is next(x) := e, and both e and f and � in thefeature � do not contain next(x), then [[P + � + �]] = [[P + �]].2. If x does not occur in the expressions � and f , and � and f do not contain next(),then [[P + � + �]] = [[P + �]].Proof 1. Similar to what we did with treat features, we rewrite � to \imposenext(x) := c", where c denotes the expressioncase� : f ;1 : e;esacWe prove that [[�]]([[�]]([[P ]])) = [[�]]([[P ]]).Since c does not mention next(x) we know that [[c]](s; s0) = [[c]](s; s0vx) for anyv 2 type(x), thus



(s; s0) 2 [[�]]([[�]]([[P ]])) , s0 = s00[[c]](s;s00)x ; (s; s00) 2 [[�]](P ), s0 = s00[[c]](s;s00)x ; s00 = s000[[c]](s;s000)x ; (s; s000) 2 P, s0 = s000[[c]](s;s000)x ; (s; s000) 2 P, (s; s0) 2 [[�]](P )2. Again we assume that � has the form \treat x = f". Let A = [[P ]]. We provethat �(�(A)) = �(A). We write ~s and ~s0 as a shorthand for s[[f ]](s;s0)x and s0[[f ]](s;s0)x ,respectively.(s; s0) 2 �(�(A)) , (~s; ~s0) 2 �(A), �~s[[f ]](~s;~s0)x ; (~s0)[[f ]](~s;~s0)x � 2 A), (s[[f ]](~s;~s0)x ; s0[[f ]](~s;~s0)x ) 2 A), (s[[f ]](s;s0)x ; s0[[f ]](s;s0)x ) 2 A), (s; s0) 2 �(A)The �rst and second equivalences are obtained by rewriting; the third and thefourth exploit the fact that x and next(x) do not occur in f . 2Finally, let us look at when features commute with each other. In general we donot expect that features should commute. However, when they do, it implies a strongform of non-interaction.Consider the families of features�i =if �i then impose next(xi) := fi�i =if �i then treat xi = fiWe explore when �1 commutes with �2, etc.As usual we rule out features that may lead to circular assignments, i.e. for imposefeatures, fi must not refer to next(xi), and for treat features, fi must not refer to xi oruse next(). Also, for both types of features, �i must not contain next().Theorem 4.81. P + �1 + �2 = P + �2 + �1, if x1; x2 are distinct variables and �1 does not usenext(x2) and vice versa.2. P +�1+�2 = P +�2+�1 if x2 does not occur in �1, x1 and x2 are distinct variables,and x1 does not occur in f2 or �2.3. P + �1 + �2 = P + �2 + �1 if:� x1; x2 are distinct variables, and� x1 does not occur in �2 or f2, and� x2 does not occur in �1 or f1;Proof For the proof we again assume the simple form of treat features.Note that (s; t) 2 [[�i]](A), � s 6
 �i; (s; t) 2 As 
 �i; t = t0[[fi]](s;t0)xi ; (s; t0) 2 A �where we use the notation: in square brackets, comma means and, and vertical juxta-position means or; and (s; t) 2 [[�i]](A), (s[[fi]](s)xi ; t[[fi]](t)xi ) 2 A



1. Expanding [[�1]]([[�2]](A)), we see that(s; s0) 2 [[�1]]([[�2]](A)),26664 s 
 :�1 ^ :�2; (s; s0) 2 As 
 :�1 ^ �2; s = t[[f2]](s;t)x2 ; (s; t0) 2 As 
 �1 ^ :�2; s = t[[f1]](s;t)x1 ; (s; t0) 2 As 
 �1 ^ �2; s = (t[[f2]](s;t)x2 )[[f1]](s;t[[f2]](s;t)x2 )x1 ; (s; t0) 2 A
37775If x1 and x2 are distinct, and [[f1]](s; t) does not depend on t(x2) and, symmetri-cally, [[f2]](s; t) is independent of t(x1), then(t[[f2]](s;t)x2 )[[f1]](s;t[[f2]](s;t)x2 )x1 = (t[[f2]](s;t)x2 )[[f1]](s;t)x1 = (t[[f1]](s;t)x1 )[[f2]](s;t)x2 = (t[[f1]](s;t)x1 )[[f2]](s;t[[f1]](s;t)x1 )x22. Expanding [[�1]]([[�2]](A)), obtain(s; t) 2 [[�1]]([[�2]](A)), " s 
 :�1; (s[[f2]](s)x2 ; t[[f2]](t)x2 ) 2 As 
 �1; t = t0[[f1]](s;t0)x1 ; (s[[f2]](s)x2 ; t0[[f2]](t0)x2 ) 2 A #Expanding [[�2]]([[�1]](A)), we get(s; t) 2 [[�2]]([[�1]](A)), " s 
 :�01; (s[[f2]](s)x2 ; t[[f2]](t)x2 ) 2 As 
 �01; t[[f2]](t)x2 = t0[[f1]](s)x1 ; (s[[f2]](s)x2 ; t0) 2 A #where �01 stands for �1[f2=x2][next(f2)=next(x2)].�1 holds for the same states in both cases if x2 does not occur in �1. Now, ifx1 6= x2 and x1 does not occur in f2, the last line is equivalent to�1[f2=x2]; t = t0[[f1]](s)x1 ; (s[[f2]](s)x2 ; t0[[f2]](t0)x2 ) 2 A:3. Expanding [[�1]]([[�2]](A)) and [[�2]]([[�1]](A)) we see that(s; t) 2 [[�1]]([[�2]](A)), ((s[[f1]](s)x1 )[[f2[f1=x1]]](s[[f1]](s)x1 )x2 ; (t[[f1]](t)x1 )[[f2[f1=x1]]](t[[f1]](t)x1 )x2 ) 2 Aand(s; t) 2 [[�2]]([[�1]](A)), ((s[[f2]](s)x2 )[[f1[f2=x2]]](s[[f2]](s)x2 )x1 ; (t[[f2]](t)x2 )[[f1[f2=x2]]](t[[f2]](t)x2 )x1 ) 2 AHere we have used the the substitution lemma (lemma 3.8) in the form[[f2]](s[[f1]](s)x1 ) = [[f2[f1=x1]]](s).Comparing �1(�2(A)) with �2(�1(A)), we see that they are equal provided thesyntactic substitutions have no e�ect, i.e. there are no occurrences of x1 in f2,or of x2 in f1. The same condition also ensures that f2 does not depend on x1and f1 not on x2, so that [[f2[f1=x1]]](s[[f2]](s)x2 ) = [[f2[f1=x1]]](s)) = [[f2]]](s), andsymmetrically. 2



5 ConclusionsThe experimental results of [8] are enhanced with theoretical results showing:� that, with an appropriate notion of equivalence between SMV programs, featuresare insensitive to the syntax of the underlying program; and� circumstances in which features are idempotent and commute.These results will prove to be helpful to the model checking process. In our casestudy of the phone system, we quickly found that with the addition of features thesystem quickly grew too large to verify. The results in this paper suggest that someresults can be obtained purely by analysis of the features, rather than by model checkingthe extended system. For example, theorems 4.7 and 4.8 allow us to reduce the numberof feature combinations that need to be checked. In the future, we hope to show thatit is su�cient to check the feature with an abstract version of the base system to provea property of the full system with the feature.References[1] K. E. Cheng and T. Ohta, editors. Feature Interactions in Telecommunications SystemsIII, Kyoto, Japan, 1995. Omsha Press.[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a reimplementation ofSMV. In B. Ste�en and T. Margaria, editors, Proceedings of the International Workshopon Software Tools for Technology Transfer (STTT-98), BRICS Notes Series, pages 25{31,Aalborg, 1998. Available from afrodite.itc.it:1024/~cimatti/.[3] P. Dini et al., editors. Feature Interactions in Telecommunications and Distributed SystemsIV, Montreal, Canada, June 1997. IOS Press.[4] S. Katz. A superimposition control construct for distributed systems. ACM Transactionson Programming Languages and Systems, 15(2):337{356, April 1993.[5] K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecommunications andSoftware Systems V. IOS Press, September 1998.[6] K. McMillan. The SMV language. Available from www-cad.eecs.berkeley.edu/~kenmcmil,June 1998.[7] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.[8] M. C. Plath and M. D. Ryan. Plug-and-play features. In Kimbler and Bouma [5], pages150{164.[9] M. C. Plath and M. D. Ryan. SFI: a feature integration tool. In R. Berghammer andY. Lakhnech, editors, Tool Support for System Speci�cation, Development and Veri�cation,Advances in Computing Science, pages 201{216. Springer, 1999.


