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1 Introduction

The concept of feature has emerged in telephone systems analysis as a way of describing
optional services to which telephone users may subscribe [1, 3, 5]. Features offered
by telephone companies include call-forwarding, automatic-call-back, and voice-mail.
Features are not restricted to telephone systems, however. Any part or aspect of a
specification which the user perceives as having a self-contained functional role is a
feature. For example, a printer may exhibit such features as: ability to understand
PostScript; Ethernet card; ability to print double-sided; having a serial interface; and
others. The ability to think in terms of features is important to the user, who often
understands a complex system as a basic system plus a number of features. It is also
an increasingly common way of designing products.

To support this way of building a system from a basic system by successively adding
features, we have extended the syntax of SMV?! with a feature construct that allows
features to be described in a compact way, and we have developed the tool SFI (‘SMV
feature integrator’) that compiles the extended SMV code into simple SMV code which
the model checker can work with. We handle the potential inconsistency between a
feature and the base system by allowing features to override existing behaviour in a
tightly controlled way. We have used SMV to verify a [lift system (elevator system in
the US) together with five features and their interactions [9]. We have also verified a
model of the telephone system together with about seven features [8], and the feature
interactions between them.

The results in those papers were entirely experimental. Our goal in this paper is to
give precise semantics to the feature construct for SMV. Using such semantics, we can
explore in what circumstances the feature construct is independent of the syntax of the
base program to which the feature is applied, and other properties of features. This
allows us to explore when features commute with each other, and, more generally, to
explore what classes of features are ‘interaction-friendly’ with respect to other classes.
It is also a step towards being able to verify the feature itself, independently of the
system to which it is added.

ISMV (‘Symbolic Model Verifier’) is a model checker developed by Ken McMillan at Carnegie Melon
University [7]. It may be obtained from www.cs.cmu.edu/ modelcheck. Until 1998 there was just
one SMV, but now there are three. CMU SMYV is the original one and is the subject of this paper.
NuSMYV is a re-implementation being developed in Trento [2], and is aimed at being customizable and
extensible. Cadence SMV is an entirely new model checker focussed on compositional systems. It is

also developed by Ken McMillan, and its description language resembles but much extends the original
SMV [6].




The paper is structured as follows. The remainder of this section describes some
features from a motivational point of view. Section 2 recalls the feature construct for
SMV, first presented in [8]. In order to develop its semantics as a transition system
transformer, we first define the semantics of an SMV program as a transition system
(section 3). Section 4 then develops the semantics of the feature construct. The con-
clusions are in section 5.

1.1  Ezperimental results using the feature construct

One of our case studies with the feature construct is a simple version of the Plain
Old Telephone System (POTS). We briefly recall the features we have modelled and
integrated (under various combinations) into our model of POTS:

e Call Waiting (CW)

Call Forward Unconditional (CFU)

Call Forward on Busy (CFB)

Call Forward on No Reply (CFNR)

Ring Back When Free (RBWF)

Terminating Call Screening (TCS)

Originating Call Screening (OCS)

A feature comprises two components: the feature implementation ¢ (described in
terms of the keywords ‘treat’ and ‘impose’, detailed the next section), and the feature
requirements as a CTL formula ¢. When we integrate a feature (d, ¢) into a base system
P, we want to test the following:

e P+ 0 [ ¢: Feature § has been successfully integrated.
e (P+01)+ 09 = ¢o: Feature §, can be integrated into the extended system P + 4.

e (P +01)+ dy = ¢1: Feature 05 does not violate the requirements of d;.

Of course these tests will not necessarily succeed. We shall however assume that all
features are correct wrt. the base system, i.e., P+ = ¢ for any feature (0, ¢). Then
we can test for the presence of feature interaction in the following forms:

e Type 1: (P + 01) + d2 [~ o
Earlier feature breaks later one.

e Type 2: (P + 01) + d2 = ¢1:
Later feature breaks earlier one.

e Type 3: PP+ 81, P+ 0y =1 but (P + ;) + 69 £ -
(where 1) is a property of the base system.)
Features combine to break system.

e Type 4: 3¢p.(P + 01) + 92 = ¢ but (P + d9) + 01 #~ ¢
(where ¢ is a property of P, §; or ds)
Features do not commute.

Details of the results of the case study may be found in [8].



Superimposition. Our concept of feature construct is similar to the notion of superim-
position [4]. A superimposition is a syntactic device for adding extra code to a given
program, usually to make it better behaved with respect to other concurrently running
programs. In the classic example of superimposition, extra code is added to enable
processes to respond to interrogations from a supervisory process about whether they
are awaiting further input, and this enables smooth termination of the system.

The superimposition construct proposed in [4] is suited to imperative languages, and
therefore cannot be used directly for SMV. In imperative languages data and control
flow are explicit, and the superimposition construct works by modifying them. For a
declarative language like SMV data and control flow are implicit.

2 The feature construct for SMV

In our other papers [8, 9], we introduced two ways of introducing a feature in a SMV
program: using impose and treat. Impose allows us to conditionally override the value
of a variable with a new value. The syntax of impose features is

if ¢ then impose next(x) := f.

The intuitive meaning is that, whenever ¢ is true in a state, the value of x in the next
state will be whatever the expression f evaluates to.

Treat allows us to behave as if a variable had a certain value, disregarding the
actual value that the variable has. It thus introduces a mask on the variable. The
syntax is:

if ¢ then treat x = f

Intuitively, when ¢ is true and the program reads the value of z, it gets the value of
the expression f instead.

Clearly, impose and treat are in some sense dual of each other: impose affects the
way a variable is written to, while treat affects the way it is read. This duality will be
seen precisely in the semantics.

The tool SFI complies the feature construct into pure SMV as follows.

e For features of the form if ¢ then impose next(z) := f:
In assignments next (x) := oldexpr, replace oldexpr by
case
¢ f
1 oldexpr;
esac

e For features of the form if ¢ then treat x = f:
We rewrite f as f; union f, union ... union f, such that each f; is deterministic
(see lemma 3.11). For each assignment next(z) := e, we replace e by e; union
... union e, where e; is e with = replaced by

case
¢ Ji
1: x;
esac

This complicated procedure is equivalent, iff f is a deterministic expression, to
the following simpler one: replace all occurrences of x in expressions by



esac

Whenever x is read, the value returned is not x’s value, but the value of this
expression. The reason for adopting the more complicated procedure will be clear
in section 4.

Given an SMV program P and a feature 9, we write P + § for the result of integrating
0 into P in this way.

3 The semantics of SMV

Our aim in this paper is to understand when we can guarantee that certain classes
of features written with our construct will not interact. To do this, we need first to
analyse the theoretical properties of the feature construct. We explore this in Section
4. To set the stage for this, we have developed a semantics for SMV which we now
describe. Our semantics are quite different in character (more denotational) than that
given in [7]. Our semantics make it easier to deal with the “next” operator on the right
hand side of assignments, a feature which SMV supports for a large class of programs,
but which Ken McMillan does not cover in his semantics. A further extension (which
is not supported by CMU SMV) is that we can allow non-deterministic expressions as
conditions in “case” statements.

3.1 The syntax of SMV

Before we define the semantics of SMV, let us briefly review the syntax. We assume
that only one module is defined (since, anyway, in the synchronous case the SMV model
checker flattens a multi-module system to a single large module). An SMV program
then consists of variable declarations, “x: type”, and assignments, “next(z) := e” and
“Init(x) := €”. The latter kind of assignment serves to define the set of initial states of
the resulting automaton.

Types are (essentially) finite sets of values with certain operations on them. Ex-
pressions take the form

e = c| x| next(x) | e; oey | e union ey | case
cep leq,
C€g © €9,
Cen : €p;

esac

where ¢ is a constant, = a variable, and ce; is a conditional expression (i.e. an expression
of boolean type). We often write next(e) for the expression e with all variables z1, ...
replaced by next(z), ... .



3.2

The semantics of SMV

Definition 3.1 1. Let P be an SMV text consisting of a single module. Let n be

2.

3.

4.

the number of variables which occur in P, and I = {1,...,n}. We will call the
1th variable z;.

Every type denotes a finite set. The type of a variable z; is written type(z;).
The set of states is S = [[,,[type(z;)].

If s € S, we write s(x;) for the value of z; in s, i.e. the ith component of s.

Let e be an expression in SMV. Its denotation [e] is a function in S x S —
P(type(e)). Applying [e] to (s,s’) returns the set of values that e could evaluate
to if the current state is s and the next state is s’; note that, because e may refer
to next-state variables as well as current-state variables, both the current state and
the next state are required to evaluate it. The result of [e](s, s') is a set, because the
expression e is (in general) non-deterministic.

Definition 3.2 The denotation of expressions is defined as follows, where eq,es, ...

are expressions, cep,... are boolean expressions and o any binary operator (such as
+, %, &, .0 ):
1. If d is a constant, then [d] = Ass’. {d}.

2.

If x is a variable, then [z] = Ass’. {s(x)}, and [next(x)] = Ass’. {s'(x)}.

[er o ex] = Ass'. {7}1 [o] va | v € [er](s,s"), va € [ea] (s, s’)},

where o is one of the operations +, —, *, &, .. ..

[e1 union ey] = Ass'. ([[elﬂ(s, sy U [e2] (s, 5’));
note that union in SMV denotes non-deterministic choice, and the expression
{1,2,3} is just shorthand for 1 union 2 union 3.

[ case
Cey 1 €1,
CEg | €9;

CEp : €p;
esac |

= \ss'. ( {7) ‘ 1€ Jeer](s,s"), v € [e](s, S’)}
U {7) ‘ 0 € [eer](s,s"), 1 € [ees](s,s'), v € [[62](8,8')}
U {y ‘ 0 € [eer](s,s") N Jeea] (s, 8'), 1 € [ces](s,s"), v € [es] (s, s')}

U {1 ‘ 0€ m?:l[[ceiﬂ(s’s’)} )



Recall that in SMV, 0 denotes false and 1 denotes true; therefore, 0 € [ce3](s, s")
means that cez can evaluate to false in (s,s’), etc. The last set in this union
reflects the fact that if all the conditions ce; evaluate to false, the case expression
is defined to evaluate to 1.

When an expression e does not contain next(), we often write [[e](s) rather than [e](s, s")
to emphasise that [e]] depends only on the current state.

Example 3.3 The expression

case
b:a+1;
l:a—1,
esac

denotes

Ass'. ({7) ‘ 1 e [b](s,s"), ve]a+ 1]](3,3')}
U {7) ‘ 0€e[b](s,s), 1 €[1](s,s"), v e [a—1](s, s')}).

If a and b are variables (as opposed to other kinds of expressions), then they evaluate
deterministically and we obtain

\ss! { s(a) +1 if s(b)

s(a) — 1 otherwise

The semantics of expressions is thus quite straightforward. However, it fails an
important property of substitutivity. We might expect that if two expressions eq, e;
denote the same thing, and we substitute for the variable x a third expression e, the
resulting expressions should also denote the same thing. Let e;[e/z] mean the expression
e; with all occurrences of the variable z (not within next()) replaced by the expression
e, and e [e/next(x)] is e; with all occurrences of next(x) replaced by e. Note that we can
never get nested next()s by performing these substitutions (i.e. the set of expressions
is closed under them).

Remark 3.4 (Substitutivity) [e;] = [e2] does not imply [e;]e/z]] = [ez[e/x]].

Example 3.5 Here is an example of the failure of substitutivity:

er = 2%z
eo = x+x
e = {2,3}
[eile/=]] = [2+{2,3}]
= \ss'.{4,6}
[eole/z]] = [{2,3}+{2.3}]
= Ass'.{4,5,6}



The reason for the failure is clear: after substituting in « + x, the non-deterministic
expression will occur twice and can evaluate differently the two times. In 2%z it occurs
only once.

Substitutivity holds if e is deterministic, or e, e5 have just one occurrence of x or
next(x). To prove this, we need the following lemmas. Write s? for the state just like
s except that x has the value v.

Lemma 3.6 Let e, f be SMV expressions, then
[elf/all(s.s) 2 U [elsh, o)
vE[f](s,8")
Moreover, equality holds if f is deterministic, or e has just one occurrence of x.
Proof We prove the lemma by induction on the structure of e. We give only one case:

™

= e 0 €.

[(e1 o e2)[f/2]] (s, 5')

|
L[] ws | w1 € [erl /2] (5. '), wa € [eslf /#]](s, ) } by semantics of o
2 {w [ w e [ed](sy,8'), ve[fl(s,s)}, by Ind.Hyp.
> {wr [o] ws | wi € [e (s, ), vi € [f1(5,), i = 1,2}, Ind Hyp.
Lun [o] ws | wi € [e)(s5 ), v € [f](5. /). i = 1.2}, rules of sets
= {[[el oes](st, ') | ve [[f]](s,s’)}, def. of o

Now suppose f is deterministic. Then the first two occurrences of O above become
= by Ind.Hyp., and the third becomes = by the fact that [f](s) is a singleton.

Suppose e has just one occurrence of x, say, in e;. Then ey does not depend
on x. By inductive hypothesis, [e:[f/z]](s,s") = Ulei](s?,s") (first D). Also

lea[f/x]](s,s") = Ulez2](s%,s") = [ea](s,s'), i.e. [ea](s2,s") is independent of
the choice of v € [f](s,s'), so the middle line becomes {w; [o] wy | wy €
le ] (sur,s'), we € [ea](s,s'), vi € [f](s,s')}. This justifies = for the second
and third D.

(Il
We can prove a similar lemma for substitutions on next(z).
Lemma 3.7 Let e, f be SMV expressions, then
[e[f /mext(z)]] (s, s") 2 U [els.s7)
ve[f](s:s)
Moreover, equality holds if f is deterministic, or e has just one occurrence of next(z).

(Proofs not given here can be found in the long version of the paper, available as a
technical report.)

Corollary 3.8 Let e, f be SMV expressions. If f does not contain next(z), then

[(elf/a))Inext(f) /next(@)]] 2 |J  [el(sh.57)

velfI(s,s")
o' €[f1(s,s")



Example 3.9 We give an example of proper inclusion for Lemma 3.6. Again let e =
z+x and f = {2,3}. Note f is non-deterministic.

LHS = [(z + 2)[{2,3}/x]](s,s") = [{2,3} + {2,3}] (s, s") = {4,5,6}.

RHS = U, o [7 + 2](s3. s') = {4,6}.

Corollary 3.10 If e is deterministic, or ey, es have just one occurrence of z, then
[ex] = [e2] implies [ei[e/2]] = [ezle/x]].

The previous lemmas and examples show that the SMV language of non-
deterministic expressions, although simple and intuitive, fails a property of substitu-
tivity. This property is important to us because the treat feature is defined in terms
of substitution, and we would like the property in order to guarantee that the treat
feature is nicely behaved.

Our first approach to this problem was to restrict to the cases of lemmas 3.6 and
3.7 in which f is deterministic. Looking again at the definition of the feature construct
in section 2, this would mean that f and ¢ in the treat feature would have to be
deterministic.

We can avoid this restriction, however, by defining substitution in a cleverer way.
First note that all the non-determinism in f can be expressed at the outermost level.

Lemma 3.11 Let f be a (possibly non-deterministic) expression. Then there are de-
terministic expressions fy, fa, ..., f, such that

[f] = [fi union f; union ... union f,].

Proof Induction on the structure of f. (Rewriting the expression is purely mechani-
cal.) O

The new operator uses this way of rewriting expressions.

Definition 3.12 Let e, f be expressions and x a variable. The expression e{ f/z} is
defined thus:

e{f/x} = e[fi/x] union e[fy/x] union ... union e[f, /]

where f has been written f; union f, union ... union f, with each f; deterministic (see
lemma).

Obtaining e{ f/x} is easily automated, since rewriting f according to Lemma 3.11 is a
straightforward syntactic manipulation.

Remark 3.13 Let e, f1, fo be SMV expressions. If f; does not contain next(z) and

x does not occur in fy then (e{fi/x}){f2/next(z)} = (e{fo/next(z)}){f1/z} up to
reordering of subterms. This also holds for ordinary substitution -[-]. In the remainder

of this paper, we will usually have f; = next(f;), in which case the remark applies.
With this new operator, we obtain the desired result for substitution:

Lemma 3.14 let e, f be SMV expressions. Then

[e{f/a}s,s) = U [el(sis)

ve[f](ss")

[e{f/mext(@)}](s, ) = |J [el(s.57)

ve[f](s,s")



Proof By induction, using lemmas. O

The other side of substitutivity asks that [e;] = [es] implies [e[e;/z]] = [eles/]],

e., substituting equivalent expressions into an expression results in equivalent expres-

sions. (Analogously for e[e; /next(z)].) This holds without qualification in our seman-
tics:

Proposition 3.15 [e;] = [es] implies [e[e;/x]] = [e[ea/z]] and

[e[er /next(z)]] = [e[ea/next(z)]].

Proof Induction on the structure of e. If e is a constant a variable, or next(z) for a
variable z, the result is straightforward; otherwise,

e if e = f) o fy then

[eler/2]](s, s") = [(f1 o fo)ler/2]] (s, 5")

— [hler/al o foler/a]l(5, )
= [filer/2]1(s, 8') [o] [f2ler/a1](s, 5")
= [filez/=]1(s, 8') [o] [f2le2/a]](s, 5")

The last step uses the inductive hypothesis. Now this expression can be packed
up again to obtain [e[es/z]](s, s').

e Union, case statements, etc: similar. O

Substitutivity will be important for the application to features in a later section.

We return to the main theme of this section, which is defining the semantics of SMV.
Having examined the semantics of expressions, we now give the semantics of complete
programs. Since expressions do most of the work in SMV programs, there is not much
more to do:

Definition 3.16 Assignments denote relations on S x S:
o Inext(x) = e] = {(s,5") | #'(x) € [e](s5, )}
o [v:=el = {(5,5) | 5(z) € [ (s, 8)}.

The transition relation is given by

R= ﬂ [a].

a an assignment

An SMV program P denotes a pair [P] = (S, R), where S is the set of states (given
in definition 3.1, and R is the transition relation. We may now apply this semantics to
verify the examples given in section 2.



4 Semantics of the feature construct

The results of our previous papers are entirely experimental. In this section, we aim
to apply the semantics of SMV developed so far to features, and thus to provide some
theoretical results about the feature construct. More precisely, we wish to find out:

e When (if ever) can we guarantee that two features will commute with each other?

e To what extent does the meaning of a feature depend on syntactical details of the
program with which it is integrated?

Answering questions such as these will put us in a better position to assess the usefulness
of the feature construct idea.

Definition 4.1 (Admissible SMV programs) An SMV program is admissible if:

e there are no assignments to current variables;
e in any assignment of the form next (x) := e, next(x) does not occur in e.

We assume that the base system is an admissible SMV program, and we also make
the assumption that, in the features

if ¢ then impose next(x) := f
if ¢ then treat x = f

the condition ¢ is deterministic and does not contain next(), and that next(x) does not
occur in the expression f.

As stated before, we do not allow next() to occur in treat features: if, in the program,
an expression referred to next(z), then the integration of such a feature would lead to
double nexts, i.e. a reference to a successor state of the next state, which cannot be
determined from the current state. This restriction also means that for treat features
we can write [f](s) instead of [f](s,s'), since f cannot depend on s'.

For some proofs we will assume that the expression f occurring in the feature is
deterministic. In that case [f](s) is a singleton for any s. We will write [f](s) to be
the value of f in s, rather than the singleton set containing that value, in order to
simplify notation. It means we can write s for the state like s but with z having
the value of f in s, etc.

For ease of description, we use the symbol § for features using the keyword impose,
and e for features using the keyword treat.

Definition 4.2 (Semantics of features) Let A be an automaton, i.e. a binary rela-
tion on a set of states.

e [f § is the feature
if ¢ then impose next(x) := f
then
o1(4) = {(:5) | s o (5.5) € 4}
{5,580 | 516, (s.8) € 4, v e [f](s. )}

Thus, we retain transitions (s,s’) € A which do not trigger the feature (s Iff ¢);
in the case that the feature is triggered (s |- ¢) we alter the target state to take
account of the impose.



e If ¢ is the feature
if ¢ then treat x = f

then

!
S, S

(s,8) | slf o, s I, (s,8) e Ap U

(5.8) | 51 6, 8 I 6,30 € [£1(5). (52 8) € A} U
(s,8") | sl &, s"IF o, Fve[fI(s). (s,87) € A} U
(s, )

{ s,8') | s, s'IFo¢, Fve[fl(s),v €[f](s). (sh,s )EA}

Again, we retain transitions (s, s’) € A which do not trigger the feature. Here, if
the feature is triggered, we behave as if x had the value of f in the current or next
state, respectively. That is, we transition from s to s’ if there was a transition
from st}( ) to 5/ L) (Recall that we ruled out occurrences of next() in f.)

/!
S, S

Remark 4.3 The feature
if ¢ then treat x = f
is equivalent to the feature

treat x = case

¢: f;
1: x;
esac

where we have omitted “if true then” for obvious reasons. The equivalent reformulation
is not as intuitive to the programmer, but it will help simplify some of the mathematical
proofs.

Remark 4.4 If the expression d in the treat feature e = “if ¢ then treat x = d”
is deterministic and we rewrite € according to remark 4.3, the semantics for e simplify

to
[€](A) = {(5751) ‘ (5171, gLy ¢ A}

where f stands for case ¢ :d; 1:x; esac.

Our aim in this section is to show that the semantics of features given above coincides
with what SFI actually does. As indicated above, we write P + § for the result of
integrating ¢ into P. Thus, we aim to prove:

Lemma 4.5 Let 6 and € be as above, let P be an admissible SMV program.

1. If P is deadlock free? and next(x) does not occur in f, then [P + &] = [6]([P]).

2. If f and ¢ are deterministic and contain no occurrences of x and of the next()
operator, then [P + €] = [e]([P]).

%j.e., from each state in the denoted transition system there is at least one successor state.



Proof 1. We show (s,s") € [P+ 0] < (s,s") € [0]([P])-
Suppose s If ¢. Then

(s,8") € [P+ 6] < (s,8') € [P] by construction of P+
& (s,8) € [6](P)by def. of [6]([P])

Suppose s IF ¢, and suppose the assignment to next (x) is next(x) :=e. Let P’
be P without this assignment to next(x). Notice that s"L1#) = ¢/I71s57) gipce
s" and §" differ only in their value for x but next(z) does not occur in f.

(s,s") € [P+]

< (s,8") € [P]ASs(x)€ef](s,s) by construction of P + ¢
& 35", f; € det(f). ' = "V A (5 6") € [P]  (see next paragraph)

< (s,8") € [O]([P]) def. of [4]

The middle equivalence is justified as follows:

=. Since [P] is deadlock free, there is a successor state s” of s. Let s” = ', for
some v € [¢](s). Then, for some f; € det(f), s"L/15) = ¢ gince s'(z) € [f](s, ¢').
We have (s, s") € [P']. Toshow (s, s") € [P] it is sufficient to show that it satisfies
next(z) = e.

<. Suppose s” is as given. We easily obtain that (s,s') € [P'] and s'(x) €

[f1(s, ).

2. By remarks 4.3 and 4.4 we can assume that € has the form treat = = f. We know
that f is deterministic and contains no x or next(). Given an assignment next(x)
:= e, these restrictions ensure that e will not introduce a circular dependency in
this assignment.?

We first require the following
Lemma: If f is a deterministic expression, [e[](A N B) = [e](A) N [e](B).
Proof of lemma:
(s,8") € [e](A) N [e] (B)
(Fv € [f1(s) v € [FI()- (55, 57 ) € AN
(Fv € [f](s), 0" € [F1()- (2,87 ) € B)
(Fv € [fI(s), v € [F)(s). (55, 8'y) € AN B)

€T

=
<:> T

& (s,8) € [e](An B)

The second step relies on [f](s) being a singleton, i.e. on the determinism of f.

Now think of P as the set of its assignments. For each a € P we prove [a + €] =
[el([a])). Then, by definition of [P] and the lemma above,

(0PN = [ (Ia) = N Iel(lal) = (Y[a+ €] = [P+ <.

a€eP aeP a€eP

Let a be the assignment next(y) := e. We prove [a + €] = [¢]([a]).

31In fact, we can only prevent circular dependencies within one assignment. The next values of other
variables may depend on next(x), and vice versa; in such a case, the circular dependencies will extend
over more than one assignment.



This equality holds irrespective of whether f is deterministic or not. For simplic-
ity, however, we will make use of our hypothesis that f is deterministic and f
contains no next() operator.
la + €]

= [next(y) := e[f/x] [next(f)/next(z)]] def. of + ¢

= {(s,s’) s'(y) € [e|f/x] [next(f)/next(z)]](s, s’)} (assignment)

— {(5,5’) s'(y) € [e] ( [/1(s ’Efﬂ(sl)) } (corollary 3.8)

= {(5,5’) (sﬂlﬂ() ’m ) € [[a]]} (assignment)

= [el([a]) (remark 4.4)

O

Theorem 4.6 The feature constructs are syntax-invariant. Let P;, P, be programs
and 7 a feature (could be §-type or e-type). Then

[P] = [P,] implies [P, + 1] = [P + n].
Proof Immediate corollary of the lemma. O

Note, however, that [P,] = [P] is rather strong: it says P, P, denote the same
transition system, even on the non-reachable part.

4.1 Properties of the feature construct

Theorem 4.7 (Idempotence of feature addition)

1. The assignment to next(z) in P is next(z) := e, and both e and f and ¢ in the
feature & do not contain next(z), then [P + 6 + ] = [P + 4].

2. If 2 does not occur in the expressions ¢ and f, and ¢ and f do not contain next(),
then [P +e+¢| = [P +¢].

Proof 1. Similar to what we did with treat features, we rewrite d to “impose
next(z) := ¢”, where ¢ denotes the expression

case
1: e;
esac

We prove that [6]([6]([P])) = [([ ]%([[P]]).

Since ¢ does not mention next(z) we know that [c](s,s") = [c](s,s",) for any
v € type(x), thus



(s,5') € [I(ISIPD) & & = "1, (5,5") € [8](P)

T

T " nr
s 8= s”gcﬂ(s’s ), s = s’”gfﬂ(s’s ), (s,s") e P

& s = s”}ncﬂ(s’sm), (s,s")eP
& (s,8") € [0](P)

2. Again we assume that e has the form “treat x = f”. Let A = [P]. We prove
that e(e(A)) = e(A). We write § and & as a shorthand for sl/1®*) and ¢/I/165"),
respectively.

The first and second equivalences are obtained by rewriting; the third and the
fourth exploit the fact that x and next(x) do not occur in f. a

Finally, let us look at when features commute with each other. In general we do
not expect that features should commute. However, when they do, it implies a strong
form of non-interaction.

Consider the families of features

d; =if ¢; then impose next(z;) := f;
¢, =if ¢; then treat z; = f;
We explore when §; commutes with s, etc.
As usual we rule out features that may lead to circular assignments, i.e. for impose

features, f; must not refer to next(z;), and for treat features, f; must not refer to x; or
use next(). Also, for both types of features, ¢; must not contain next().

Theorem 4.8

1. P+ 614+ 09 = P+ 6y + 6, if 21,29 are distinct variables and ¢, does not use
next(xy) and vice versa.

2. P+61+¢6 = P4ey+06; if 29 does not occur in ¢, x1 and x5 are distinct variables,
and z; does not occur in f; or ¢,.

3. Pt+e+e=P+e+eif:

e 11,1, are distinct variables, and
e 1; does not occur in ¢y or fy, and

e 1, does not occur in ¢ or fi;
Proof For the proof we again assume the simple form of treat features.
Note that
S W ¢ia (Sat) €A
sk ¢y, t =G (5 ) € A

where we use the notation: in square brackets, comma means and, and vertical juxta-
position means or; and

(s,t) € [6](A) &

(5,1) € [l (A4) & (sH1¢), 2110 € A



1. Expanding [6:]([02](A)), we see that

(s,5") € [0 ]([0:](A4)) &
s IE =gy A o, (s,s’) €A
sIF=gi A gy, s=1tL100 (51 eA
s IF ¢y A =y, s—t[mﬂ( D (s,t') € A
¢ Lf20(s.0)
slgy Ay, 5= (tLLIEMIMIEETT0 1 i e 4

If z; and x5 are distinct, and [f;](s, ) does not depend on t(zy) and, symmetri-
cally, [f2](s,t) is independent of ¢(z), then

5 112100y

s ¢1F11Gs:0)
(T e,

s,t s,t) __ s,t s,t) __ S,t ﬂfzﬂ( sla
— (t&éﬂ( ))£{1ﬂ( ) — (t£{1ﬂ( ))££2H( ) — (t:[LJ:lﬂ( ))Iz 1

2. Expanding [§;]([e2](A)), obtain

sl =gy, (siA6) LRIy ¢ 4
[

I(s) I f20(¢)
) e A

(s,t) € [6:1]([e2](A)) & [ slF gy, t= t’gflﬂ(s’t'), (st

Expanding [eo]([01](A)), we get

s - _|¢/]7 (S[[f2ﬂ() t[[f2ﬂ ) c A

(5:7) € [eo]([21](A)) & [ siF g, IO _ plnle) (LRI py ¢ 4

where ¢} stands for ¢1[fy/xzs][next(fy)/next(zs)].
¢1 holds for the same states in both cases if x5 does not occur in ¢;. Now, if
1 # w9 and x; does not occur in fy, the last line is equivalent to

[ fo/ma), t = IO (GLEIs) pIRNE)Y ¢ g,

3. Expanding [e1]([e2](A)) and [es]([e1](A)) we see that

= [If1]]( s) ) = IEARICY
(S,t) € HGIH([[EQH(A)) o ((ngr]]())ﬂfz[fl/ 1]](sz ) (tgjr]](t))glgz[fl/ 1]](tay )) c A

and

(112100

z [If2]]( s) o] (¢
(S,t) c [[€2ﬂ([[61ﬂ(A)) o ((qgizﬂ( ))[f1[f2/ 2]](sz )’ (fgizﬂ(t))gjfl[h/ 2](tz, ) cA

Here we have used the the substitution lemma (lemma 3.8) in the form
[£D(s57) = Ll fi /2 ]1(5):

Comparing € (e2(A)) with ex(e1(A)), we see that they are equal provided the
syntactic substitutions have no effect, i.e. there are no occurrences of z; in fy,
or of x5 in f;. The same condition also ensures that f; does not depend on x;

and f; not on zy, so that [[fQ[fl/xl]ﬂ(S%H ) = [falfi/x:1]l(s)) = [f2]l(s), and

symmetrically.



5 Conclusions

The experimental results of [8] are enhanced with theoretical results showing:

e that, with an appropriate notion of equivalence between SMV programs, features
are insensitive to the syntax of the underlying program; and

e circumstances in which features are idempotent and commute.

These results will prove to be helpful to the model checking process. In our case
study of the phone system, we quickly found that with the addition of features the
system quickly grew too large to verify. The results in this paper suggest that some
results can be obtained purely by analysis of the features, rather than by model checking
the extended system. For example, theorems 4.7 and 4.8 allow us to reduce the number
of feature combinations that need to be checked. In the future, we hope to show that
it is sufficient to check the feature with an abstract version of the base system to prove
a property of the full system with the feature.
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