
De�ning Features for CSP:Reetions on the Feature Interation ContestMalte Plath1 and Mark Dermot Ryan1Shool of Computer Siene, University of Birmingham, Edgbaston, BirminghamB15 2TT, England. mp,mdr�s.bham.a.uk1 IntrodutionThe seond Feature Interation Contest was held in onjuntion with the 6thInternational Workshop on Feature Interations in Teleommuniation andSoftware Systems (FIW'00) [1℄. The aim of the ontest was to ompare variousmethods and tools for deteting feature interations. To enable a omparison,the ontest's objetive was to detet interations among a given set of featuresfor a given telephone system. The ontest instrutions ontained detailed(albeit impreise) spei�ations of the base system and twelve features.In this paper we desribe how we takled the ontest and the experieneswe had in the proess. In the following two setions we briey desribe howthe ontest was set out and what impliations that had for deteting featureinterations. We then detail the methods we used and the results we obtainedbefore summing up our experienes in setion 7.We used a ombination of two tehniques: stati (syntati) analysis andmodel heking using the model heker FDR [5℄. While we had initiallyplanned to integrate the features into the base system and then to detetinterations by model heking, it beame lear very quikly that a simplesyntati analysis of the features was suÆient to detet a large proportion ofthe interations. Hene, in this paper, we �rst desribe this syntati method(setion 4), before showing how we used model heking to �nd more in-terations (setion 5). Finally, we give an overview of the full results of ouranalysis in setion 5.4; a omplete and detailed desription of the results anbe found in [4℄.We are delighted to report that our entry won the ontest in the ategoryof two-feature interations. For a summary of the results produed by eahof the ontestants, see [2℄.2 The Contest ModelThe base system for the ontest is a model of the plain old telephone ser-vie (POTS) given as a labelled transition diagram (Figure 1) for a singletelephone line (basi all model, BCM) and a desription of the network ar-hiteture, a simple star network, with a single swith relaying information

2Platha
ndRyan

BUSY

BUSYBUSY

BUSYBUSY

BUSY

BUSY

BUSY

BUSY

t_busy
status
BC 9

o_off-
hook
BC 2

idle
BC 1

o_dial-
tone
BC 3

o_wait
for

onhook
BC 8

o_dialed
BC 4

o_busy?
BC 5

o_con-
nected
BC 7

(i_alert, A, B, -)

(offhook, A, A, -);
(billing_offhook, A, A,time)

(dial_tone, A, A, -)

(dial, A, A, number(B))

(onhook, A, A, -) ;
(billing_onhook, A, A,time)

(o_alert, A, B, -)

(i_connect, B, A, -) ;
(billing_start, A, B, time);

(connect, A, A, -)

(i_timeout, B, A, -) ;
(timeout_tone, A, A, -)

(i_disconnect, A, B, -);
(disconnect_tone, B, B, -)

(onhook, B, B, -);
(billing_stop, A, B, time);

(billing_onhook, B, B,time);
(o_disconnect, B, A, -)

(o_timeout, B, A, -);
(stopalert, B, B, -)

(onhook,A, A, -);
(billing_onhook, A, A,time)

(offhook, B, B, -) ;
(billing_offhook, B, B,time),

(o_connect, B, A, -)

o_wait
for

answer
BC 6

(i_free, B, A, -);
(ringtone, A, A, -)

(i_busy, B, A, -);
(busytone, A, A, -)

(onhook, A, A, -);
(billing_onhook, A, A,

time);
(o_stopalert, A, B, -)

t_alerted
BC 10

(i_stopalert, A, B, -) ;
(stopalert, B, B, -)

(o_free, B, A, -);
(alert, B, B, -)

(onhook,A, A, -);
(billing_onhook, A, A,time);

(o_stop_alert, A, B, -)

BUSY

(i_alert, C, id, -) ;
(o_busy, id, C, -)

is a macro for:

where id is either A
or B depending on
the side of the call

receiving the i_alert

BUSY

t_con-
nected
BC 11

(i_disconnect, B, A, -);
(disconnect_tone, A, A, -)

BUSY
t_wait

for
onhook
BC 12

(onhook, B, B, -);
(billing_onhook, B, B,time) (onhook, A, A, -);

(billing_stop, A, B, time);
(billing_onhook, A, A, time);

(o_disconnect, A, B, -);

(onhook,A, A, -);
(billing_onhook, A, A, time)

(onhook,A, A,);
(billing_onhook,

A, A, time)

(i_busy, A, C, -)

(i_stopalert, A, B, -)

Fig. 1. The Basi Call Model [3℄

De�ning Features for CSP 3between lines, and a billing database, of whih no details are given in theontest instrutions [3℄.Most transitions are labelled with multiple messages, some of whih de-note loal events, suh as user input or signals to the user, others stand formessages sent to or reeived from other phones in the network; �nally, thereare billing messages.
BUSY

BUSY

alerted
TCS 1

(i_alert, A, B, -)

BC 5

announc
ement
TCS 2

(i_inform, B, A, "screened")

(announce, A, A, "screened")

BC 8

SUBSCRIBER EVERYONE

BC 1

(o_inform, B, A, "screened")

BC 9

tau

BUSY

(i_alert, C, id, -) ;
(o_busy, id, C, -)

is a macro for:Fig. 2. Feature Terminating Call Sreening [3℄The features, too, are given as labelled transition diagrams, with someBCM states and (usually) several new states (feature states). Feature inte-gration is de�ned by adding or replaing, for a given basi all state, thetransitions whih are given in the feature de�nition. Here, a transition isreplaed if the feature's transition has the same triggering event as the orre-sponding transition in the basi all; otherwise it is added. In the diagram forthe feature Terminating Call Sreening (Figure 2), for example, the transitionfrom the idle state to BC9 of the basi all is replaed by the left diagram(for the subsriber), while in all basi all proesses a new transition is addedto the state BC5 (\o busy?"). This transition is labelled with the message(i inform,B,A,\sreened") and leads to the new state TCS2.The ontest omprised the following features:

4 Plath and RyanCFB Call Forward on Busy { divert alls when the line is busyCNDB Calling Number Delivery Bloking { do not display the aller's num-ber to the alleeCT Call Transfer { transfer an ative all to another telephoneCW Call Waiting { allow subsriber to take a seond all and swith between�rst and seond allGR Group Ringing { make three telephones ring for an inoming all to oneof them, stop the ringing when one of them is answeredRBWF Ring Bak When Free { ring bak allers that got the busy tone(also known as Automati Call Bak)RC Reverse Charging { allee pays for allSB Split Billing { allee pays part of the allTCS Terminating Call Sreening { blok alls from ertain phones to thesubsriber's phoneTL TeenLine { a PIN must be entered before alls an be madeTWC Three-Way Calling { allow the subsriber to initiate a seond all andlet all three parties talk with eah other (also known as Conferene Call)VM Voie Mail { allers an leave a message if the phone is not answered(also known as CallMinder)3 ObservationsAnalysing the feature de�nitions, we realized that the model given in theontest instrutions was extremely prone to interations. With a little pra-tie we ould antiipate many interations by just looking at the features'diagrams. To explain how this worked, we lassify interations aording totheir auses:1. one feature overrides trigger of the other feature (e.g. TCS & GR)2. one feature bypasses trigger of the other feature (e.g. TCS & CW)3. one feature sends a message that the other feature annot proess (e.g.TCS& TWC)4. other auses (e.g. TCS & RBWF, RC & RBWF)In the �rst two ases one of the features is not invoked when it shouldbe; in the latter two, both features are ative but interfere with eah otherin some way.Interations of type 1 are the easiest to detet: both features are triggeredin the same (basi all) state by the same event. Due to the method of featureintegration, the feature integrated later overwrites the transition introduedor altered by the earlier one. Interations are usually serious beause theyare due to some fundamental inompatibility. In this ase the interation anonly be resolved by limiting or re�ning the behaviour of one or both features.Type 2 interations are also not hard to reognize. Whenever a triggeringmessage for one feature an our in a feature state of another feature, this

De�ning Features for CSP 5may lead to the former feature not being invoked even though it should. Inthe ontest, all interations of this type ourred beause of the method offeature integration, and ould learly be avoided by a design that did notput so muh emphasis on states. It is very likely that some of the type 2interations would then beome type 4 interations, i.e. the type 2 onitindiated a serious interation but for trivial reasons.Interations of the third type our when a feature introdues a newmessage to the system, whih may be reeived in a feature state of anotherfeature. Sine only basi all states are altered to be able to handle the newmessage, a feature on the reeiving end will not be able to handle the newmessage. For these interations, the same observations hold as for type 2: ina better, feature-oriented arhiteture, they would not our.The remaining interations (type 4) are partiularly interesting from thepoint of view of feature interation detetion. They indiate deeper problemsin the way that features a�et proessing and distribution of information inthe telephone network. There are no generi tests to detet suh interations,however they violate some `sensible assumptions' about the working of thesystem. Furthermore, they only surfae in the atual exeution of the system,so they are not amenable to stati analysis methods, suh as proposed in thefollowing setion.4 Stati AnalysisThe observations above prompted us to look for syntati riteria to detetthe �rst three lasses of interations. We introdue the following notation.Let S be the set of all states (both basi all and all possible featurestates), and E the set of all events (messages). To simplify the presentationwe omit the subsriber parameters unless absolutely neessary.1 Feature n isdenoted by Fn; Sys may be a feature, or the Basi Call possibly augmentedwith a number of features.Trans(Sys) � S �E one pair (s; e) for eah transition in Sys, suh thatin state s, event e ommenes the transitionTriggers(Fn) � S �E the basi all states in whih the Fn an be trig-gered, with the orresponding triggering eventMsgs(Sys) � E all i xxx and o xxx messages that appear on tran-sitions of Sys (ignoring the pre�xes \o " and \i ")Note that Msgs(Sys) ontains information about all transitions, whileTriggers(Fn) only reords the new or altered transitions from basi all statesintrodued by Fn. Let �(s; e) = s and "(s; e) = e denote the projetions ontothe �rst and seond omponent, i.e. states and events, respetively.1 To be fully orret, one would need to take aount of several variables, at leastsubsriber and partner, for eah state.

6 Plath and RyanExample 1. For the Terminating Call Sreening feature we have:Trans(TCS) = f(BC1; i alert); (BC5; i inform);(TCS1; i alert); (TCS1; o inform); (TCS1; tau);(TCS2; announe); (TCS2; i alert)gandTriggers(TCS) = f(BC5; i inform); (BC1; i alert)g4.1 InterationsWith this notation, the following riteria haraterise the �rst three lassesof interations given on page 4.1. Later feature overrides earlier one:9 (s; e) 2 Triggers(F1) \ Triggers(F2)2. One feature bypasses a trigger of another feature:9 e 2 "(Triggers(F1)) \ "(Trans(F2) nTriggers(F2))3. F1 may send a message whih F2 annot handle (\Message not under-stood"):9 e 2 Msgs(F1) nMsgs(F2)These riteria will ag some potential interations that annot our dur-ing normal exeution of the featured system. In our experiene with theontest model, however, they were quite aurate.It is important to note that these riteria point to auses for interations.There may be more than one atual, observable interation for the same eventor state-event pair satisfying one of the riteria.Example 2. Sine the Group Ringing feature, like TCS, is also triggered byan \i alert" message in state BC1, we get a type 1 interation:Triggers(TCS) \ Triggers(GR) = f(BCi; i alert)gThus we an onlude, when TCS and GR are added to the same subsriber'stelephone, whihever feature is added later will disable the earlier one, sineit will override the triggers for the feature added earlier.Furthermore we also get a type 3 interation, sineo inform 2 Msgs(TCS) but i inform =2 Msgs(GR).Note that a message \o xxx" beomes \i xxx" for the reeiving phone, henethe third riterion says, if there is a situation in whih the TCS featuresends an \o notify" while the other phone is in an GR feature state, thenthat message annot be proessed (by the GR feature), leading to unde�nedbehaviour. As our method stands at the moment, it is up to the user to hekwhether suh a situation an atually arise. With these two features, theinteration an happen, in the following senario. Assume that subsriber Ahas GR, and B and C are in the `group'. If, for example B subsribes to TCS

De�ning Features for CSP 7and has A on its sreening list, then a all to A will result in an i alert fromA to B, whih B will answer with (o inform,B,A,\sreened"). At this point Awill be in a state introdued by Group Ringing, and will not be able to dealwith that message.Roughly 90% of the interations we deteted were disovered by applyingthese simple riteria. Yet, the interesting interations are those that are notdeteted by these tests. The way that the ontest model was set up, therewere very few of these `triky' interations, sine most features lashed quitebadly on the simple riteria. Assuming a good software engineering approah,though, whih would take aount of the `easy' interations and aim to avoidthem in the �rst plae, the `triky' ones, i.e. those not deteted by our syn-tati riteria, beome ruial. At this point, simulation, testing and modelheking ome into their own again, beause the interations that annoteasily be deteted by syntati riteria are likely to show up only in longerruns of the system.5 Modelling the system in CSP5.1 A Network of Basi Call ProessesModelling a single basi all in CSP is very simple: the states beome CSPproesses and all messages beome events, the send and reeive operations �tvery niely. A transition with multiple messages is split up into a sequeneof events.The problems start, however, when one omposes several suh basi allproesses into a network. Now, the di�erent proesses may `de-synhronize'sine there is nothing to enfore the atomiity of the transitions in the dia-gram. Hene one line ould embark on a transition if this was triggered bya loal event and thereby prevent another line from sending a message toit. In other words, the naive, literal translation from the ontest instrutionsallowed some internal hoie between transitions that need to synhronizewith other transitions, leading to possible deadloks.It turned out, though, that this problem was not too hard to solve: it wasneessary to reorder the events labelling eah transition, so that all externalommuniation events ame �rst on the respetive transitions. Eventually,all transitions started with one input or output event, if they ontained oneat all, followed by only internal (loal) events.2 In CSP terms this meanto�ering all events that the line proesses had to synhronize on in externalhoie onstruts.2 For some features this meant introduing extra states and transitions, sine someof them used multiple send operations in one transition.

8 Plath and Ryan
−−
−− Feature Terminating Call Screening
−−
−− This is designed for a maximum of four phones: any phone above C
−− gets $TCSSetD as its screening set (only relevant if in subscriber
−− set $TCSSubs).
−−
$TCSSubs = {C}
$TCSSetA = {}
$TCSSetB = {}
$TCSSetC = {A}
$TCSSetD = {}

screen(A) = $TCSSetA
screen(B) = $TCSSetB
screen(C) = $TCSSetC
screen(_) = $TCSSetD

BCM(state:{idle},x,x) += if member(x,$TCSSubs)
then i.m_alert?y:Lx({x})!x!none −> TCS1(x,y)
else BCM(idle,x,x)

TCS1(x,y) = (if member(y,screen(x))
 then o.m_inform.x.y.screened −> BCM(idle,x,x)
 else BCM(t_busys,x,y))
 [] i.m_alert?z:Lx(x)!x!none −> o.m_busy.x.z.none −> TCS1(x,y)

BCM(state:{o_busyp},x,y) += i.m_inform.y.x.screened −> TCS2(x,y)

TCS2(x,y) = announce.x.tcs −> BCM(o_wait_onhook,x,y)
 [] i.m_alert?z:Lx(x)!x!none −> o.m_busy.x.z.none −> TCS2(x,y)

−− end of feature −−BCM(state,subsriber,partner) denotes a basi all state,$TCSSubs is the set of subsribers to TCS (a parameter of the feature),$TCSSetA through $TCSSetD represent the sreening lists of the respetivesubsribers (feature parameters).Fig. 3. CSPFCM ode for Terminating Call Sreening5.2 A Feature Construt for CSPTo automate feature integration we extended the CSPM syntax with a sim-ple feature onstrut for the textual representation of the feature diagrams.(CSPM is the subset of CSP aepted by the FDR tool.) We will denote theextended language by CSPFCM .A feature de�nition may ontain any number of standard CSPM def-initions. These will simply be added to the base system, and the user isresponsible for avoiding name lashes (re-de�nitions).On top of plain CSPM , there are two new onstruts:� Transitions an be added or replaed by means of speial de�nitions withthe following syntax:proess(p1; : : : ; pn) += new de�nition

De�ning Features for CSP 9where proess is a proess name from the base �le. The atual parametersan be `aptured' and are referred to by p1; : : : ; pn in the new de�nition.It is also possible to restrit the range of parameters in ertain ases.3� Feature variables or parameters an be de�ned. Any name pre�xed with $is interpreted as a feature variable. Suh variables an be assigned valuesin the feature �le or on the ommand line when invoking the integrator(see below). All (non-de�ning) referenes in the feature �le are textuallyreplaed by the value thus given.5.3 Feature IntegrationWe wrote a Python sript (whih we all the \feature integrator") whihombines a feature de�nition (written in CSPFCM) and a base system in aCSPM �le and produe a new CSPM �le de�ning the featured system. Fea-tures may be parametrized, and the feature integrator allows us to set valuesfor the parameters at integrate time, overriding any default values given inthe feature de�nition.The urrent prototype relies quite heavily on syntati onventions in ourPOTS model, e.g. += de�nitions only work for BCM states and the number ofparameters is �xed. On the other hand this enabled us to substitute sensibledefaults for the `don't are' plae holder (_).After integrating a feature, the resulting CSPM �le an be used as thebase �le for further feature integrations or, of ourse, be analysed usingProBE and Fdr2 4 [5℄.5.4 Deteting InterationsTo detet feature interations in the CSPM model, we applied several teh-niques.First we used Fdr2 to hek the featured systems for deadlok. Obviouslythe telephone system should never deadlok { it must always be possible forevery line to get bak to the initial state. However, sine we were working on asystem with four phones, we ould not detet loal deadloks, i.e. situationsin whih one or more phones had no more enabled transitions but wherethere was at least one whih ould still move { even if that only meant goingo�hook and onhook repeatedly. If Fdr2 allowed the user to impose fairnessonstraints, suh situations ould be deteted.Seondly, we explored the behaviour of the system using ProBE, to testif the featured system ould behave in the intended way. ProBE allows theuser at every step to hoose one of the enabled events and thus to simulate a3 This is rather an ad ho solution to deal with the spei� form our POTS modeltakes.4 www.formal.demon.o.uk/FDR2.html

10 Plath and Ryanrun of the system. Hene it annot be used to verify the absene of undesirablebehaviour.This is where Fdr2 omes in again. While the previous two tehniques aremainly for debugging, Fdr2 an explore all possible exeutions of a system.The entral method used for this is re�nement heking in one of three mod-els.5 However, sine features both add and remove behaviours, re�nement isnot suh a useful notion.Instead we oded desirable or undesirable patterns of behaviour as ob-server proesses and omposed them with the system in question, synhro-nising on the events that were relevant for the behaviour we wanted to testfor. The observer proesses were designed in suh a way that the presene ofthe behaviours they represented lead to a deadlok in the omposite system.This allowed for exhaustive heking of properties.5.5 LimitationsThe expressive power of observer proesses in CSP is rather weak. Unlike`never laims' in Spin/Promela, whih uses B�uhi automata to deal within�nite behaviours (e.g. liveness properties, in general reognition of !-regulartraes), observer proesses in CSP an only be used to detet the presene of�nite traes.As with Spin, some observer proesses led to a huge blow-up in the statespae, whih made it impossible to verify the properties.6Another drawbak of using observer proesses is that they need to beoded by hand whih is a rather error-prone proedure. Contrast this withexpressing a property in temporal logi, with subsequent automati transla-tion to the orresponding B�uhi automaton.This list of drawbaks might give the impression that the model-hekingapproah is deeply awed. However, we would like to point out that thefat that a simple stati analysis deteted suh a large proportion of thefeature interations hinged on the spei� model the ontest de�ned. Also,the expressiveness of model-heking languages varies greatly, with regards toboth the desription of models and the properties that an be heked. Indeedwe would argue that model heking is still an invaluable tool in proving theabsene of unwanted behaviour, and in �nding deep errors.6 Feature InterationsA full list of the (two-way) interations we deteted among the twelve fea-tures of the ontest, with explanations an be found in [4℄. Table 1 may givean impression of the sheer number of interations that we found. We onlyelaborate on a small seletion here.5 Traes, failures and failures-divergene model.6 : : : at least with the omputing resoures available to us.

De�ningFeaturesforCSP11

CFB CNDB CW RBWF RC SB TCS TL TWC VM CT GRCFB �� { { { { { { { { { { {CNDB �� { { { { { { { { { {CW �� � � { { { { { { { { {RBWF ����� �� ��� � { { { { { { { {RC �� �� { { { { { { {SB �� �� � { { { { { {TCS � � � ��� { { { { {TL � �� � { { { {TWC ��� � ��� ���� � � � � { { {VM � �� �� � � � �� � { {CT ���� � ��� ���� � � �� �� ��� �� �� {GR �� � ��� ��� � � �� �� �� �� �Eah � in the table stands for a distint interation.We did not distinguish feature ombinations by the order of feature integration, hene the top right half of the tableis not used. Table 1. Feature Interations Phase 1

12 Plath and Ryan� TCS & GR: Both features are triggered by an inoming alert message inthe idle state (type 1 interation). Therefore they annot both be ativeon the same line.� TCS & CW:When the a subsriber of Call Waiting is in a all, furtherinoming alls (i alert message) are not sreened, sine TCS is triggeredonly in the idle state; this is a type 2 interation.� TCS & TWC: A typial type 3 interation ours beause Terminat-ing Call Sreening introdues a new message (i inform). All lines in thenetwork are upgraded so that they an deal with this new message, butonly in BC states. So if someone uses Three Way Calling to all a CallSreening subsriber, an `i inform' message from that line to the (TWC)aller annot be proessed by the TWC feature.� RBWF & RC: Ring Bak When Free initiates the ring-bak without adial message, therefore Reverse Charging will not be triggered. This is atype 4 interation, however, if the Ring Bak feature were rede�ned touse the dial message, we would still get an interation, namely of type 2.7 ConlusionsTaking part in the ontest was fun, but also quite exasperating at times, dueto ambiguities in the ontest instrutions and bugs in the spei�ations ofPOTS and the features. We spent a lot of time on getting our model to workat all { many problems were synhronisation problems and mismathes ofsending and reeiving, i.e. bugs in the protool.The veri�ation task was made diÆult by the lak of a lear desriptionof what was onsidered inorret or undesirable behaviour on the one hand,by ertain shortomings of the model heker Fdr2 on the other. The formeris probably quite realisti, beause at spei�ation time, the requirements areoften not �xed, and only in the proess of \playing with the system" does onedisover ontraditory requirements, or additional assumptions that need tohold.We faed the usual problems of underspei�ation and ambiguity whendealing with a natural language desription. For example, what onstituteda orret billing reord was not stated. The CNDB feature relied on someinternal bookkeeping in the swith, whih was never made expliit. However,to assess the e�ets of `anonymous' messages, one needs to make assumptionsabout the apabilities of the swith in this respet. It is unlikely that all on-testants will make the same assumptions, hene it beomes almost impossibleto ompare their results about this feature.While the suess of the syntati method desribed in setion 4 seemsto ast doubt on the value of model heking for the detetion of featureinterations, we would not have reahed an `implementation' of POTS andthe features without the aid of model heking. If ProBE and Fdr2 hadbeen nothing more than debugging aids in the development of our system,

De�ning Features for CSP 13they would have been invaluable in getting the system right, and moreovergaining a good understanding of it.Furthermore, we believe that the syntati method aptures mainly the`obvious' interations. One these are out of the way, one needs a way to�nd those interations that an result, e.g. from di�erent interpretations ofthe same data in di�erent features. These interations may result in strangebehaviour or simply in the violation of invariants, but this will only beomevisible in runs of the system (model).Aknowledgments. Thanks to anonymous referees for helping us to improvethe paper. Finanial support from the EU through Esprit working groupsFIREworks (23531), and from British Teleom is gratefully aknowledged.Referenes1. M. Calder and E. Magill, editors. Feature Interations in Teleommuniationsand Software Systems VI. IOS Press, 2000.2. M. Kolberg, E. Magill, D. Marples, and S. Rei�. Results of the seond featureinteration ontest. In Calder and Magill [1℄, pages 311{325.3. M. Kolberg, E. Magill, D. Marples, and S. Rei�. Seond feature interationontest. In Calder and Magill [1℄, pages 293{310.4. M. C. Plath and M. D. Ryan. Entry for FIW'00 Feature Interation Contest.Tehnial report, Shool of Computer Siene, University of Birmingham, Febru-ary 2000. Available from ftp://ftp.s.bham.a.uk/pub/authors/M.D.Ryan/00-fiw-ontest.ps.gz.5. A. W. Rosoe. The Theory and Pratie of Conurreny. Prentie Hall, 1999.

