Defining Features for CSP:
Reflections on the Feature Interaction Contest

Malte Plath! and Mark Dermot Ryan!

School of Computer Science, University of Birmingham, Edgbaston, Birmingham
B15 2TT, England. mcp,mdr@cs.bham.ac.uk

1 Introduction

The second Feature Interaction Contest was held in conjunction with the 6th
International Workshop on Feature Interactions in Telecommunication and
Software Systems (FIW’00) [1]. The aim of the contest was to compare various
methods and tools for detecting feature interactions. To enable a comparison,
the contest’s objective was to detect interactions among a given set of features
for a given telephone system. The contest instructions contained detailed
(albeit imprecise) specifications of the base system and twelve features.

In this paper we describe how we tackled the contest and the experiences
we had in the process. In the following two sections we briefly describe how
the contest was set out and what implications that had for detecting feature
interactions. We then detail the methods we used and the results we obtained
before summing up our experiences in section 7.

We used a combination of two techniques: static (syntactic) analysis and
model checking using the model checker FDR [5]. While we had initially
planned to integrate the features into the base system and then to detect
interactions by model checking, it became clear very quickly that a simple
syntactic analysis of the features was sufficient to detect a large proportion of
the interactions. Hence, in this paper, we first describe this syntactic method
(section 4), before showing how we used model checking to find more in-
teractions (section 5). Finally, we give an overview of the full results of our
analysis in section 5.4; a complete and detailed description of the results can
be found in [4].

We are delighted to report that our entry won the contest in the category
of two-feature interactions. For a summary of the results produced by each
of the contestants, see [2].

2 The Contest Model

The base system for the contest is a model of the plain old telephone ser-
vice (POTS) given as a labelled transition diagram (Figure 1) for a single
telephone line (basic call model, BCM) and a description of the network ar-
chitecture, a simple star network, with a single switch relaying information

Plath and Ryan

2

BUSY

(offhook, B, B, -) ;
(billing_offhook, B, B,time),
(o_connect, B, A, -)

t_alerted

BC 10

(o_free, B, A, -);
(alert, B, B, -)

(i_disconnect, A, B, -);
(disconnect_tone, B, B, -)

BUSY

(i_stopalert, A, B,-) ;
(stopalert, B, B, -)

t_wait

(i_stopalert, A, B, -)

" (onhook, B, B, -);
(ialert, A, B,) (billing_stop, A, B, time); for
(billing_onhook, B, B,time); onhook
BC 12

(o_disconnect, B, A, -)

Usy

(stgpalert, B, B, -)

(onhook, B, B, -);
(billing_onhook, B, B,time) (onhook, A, A, -);
(billing_stop, A, B, time);
(billing_onhook, A, A, time);
(o_disconnect, A, B, -);

(i_connect, B, A, -) ;
(billing_start, A, B, time);
(connect, A, A, -)

(i_disconnect, B, A, -);
(disconnect_tone, A, A, -)

(onhook, A, A, -) ;

(offhook, A, A, -);
(billing_onhook, A, A time)

(billing_offhook, A, A time) BUSY

o_wait
for
answer
BC6

(i_timeout, B, A, -) ;
(timeout_tone, A, A, -)

(onhook,A, A,);
[(billing_onhook,
A, A, time)

(i_free, B, A, -);
(ringtone, A, A, -)

(i_busy, B, A, -);

(busytone, A, A, -)

(dial_tone, A, A, -)

(dial, A, A, number(B))

(onhook,A, A, -);
(billing_onhook, A, Atime);
(o_stop_alert, A, B, -)

v

(onhook,A, A, -);

(onhook,A, A, -);
(billing_onhook, A, A time)

(billing_onhook, A, A, time)

BUSY ——»

is a macro for:

o (i_alert, C, id, -) ;4»
(o_busy, id, C, -)
where id is either A
or B depending on
the side of the call
receiving the i_alert

(onhook, A, A, -);
(blll\ngiorv\hoo.k, A A,
time);
(o_stopalert, A, B, -)

Fig. 1. The Basic Call Model [3]

Defining Features for CSP 3

between lines, and a billing database, of which no details are given in the
contest instructions [3].

Most transitions are labelled with multiple messages, some of which de-
note local events, such as user input or signals to the user, others stand for
messages sent to or received from other phones in the network; finally, there
are billing messages.

SUBSCRIBER EVERYONE

(i_inform, B, A,"screened")

i_alert, A, B .
&) (o_inform, B, A, "screened")

alerted
TCS1

(announce, A, A, "screened")

BUSY ——»

is a macro for:

_ (i_alert, C,id, -) e

(o_busy, id, C, -)

Fig. 2. Feature Terminating Call Screening [3]

The features, too, are given as labelled transition diagrams, with some
BCM states and (usually) several new states (feature states). Feature inte-
gration is defined by adding or replacing, for a given basic call state, the
transitions which are given in the feature definition. Here, a transition is
replaced if the feature’s transition has the same triggering event as the corre-
sponding transition in the basic call; otherwise it is added. In the diagram for
the feature Terminating Call Screening (Figure 2), for example, the transition
from the idle state to BC9 of the basic call is replaced by the left diagram
(for the subscriber), while in all basic call processes a new transition is added
to the state BC5 (“o_busy?”). This transition is labelled with the message
(i-inform,B,A, “screened”) and leads to the new state TCS2.

The contest comprised the following features:

4 Plath and Ryan

CFB Call Forward on Busy divert calls when the line is busy

CNDB Calling Number Delivery Blocking — do not display the caller’s num-
ber to the callee

CT Call Transfer — transfer an active call to another telephone

CW C(all Waiting allow subscriber to take a second call and switch between
first and second call

GR Group Ringing make three telephones ring for an incoming call to one
of them, stop the ringing when one of them is answered

RBWF Ring Back When Free ring back callers that got the busy tone
(also known as Automatic Call Back)

RC Reverse Charging callee pays for call

SB Split Billing — callee pays part of the call

TCS Terminating Call Screening — block calls from certain phones to the
subscriber’s phone

TL TeenLine — a PIN must be entered before calls can be made

TWC Three-Way Calling allow the subscriber to initiate a second call and
let all three parties talk with each other (also known as Conference Call)

VM Voice Mail callers can leave a message if the phone is not answered
(also known as CallMinder)

3 Observations

Analysing the feature definitions, we realized that the model given in the
contest instructions was extremely prone to interactions. With a little prac-
tice we could anticipate many interactions by just looking at the features’
diagrams. To explain how this worked, we classify interactions according to
their causes:

1. one feature overrides trigger of the other feature (e.g. TCS & GR)

2. one feature bypasses trigger of the other feature (e.g. TCS & CW)

3. one feature sends a message that the other feature cannot process (e.g.
TCS& TWC)

4. other causes (e.g. TCS & RBWF, RC & RBWF)

In the first two cases one of the features is not invoked when it should
be; in the latter two, both features are active but interfere with each other
in some way.

Interactions of type 1 are the easiest to detect: both features are triggered
in the same (basic call) state by the same event. Due to the method of feature
integration, the feature integrated later overwrites the transition introduced
or altered by the earlier one. Interactions are usually serious because they
are due to some fundamental incompatibility. In this case the interaction can
only be resolved by limiting or refining the behaviour of one or both features.

Type 2 interactions are also not hard to recognize. Whenever a triggering
message for one feature can occur in a feature state of another feature, this

Defining Features for CSP 5

may lead to the former feature not being invoked even though it should. In
the contest, all interactions of this type occurred because of the method of
feature integration, and could clearly be avoided by a design that did not
put so much emphasis on states. It is very likely that some of the type 2
interactions would then become type 4 interactions, i.e. the type 2 conflict
indicated a serious interaction but for trivial reasons.

Interactions of the third type occur when a feature introduces a new
message to the system, which may be received in a feature state of another
feature. Since only basic call states are altered to be able to handle the new
message, a feature on the receiving end will not be able to handle the new
message. For these interactions, the same observations hold as for type 2: in
a better, feature-oriented architecture, they would not occur.

The remaining interactions (type 4) are particularly interesting from the
point of view of feature interaction detection. They indicate deeper problems
in the way that features affect processing and distribution of information in
the telephone network. There are no generic tests to detect such interactions,
however they violate some ‘sensible assumptions’ about the working of the
system. Furthermore, they only surface in the actual execution of the system,
so they are not amenable to static analysis methods, such as proposed in the
following section.

4 Static Analysis

The observations above prompted us to look for syntactic criteria to detect
the first three classes of interactions. We introduce the following notation.
Let S be the set of all states (both basic call and all possible feature
states), and E the set of all events (messages). To simplify the presentation
we omit the subscriber parameters unless absolutely necessary.! Feature n is
denoted by Fj,; Sys may be a feature, or the Basic Call possibly augmented

with a number of features.

Trans(Sys) C S x E one pair (s, e) for each transition in Sys, such that
in state s, event e commences the transition

Triggers(F,) C S x E the basic call states in which the F,, can be trig-
gered, with the corresponding triggering event

Msgs(Sys) C E all i_xxx and o_xxx messages that appear on tran-
sitions of Sys (ignoring the prefixes “o_” and “i_”)

Note that Msgs(Sys) contains information about all transitions, while
Triggers(F),) only records the new or altered transitions from basic call states
introduced by F),. Let o(s,e) = s and £(s, e) = e denote the projections onto
the first and second component, i.e. states and events, respectively.

! To be fully correct, one would need to take account of several variables, at least
subscriber and partner, for each state.

6 Plath and Ryan

Example 1. For the Terminating Call Screening feature we have:

Trans(TCS) = {(BC1,i.alert), (BC5,i_inform),

3

(TCS1,i-alert), (TCS1, o_inform), (TCS1, tau),

(TCS2, announce), (TCS2,i_alert)}
and
Triggers(TCS) = {(BC5,i-inform), (BC1,i_alert)}

4.1 Interactions

With this notation, the following criteria characterise the first three classes
of interactions given on page 4.

1. Later feature overrides earlier one:
3 (s,e) € Triggers(Fy) N Triggers(Fy)
2. One feature bypasses a trigger of another feature:
Je € e(Triggers(Fy)) Ne(Trans(Fy) \ Triggers(Fs))
3. Fi may send a message which F5 cannot handle (“Message not under-
stood”):
Je € Msgs(Fy) \ Msgs(Fz)

These criteria will flag some potential interactions that cannot occur dur-
ing normal execution of the featured system. In our experience with the
contest model, however, they were quite accurate.

It is important to note that these criteria point to causes for interactions.
There may be more than one actual, observable interaction for the same event
or state-event pair satisfying one of the criteria.

Ezample 2. Since the Group Ringing feature, like TCS, is also triggered by
an “i_alert” message in state BC1, we get a type 1 interaction:

Triggers(TCS) N Triggers(GR) = {(BCi, i_alert)}

Thus we can conclude, when TCS and GR are added to the same subscriber’s
telephone, whichever feature is added later will disable the earlier one, since
it will override the triggers for the feature added earlier.
Furthermore we also get a type 3 interaction, since
o-inform € Msgs(TCS) but i-inform ¢ Msgs(GR).

Note that a message “oxxx” becomes “i_xxx” for the receiving phone, hence
the third criterion says, if there is a situation in which the TCS feature
sends an “o_notify” while the other phone is in an GR feature state, then
that message cannot be processed (by the GR feature), leading to undefined
behaviour. As our method stands at the moment, it is up to the user to check
whether such a situation can actually arise. With these two features, the
interaction can happen, in the following scenario. Assume that subscriber A
has GR, and B and C are in the ‘group’. If, for example B subscribes to TCS

Defining Features for CSP 7

and has A on its screening list, then a call to A will result in an i_alert from
A to B, which B will answer with (o-inform,B A, “screened”). At this point A
will be in a state introduced by Group Ringing, and will not be able to deal
with that message.

Roughly 90% of the interactions we detected were discovered by applying
these simple criteria. Yet, the interesting interactions are those that are not
detected by these tests. The way that the contest model was set up, there
were very few of these ‘tricky’ interactions, since most features clashed quite
badly on the simple criteria. Assuming a good software engineering approach,
though, which would take account of the ‘easy’ interactions and aim to avoid
them in the first place, the ‘tricky’ ones, i.e. those not detected by our syn-
tactic criteria, become crucial. At this point, simulation, testing and model
checking come into their own again, because the interactions that cannot
easily be detected by syntactic criteria are likely to show up only in longer
runs of the system.

5 Modelling the system in CSP

5.1 A Network of Basic Call Processes

Modelling a single basic call in CSP is very simple: the states become CSP
processes and all messages become events, the send and receive operations fit
very nicely. A transition with multiple messages is split up into a sequence
of events.

The problems start, however, when one composes several such basic call
processes into a network. Now, the different processes may ‘de-synchronize’
since there is nothing to enforce the atomicity of the transitions in the dia-
gram. Hence one line could embark on a transition if this was triggered by
a local event and thereby prevent another line from sending a message to
it. In other words, the naive, literal translation from the contest instructions
allowed some internal choice between transitions that need to synchronize
with other transitions, leading to possible deadlocks.

It turned out, though, that this problem was not too hard to solve: it was
necessary to reorder the events labelling each transition, so that all external
communication events came first on the respective transitions. Eventually,
all transitions started with one input or output event, if they contained one
at all, followed by only internal (local) events.? ITn CSP terms this meant
offering all events that the line processes had to synchronize on in external
choice constructs.

2
For some features this meant introducing extra states and transitions, since some
of them used multiple send operations in one transition.

8 Plath and Ryan

—- Feature Terminating Call Screening

—- This is designed for a maximum of four phones: any phone above C
—- gets $TCSSetD as its screening set (only relevant if in subscriber
—- set $TCSSubs).

$TCSSubs = {C}
$TCSSetA = {}
$TCSSetB = {}
$TCSSetC = {A}
$TCSSetD = {}

screen(A) = $TCSSetA
screen(B) = $TCSSetB
screen(C) = $TCSSetC
screen(_) = $TCSSetD

BCM(state:{idle},x,x) += if member(x,$TCSSubs)
then i.m_alert?y:Lx({x})!x!Inone —> TCS1(x,y)
else BCM(idle,x,x)

TCS1(x,y) = (if member(y,screen(x))
then o.m_inform.x.y.screened —> BCM(idle,x,x)
else BCM(t_busys,x,y))
[1i.m_alert?z:Lx(x)!x!none —> o0.m_busy.x.z.none —> TCS1(x,y)

BCM(state:{o_busyp},x,y) += i.m_inform.y.x.screened —> TCS2(x,y)

TCS2(x,y) = announce.x.tcs —> BCM(o_wait_onhook,x,y)
[1i.m_alert?z:Lx(x)!x!none —=> o0.m_busy.x.z.none —> TCS2(x,y)

—— end of feature

BCM(state,subscriber,partner) denotes a basic call state,

$TCSSubs is the set of subscribers to TCS (a parameter of the feature),
$TCSSetA through $TCSSetD represent the screening lists of the respective
subscribers (feature parameters).

Fig. 3. CSPC code for Terminating Call Screening

5.2 A Feature Construct for CSP

To automate feature integration we extended the C'SPys syntax with a sim-
ple feature construct for the textual representation of the feature diagrams.
(CSPyy is the subset of CSP accepted by the FDR tool.) We will denote the
extended language by CSPEC.

A feature definition may contain any number of standard C'SP,; def-
initions. These will simply be added to the base system, and the user is
respounsible for avoiding name clashes (re-definitions).

On top of plain C'S Py, there are two new constructs:

e Transitions can be added or replaced by means of special definitions with
the following syntax:

process (p1,...,pn) += new definition

Defining Features for CSP 9

where process is a process name from the base file. The actual parameters
can be ‘captured’ and are referred to by p1,...,p, in the new definition.
It is also possible to restrict the range of parameters in certain cases.®

e Feature variables or parameters can be defined. Any name prefixed with $
is interpreted as a feature variable. Such variables can be assigned values
in the feature file or on the command line when invoking the integrator
(see below). All (non-defining) references in the feature file are textually
replaced by the value thus given.

5.3 Feature Integration

We wrote a Python script (which we call the “feature integrator”) which
combines a feature definition (written in CSPEY) and a base system in a
CS Py file and produce a new CS Py file defining the featured system. Fea-
tures may be parametrized, and the feature integrator allows us to set values
for the parameters at integrate time, overriding any default values given in
the feature definition.

The current prototype relies quite heavily on syntactic conventions in our
POTS model, e.g. += definitions only work for BCM states and the number of
parameters is fixed. On the other hand this enabled us to substitute sensible
defaults for the ‘don’t care’ place holder (_).

After integrating a feature, the resulting C'S Py, file can be used as the
base file for further feature integrations or, of course, be analysed using
PrROBE and Fpr2 * [5].

5.4 Detecting Interactions

To detect feature interactions in the C'SPy; model, we applied several tech-
niques.

First we used FDR2 to check the featured systems for deadlock. Obviously
the telephone system should never deadlock it must always be possible for
every line to get back to the initial state. However, since we were working on a
system with four phones, we could not detect local deadlocks, i.e. situations
in which one or more phones had no more enabled transitions but where
there was at least one which could still move even if that only meant going
ofthook and onhook repeatedly. If FDR2 allowed the user to impose fairness
constraints, such situations could be detected.

Secondly, we explored the behaviour of the system using PROBE, to test
if the featured system could behave in the intended way. PROBE allows the
user at every step to choose one of the enabled events and thus to simulate a

3 This is rather an ad hoc solution to deal with the specific form our POTS model
takes.

4 www.formal.demon. co. uk/FDR2.html

10 Plath and Ryan

run of the system. Hence it cannot be used to verify the absence of undesirable
behaviour.

This is where FDR2 comes in again. While the previous two techniques are
mainly for debugging, FDR2 can explore all possible executions of a system.
The central method used for this is refinement checking in one of three mod-
els.® However, since features both add and remove behaviours, refinement is
not such a useful notion.

Instead we coded desirable or undesirable patterns of behaviour as ob-
server processes and composed them with the system in question, synchro-
nising on the events that were relevant for the behaviour we wanted to test
for. The observer processes were designed in such a way that the presence of
the behaviours they represented lead to a deadlock in the composite system.
This allowed for exhaustive checking of properties.

5.5 Limitations

The expressive power of observer processes in CSP is rather weak. Unlike
‘never claims’ in SPIN/PROMELA, which uses Biichi automata to deal with
infinite behaviours (e.g. liveness properties, in general recognition of w-regular
traces), observer processes in CSP can only be used to detect the presence of
finite traces.

As with SPIN, some observer processes led to a huge blow-up in the state
space, which made it impossible to verify the properties.®

Another drawback of using observer processes is that they need to be
coded by hand which is a rather error-prone procedure. Contrast this with
expressing a property in temporal logic, with subsequent automatic transla-
tion to the corresponding Biichi automaton.

This list of drawbacks might give the impression that the model-checking
approach is deeply flawed. However, we would like to point out that the
fact that a simple static analysis detected such a large proportion of the
feature interactions hinged on the specific model the contest defined. Also,
the expressiveness of model-checking languages varies greatly, with regards to
both the description of models and the properties that can be checked. Indeed
we would argue that model checking is still an invaluable tool in proving the
absence of unwanted behaviour, and in finding deep errors.

6 Feature Interactions

A full list of the (two-way) interactions we detected among the twelve fea-
tures of the contest, with explanations can be found in [4]. Table 1 may give
an impression of the sheer number of interactions that we found. We only
elaborate on a small selection here.

% Traces, failures and failures-divergence model.
6 ... at least with the computing resources available to us.

| | CFB |[CNDB| CW |[RBWF|RC|SB|TCS|TL|TWC|VM|CT|GR]

CFB X X - - - | - - - = | -
CNDB X X

CW X X X X - =1 - |- - - = -
RBWF|[x XXX X| XX [XXX X - =1 - - - - = -
RC X X X X

SB X X X X X - | - - - = | -
TCS X X X X X X - - - = -
TL X X X X

TWC X X X X XXX[XXXX| X | x| x | x

VM X X X X X X | x| x XX | X | — | -
CcT X X X X X XXX[XXXX| X | X | XX [XX[XXX|XX|xX
GR X X X XXX| XXX | X | x|xx XX |[xx|[xx| x

Each x in the table stands for a distinct interaction.

We did not distinguish feature combinations by the order of feature integration, hence the top right half of the table
is not used.

Table 1. Feature Interactions Phase 1

dSD 10 seanjes,] Suruge(g

1T

12 Plath and Ryan

e TCS & GR: Both features are triggered by an incoming alert message in
the idle state (type 1 interaction). Therefore they cannot both be active
on the same line.

e TCS & CW: When the a subscriber of Call Waiting is in a call, further
incoming calls (i_alert message) are not screened, since TCS is triggered
only in the idle state; this is a type 2 interaction.

e TCS & TWC: A typical type 3 interaction occurs because Terminat-
ing Call Screening introduces a new message (i_inform). All lines in the
network are upgraded so that they can deal with this new message, but
only in BC states. So if someone uses Three Way Calling to call a Call
Screening subscriber, an ‘i-inform’ message from that line to the (TWC)
caller cannot be processed by the TWC feature.

e RBWF & RC: Ring Back When Free initiates the ring-back without a
dial message, therefore Reverse Charging will not be triggered. This is a
type 4 interaction, however, if the Ring Back feature were redefined to
use the dial message, we would still get an interaction, namely of type 2.

7 Conclusions

Taking part in the contest was fun, but also quite exasperating at times, due
to ambiguities in the contest instructions and bugs in the specifications of
POTS and the features. We spent a lot of time on getting our model to work
at all many problems were synchronisation problems and mismatches of
sending and receiving, i.e. bugs in the protocol.

The verification task was made difficult by the lack of a clear description
of what was considered incorrect or undesirable behaviour on the one hand,
by certain shortcomings of the model checker FDR2 on the other. The former
is probably quite realistic, because at specification time, the requirements are
often not fixed, and only in the process of “playing with the system” does one
discover contradictory requirements, or additional assumptions that need to
hold.

We faced the usual problems of underspecification and ambiguity when
dealing with a natural language description. For example, what constituted
a correct billing record was not stated. The CNDB feature relied on some
internal bookkeeping in the switch, which was never made explicit. However,
to assess the effects of ‘anonymous’ messages, one needs to make assumptions
about the capabilities of the switch in this respect. It is unlikely that all con-
testants will make the same assumptions, hence it becomes almost impossible
to compare their results about this feature.

While the success of the syntactic method described in section 4 seems
to cast doubt on the value of model checking for the detection of feature
interactions, we would not have reached an ‘implementation’ of POTS and
the features without the aid of model checking. If PROBE and FDR2 had
been nothing more than debugging aids in the development of our system,

Defining Features for CSP 13

they would have been invaluable in getting the system right, and moreover
gaining a good understanding of it.

Furthermore, we believe that the syntactic method captures mainly the
‘obvious’ interactions. Once these are out of the way, one needs a way to
find those interactions that can result, e.g. from different interpretations of
the same data in different features. These interactions may result in strange
behaviour or simply in the violation of invariants, but this will only become
visible in runs of the system (model).

Acknowledgments. Thanks to anonymous referees for helping us to improve
the paper. Financial support from the EU through Esprit working groups
FIREworks (23531), and from British Telecom is gratefully acknowledged.

References

1. M. Calder and E. Magill, editors. Feature Interactions in Telecommunications
and Software Systems VI. 1I0S Press, 2000.

2. M. Kolberg, E. Magill, D. Marples, and S. Reiff. Results of the second feature
interaction contest. In Calder and Magill [1], pages 311-325.

3. M. Kolberg, E. Magill, D. Marples, and S. Reiff. Second feature interaction
contest. In Calder and Magill [1], pages 293-310.

4. M. C. Plath and M. D. Ryan. Entry for FIW’00 Feature Interaction Contest.
Technical report, School of Computer Science, University of Birmingham, Febru-
ary 2000. Available from ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/
00-fiw-contest.ps.gz.

5. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1999.

