
De�ning Features for CSP:Re
e
tions on the Feature Intera
tion ContestMalte Plath1 and Mark Dermot Ryan1S
hool of Computer S
ien
e, University of Birmingham, Edgbaston, BirminghamB15 2TT, England. m
p,mdr�
s.bham.a
.uk1 Introdu
tionThe se
ond Feature Intera
tion Contest was held in
onjun
tion with the 6thInternational Workshop on Feature Intera
tions in Tele
ommuni
ation andSoftware Systems (FIW'00) [1℄. The aim of the
ontest was to
ompare variousmethods and tools for dete
ting feature intera
tions. To enable a
omparison,the
ontest's obje
tive was to dete
t intera
tions among a given set of featuresfor a given telephone system. The
ontest instru
tions
ontained detailed(albeit impre
ise) spe
i�
ations of the base system and twelve features.In this paper we des
ribe how we ta
kled the
ontest and the experien
eswe had in the pro
ess. In the following two se
tions we brie
y des
ribe howthe
ontest was set out and what impli
ations that had for dete
ting featureintera
tions. We then detail the methods we used and the results we obtainedbefore summing up our experien
es in se
tion 7.We used a
ombination of two te
hniques: stati
 (synta
ti
) analysis andmodel
he
king using the model
he
ker FDR [5℄. While we had initiallyplanned to integrate the features into the base system and then to dete
tintera
tions by model
he
king, it be
ame
lear very qui
kly that a simplesynta
ti
 analysis of the features was suÆ
ient to dete
t a large proportion ofthe intera
tions. Hen
e, in this paper, we �rst des
ribe this synta
ti
 method(se
tion 4), before showing how we used model
he
king to �nd more in-tera
tions (se
tion 5). Finally, we give an overview of the full results of ouranalysis in se
tion 5.4; a
omplete and detailed des
ription of the results
anbe found in [4℄.We are delighted to report that our entry won the
ontest in the
ategoryof two-feature intera
tions. For a summary of the results produ
ed by ea
hof the
ontestants, see [2℄.2 The Contest ModelThe base system for the
ontest is a model of the plain old telephone ser-vi
e (POTS) given as a labelled transition diagram (Figure 1) for a singletelephone line (basi

all model, BCM) and a des
ription of the network ar-
hite
ture, a simple star network, with a single swit
h relaying information

2Platha
ndRyan

BUSY

BUSY
BUSY

BUSY
BUSY

BUSY

BUSY

BUSY

BUSY

t_busy

status

BC 9

o_off-

hook

BC 2

idle

BC 1

o_dial-

tone

BC 3

o_wait

for

onhook

BC 8

o_dialed

BC 4

o_busy?

BC 5

o_con-

nected

BC 7

(i_alert, A, B, -)

(offhook, A, A, -);

(billing_offhook, A, A,time)

(dial_tone, A, A, -)

(dial, A, A, number(B))

(onhook, A, A, -)
 ;

(billing_onhook, A, A,time)

(o_alert, A, B, -)

(i_connect, B, A, -)
 ;

(billing_start, A, B, time);

(connect, A, A, -)

(i_timeout, B, A, -)
 ;

(timeout_tone, A, A, -)

(i_disconnect, A, B, -);

(disconnect_tone, B, B, -)

(onhook, B, B, -);

(billing_stop, A, B, time);

(billing_onhook, B, B,time);

(o_disconnect, B, A, -)

(o_timeout, B, A, -);

(stopalert, B, B, -)

(onhook,A, A, -);

(billing_onhook, A, A,time)

(offhook, B, B, -)
 ;

(billing_offhook, B, B,time),

(o_connect, B, A, -)

o_wait

for

answer

BC 6

(i_free, B, A, -);

(ringtone, A, A, -)

(i_busy, B, A, -);

(busytone, A, A, -)

(onhook, A, A, -);

(billing_onhook, A, A,

time);

(o_stopalert, A, B, -)

t_alerted

BC 10

(i_stopalert, A, B, -)
 ;

(stopalert, B, B, -)

(o_free, B, A, -);

(alert, B, B, -)

(onhook,A, A, -);

(billing_onhook, A, A,time);

(o_stop_alert, A, B, -)

BUSY

(i_alert, C, id, -)
 ;

(o_busy, id, C, -)

is a macro for:

where id is either A

or B depending on

the side of the call

receiving the i_alert

BUSY

t_con-

nected

BC 11

(i_disconnect, B, A, -);

(disconnect_tone, A, A, -)

BUSY

t_wait

for

onhook

BC 12

(onhook, B, B, -);

(billing_onhook, B, B,time)
 (onhook, A, A, -);

(billing_stop, A, B, time);

(billing_onhook, A, A, time);

(o_disconnect, A, B, -);

(onhook,A, A, -);

(billing_onhook, A, A, time)

(onhook,A, A,);

(billing_onhook,

A, A, time)

(i_busy, A, C, -)

(i_stopalert, A, B, -)

Fig. 1. The Basi
 Call Model [3℄

De�ning Features for CSP 3between lines, and a billing database, of whi
h no details are given in the
ontest instru
tions [3℄.Most transitions are labelled with multiple messages, some of whi
h de-note lo
al events, su
h as user input or signals to the user, others stand formessages sent to or re
eived from other phones in the network; �nally, thereare billing messages.
BUSY

BUSY

alerted

TCS 1

(i_alert, A, B,
-)

BC 5

announc

ement

TCS 2

(i_inform, B, A,
"screened")

(announce, A, A, "screened")

BC 8

SUBSCRIBER
 EVERYONE

BC 1

(o_inform, B, A, "screened")

BC 9

tau

BUSY

(i_alert, C, id, -)
 ;

(o_busy, id, C, -)

is a macro for:
Fig. 2. Feature Terminating Call S
reening [3℄The features, too, are given as labelled transition diagrams, with someBCM states and (usually) several new states (feature states). Feature inte-gration is de�ned by adding or repla
ing, for a given basi

all state, thetransitions whi
h are given in the feature de�nition. Here, a transition isrepla
ed if the feature's transition has the same triggering event as the
orre-sponding transition in the basi

all; otherwise it is added. In the diagram forthe feature Terminating Call S
reening (Figure 2), for example, the transitionfrom the idle state to BC9 of the basi

all is repla
ed by the left diagram(for the subs
riber), while in all basi

all pro
esses a new transition is addedto the state BC5 (\o busy?"). This transition is labelled with the message(i inform,B,A,\s
reened") and leads to the new state TCS2.The
ontest
omprised the following features:

4 Plath and RyanCFB Call Forward on Busy { divert
alls when the line is busyCNDB Calling Number Delivery Blo
king { do not display the
aller's num-ber to the
alleeCT Call Transfer { transfer an a
tive
all to another telephoneCW Call Waiting { allow subs
riber to take a se
ond
all and swit
h between�rst and se
ond
allGR Group Ringing { make three telephones ring for an in
oming
all to oneof them, stop the ringing when one of them is answeredRBWF Ring Ba
k When Free { ring ba
k
allers that got the busy tone(also known as Automati
 Call Ba
k)RC Reverse Charging {
allee pays for
allSB Split Billing {
allee pays part of the
allTCS Terminating Call S
reening { blo
k
alls from
ertain phones to thesubs
riber's phoneTL TeenLine { a PIN must be entered before
alls
an be madeTWC Three-Way Calling { allow the subs
riber to initiate a se
ond
all andlet all three parties talk with ea
h other (also known as Conferen
e Call)VM Voi
e Mail {
allers
an leave a message if the phone is not answered(also known as CallMinder)3 ObservationsAnalysing the feature de�nitions, we realized that the model given in the
ontest instru
tions was extremely prone to intera
tions. With a little pra
-ti
e we
ould anti
ipate many intera
tions by just looking at the features'diagrams. To explain how this worked, we
lassify intera
tions a

ording totheir
auses:1. one feature overrides trigger of the other feature (e.g. TCS & GR)2. one feature bypasses trigger of the other feature (e.g. TCS & CW)3. one feature sends a message that the other feature
annot pro
ess (e.g.TCS& TWC)4. other
auses (e.g. TCS & RBWF, RC & RBWF)In the �rst two
ases one of the features is not invoked when it shouldbe; in the latter two, both features are a
tive but interfere with ea
h otherin some way.Intera
tions of type 1 are the easiest to dete
t: both features are triggeredin the same (basi

all) state by the same event. Due to the method of featureintegration, the feature integrated later overwrites the transition introdu
edor altered by the earlier one. Intera
tions are usually serious be
ause theyare due to some fundamental in
ompatibility. In this
ase the intera
tion
anonly be resolved by limiting or re�ning the behaviour of one or both features.Type 2 intera
tions are also not hard to re
ognize. Whenever a triggeringmessage for one feature
an o

ur in a feature state of another feature, this

De�ning Features for CSP 5may lead to the former feature not being invoked even though it should. Inthe
ontest, all intera
tions of this type o

urred be
ause of the method offeature integration, and
ould
learly be avoided by a design that did notput so mu
h emphasis on states. It is very likely that some of the type 2intera
tions would then be
ome type 4 intera
tions, i.e. the type 2
on
i
tindi
ated a serious intera
tion but for trivial reasons.Intera
tions of the third type o

ur when a feature introdu
es a newmessage to the system, whi
h may be re
eived in a feature state of anotherfeature. Sin
e only basi

all states are altered to be able to handle the newmessage, a feature on the re
eiving end will not be able to handle the newmessage. For these intera
tions, the same observations hold as for type 2: ina better, feature-oriented ar
hite
ture, they would not o

ur.The remaining intera
tions (type 4) are parti
ularly interesting from thepoint of view of feature intera
tion dete
tion. They indi
ate deeper problemsin the way that features a�e
t pro
essing and distribution of information inthe telephone network. There are no generi
 tests to dete
t su
h intera
tions,however they violate some `sensible assumptions' about the working of thesystem. Furthermore, they only surfa
e in the a
tual exe
ution of the system,so they are not amenable to stati
 analysis methods, su
h as proposed in thefollowing se
tion.4 Stati
 AnalysisThe observations above prompted us to look for synta
ti

riteria to dete
tthe �rst three
lasses of intera
tions. We introdu
e the following notation.Let S be the set of all states (both basi

all and all possible featurestates), and E the set of all events (messages). To simplify the presentationwe omit the subs
riber parameters unless absolutely ne
essary.1 Feature n isdenoted by Fn; Sys may be a feature, or the Basi
 Call possibly augmentedwith a number of features.Trans(Sys) � S �E one pair (s; e) for ea
h transition in Sys, su
h thatin state s, event e
ommen
es the transitionTriggers(Fn) � S �E the basi

all states in whi
h the Fn
an be trig-gered, with the
orresponding triggering eventMsgs(Sys) � E all i xxx and o xxx messages that appear on tran-sitions of Sys (ignoring the pre�xes \o " and \i ")Note that Msgs(Sys)
ontains information about all transitions, whileTriggers(Fn) only re
ords the new or altered transitions from basi

all statesintrodu
ed by Fn. Let �(s; e) = s and "(s; e) = e denote the proje
tions ontothe �rst and se
ond
omponent, i.e. states and events, respe
tively.1 To be fully
orre
t, one would need to take a

ount of several variables, at leastsubs
riber and partner, for ea
h state.

6 Plath and RyanExample 1. For the Terminating Call S
reening feature we have:Trans(TCS) = f(BC1; i alert); (BC5; i inform);(TCS1; i alert); (TCS1; o inform); (TCS1; tau);(TCS2; announ
e); (TCS2; i alert)gandTriggers(TCS) = f(BC5; i inform); (BC1; i alert)g4.1 Intera
tionsWith this notation, the following
riteria
hara
terise the �rst three
lassesof intera
tions given on page 4.1. Later feature overrides earlier one:9 (s; e) 2 Triggers(F1) \ Triggers(F2)2. One feature bypasses a trigger of another feature:9 e 2 "(Triggers(F1)) \ "(Trans(F2) nTriggers(F2))3. F1 may send a message whi
h F2
annot handle (\Message not under-stood"):9 e 2 Msgs(F1) nMsgs(F2)These
riteria will
ag some potential intera
tions that
annot o

ur dur-ing normal exe
ution of the featured system. In our experien
e with the
ontest model, however, they were quite a

urate.It is important to note that these
riteria point to
auses for intera
tions.There may be more than one a
tual, observable intera
tion for the same eventor state-event pair satisfying one of the
riteria.Example 2. Sin
e the Group Ringing feature, like TCS, is also triggered byan \i alert" message in state BC1, we get a type 1 intera
tion:Triggers(TCS) \ Triggers(GR) = f(BCi; i alert)gThus we
an
on
lude, when TCS and GR are added to the same subs
riber'stelephone, whi
hever feature is added later will disable the earlier one, sin
eit will override the triggers for the feature added earlier.Furthermore we also get a type 3 intera
tion, sin
eo inform 2 Msgs(TCS) but i inform =2 Msgs(GR).Note that a message \o xxx" be
omes \i xxx" for the re
eiving phone, hen
ethe third
riterion says, if there is a situation in whi
h the TCS featuresends an \o notify" while the other phone is in an GR feature state, thenthat message
annot be pro
essed (by the GR feature), leading to unde�nedbehaviour. As our method stands at the moment, it is up to the user to
he
kwhether su
h a situation
an a
tually arise. With these two features, theintera
tion
an happen, in the following s
enario. Assume that subs
riber Ahas GR, and B and C are in the `group'. If, for example B subs
ribes to TCS

De�ning Features for CSP 7and has A on its s
reening list, then a
all to A will result in an i alert fromA to B, whi
h B will answer with (o inform,B,A,\s
reened"). At this point Awill be in a state introdu
ed by Group Ringing, and will not be able to dealwith that message.Roughly 90% of the intera
tions we dete
ted were dis
overed by applyingthese simple
riteria. Yet, the interesting intera
tions are those that are notdete
ted by these tests. The way that the
ontest model was set up, therewere very few of these `tri
ky' intera
tions, sin
e most features
lashed quitebadly on the simple
riteria. Assuming a good software engineering approa
h,though, whi
h would take a

ount of the `easy' intera
tions and aim to avoidthem in the �rst pla
e, the `tri
ky' ones, i.e. those not dete
ted by our syn-ta
ti

riteria, be
ome
ru
ial. At this point, simulation, testing and model
he
king
ome into their own again, be
ause the intera
tions that
annoteasily be dete
ted by synta
ti

riteria are likely to show up only in longerruns of the system.5 Modelling the system in CSP5.1 A Network of Basi
 Call Pro
essesModelling a single basi

all in CSP is very simple: the states be
ome CSPpro
esses and all messages be
ome events, the send and re
eive operations �tvery ni
ely. A transition with multiple messages is split up into a sequen
eof events.The problems start, however, when one
omposes several su
h basi

allpro
esses into a network. Now, the di�erent pro
esses may `de-syn
hronize'sin
e there is nothing to enfor
e the atomi
ity of the transitions in the dia-gram. Hen
e one line
ould embark on a transition if this was triggered bya lo
al event and thereby prevent another line from sending a message toit. In other words, the naive, literal translation from the
ontest instru
tionsallowed some internal
hoi
e between transitions that need to syn
hronizewith other transitions, leading to possible deadlo
ks.It turned out, though, that this problem was not too hard to solve: it wasne
essary to reorder the events labelling ea
h transition, so that all external
ommuni
ation events
ame �rst on the respe
tive transitions. Eventually,all transitions started with one input or output event, if they
ontained oneat all, followed by only internal (lo
al) events.2 In CSP terms this meanto�ering all events that the line pro
esses had to syn
hronize on in external
hoi
e
onstru
ts.2 For some features this meant introdu
ing extra states and transitions, sin
e someof them used multiple send operations in one transition.

8 Plath and Ryan
−−
−− Feature Terminating Call Screening
−−
−− This is designed for a maximum of four phones: any phone above C
−− gets $TCSSetD as its screening set (only relevant if in subscriber
−− set $TCSSubs).
−−
$TCSSubs = {C}
$TCSSetA = {}
$TCSSetB = {}
$TCSSetC = {A}
$TCSSetD = {}

screen(A) = $TCSSetA
screen(B) = $TCSSetB
screen(C) = $TCSSetC
screen(_) = $TCSSetD

BCM(state:{idle},x,x) += if member(x,$TCSSubs)
then i.m_alert?y:Lx({x})!x!none −> TCS1(x,y)
else BCM(idle,x,x)

TCS1(x,y) = (if member(y,screen(x))
 then o.m_inform.x.y.screened −> BCM(idle,x,x)
 else BCM(t_busys,x,y))
 [] i.m_alert?z:Lx(x)!x!none −> o.m_busy.x.z.none −> TCS1(x,y)

BCM(state:{o_busyp},x,y) += i.m_inform.y.x.screened −> TCS2(x,y)

TCS2(x,y) = announce.x.tcs −> BCM(o_wait_onhook,x,y)
 [] i.m_alert?z:Lx(x)!x!none −> o.m_busy.x.z.none −> TCS2(x,y)

−− end of feature −−BCM(state,subs
riber,partner) denotes a basi

all state,$TCSSubs is the set of subs
ribers to TCS (a parameter of the feature),$TCSSetA through $TCSSetD represent the s
reening lists of the respe
tivesubs
ribers (feature parameters).Fig. 3. CSPFCM
ode for Terminating Call S
reening5.2 A Feature Constru
t for CSPTo automate feature integration we extended the CSPM syntax with a sim-ple feature
onstru
t for the textual representation of the feature diagrams.(CSPM is the subset of CSP a

epted by the FDR tool.) We will denote theextended language by CSPFCM .A feature de�nition may
ontain any number of standard CSPM def-initions. These will simply be added to the base system, and the user isresponsible for avoiding name
lashes (re-de�nitions).On top of plain CSPM , there are two new
onstru
ts:� Transitions
an be added or repla
ed by means of spe
ial de�nitions withthe following syntax:pro
ess(p1; : : : ; pn) += new de�nition

De�ning Features for CSP 9where pro
ess is a pro
ess name from the base �le. The a
tual parameters
an be `
aptured' and are referred to by p1; : : : ; pn in the new de�nition.It is also possible to restri
t the range of parameters in
ertain
ases.3� Feature variables or parameters
an be de�ned. Any name pre�xed with $is interpreted as a feature variable. Su
h variables
an be assigned valuesin the feature �le or on the
ommand line when invoking the integrator(see below). All (non-de�ning) referen
es in the feature �le are textuallyrepla
ed by the value thus given.5.3 Feature IntegrationWe wrote a Python s
ript (whi
h we
all the \feature integrator") whi
h
ombines a feature de�nition (written in CSPFCM) and a base system in aCSPM �le and produ
e a new CSPM �le de�ning the featured system. Fea-tures may be parametrized, and the feature integrator allows us to set valuesfor the parameters at integrate time, overriding any default values given inthe feature de�nition.The
urrent prototype relies quite heavily on synta
ti

onventions in ourPOTS model, e.g. += de�nitions only work for BCM states and the number ofparameters is �xed. On the other hand this enabled us to substitute sensibledefaults for the `don't
are' pla
e holder (_).After integrating a feature, the resulting CSPM �le
an be used as thebase �le for further feature integrations or, of
ourse, be analysed usingProBE and Fdr2 4 [5℄.5.4 Dete
ting Intera
tionsTo dete
t feature intera
tions in the CSPM model, we applied several te
h-niques.First we used Fdr2 to
he
k the featured systems for deadlo
k. Obviouslythe telephone system should never deadlo
k { it must always be possible forevery line to get ba
k to the initial state. However, sin
e we were working on asystem with four phones, we
ould not dete
t lo
al deadlo
ks, i.e. situationsin whi
h one or more phones had no more enabled transitions but wherethere was at least one whi
h
ould still move { even if that only meant goingo�hook and onhook repeatedly. If Fdr2 allowed the user to impose fairness
onstraints, su
h situations
ould be dete
ted.Se
ondly, we explored the behaviour of the system using ProBE, to testif the featured system
ould behave in the intended way. ProBE allows theuser at every step to
hoose one of the enabled events and thus to simulate a3 This is rather an ad ho
 solution to deal with the spe
i�
 form our POTS modeltakes.4 www.formal.demon.
o.uk/FDR2.html

10 Plath and Ryanrun of the system. Hen
e it
annot be used to verify the absen
e of undesirablebehaviour.This is where Fdr2
omes in again. While the previous two te
hniques aremainly for debugging, Fdr2
an explore all possible exe
utions of a system.The
entral method used for this is re�nement
he
king in one of three mod-els.5 However, sin
e features both add and remove behaviours, re�nement isnot su
h a useful notion.Instead we
oded desirable or undesirable patterns of behaviour as ob-server pro
esses and
omposed them with the system in question, syn
hro-nising on the events that were relevant for the behaviour we wanted to testfor. The observer pro
esses were designed in su
h a way that the presen
e ofthe behaviours they represented lead to a deadlo
k in the
omposite system.This allowed for exhaustive
he
king of properties.5.5 LimitationsThe expressive power of observer pro
esses in CSP is rather weak. Unlike`never
laims' in Spin/Promela, whi
h uses B�u
hi automata to deal within�nite behaviours (e.g. liveness properties, in general re
ognition of !-regulartra
es), observer pro
esses in CSP
an only be used to dete
t the presen
e of�nite tra
es.As with Spin, some observer pro
esses led to a huge blow-up in the statespa
e, whi
h made it impossible to verify the properties.6Another drawba
k of using observer pro
esses is that they need to be
oded by hand whi
h is a rather error-prone pro
edure. Contrast this withexpressing a property in temporal logi
, with subsequent automati
 transla-tion to the
orresponding B�u
hi automaton.This list of drawba
ks might give the impression that the model-
he
kingapproa
h is deeply
awed. However, we would like to point out that thefa
t that a simple stati
 analysis dete
ted su
h a large proportion of thefeature intera
tions hinged on the spe
i�
 model the
ontest de�ned. Also,the expressiveness of model-
he
king languages varies greatly, with regards toboth the des
ription of models and the properties that
an be
he
ked. Indeedwe would argue that model
he
king is still an invaluable tool in proving theabsen
e of unwanted behaviour, and in �nding deep errors.6 Feature Intera
tionsA full list of the (two-way) intera
tions we dete
ted among the twelve fea-tures of the
ontest, with explanations
an be found in [4℄. Table 1 may givean impression of the sheer number of intera
tions that we found. We onlyelaborate on a small sele
tion here.5 Tra
es, failures and failures-divergen
e model.6 : : : at least with the
omputing resour
es available to us.

De�ningFeaturesforCSP11

CFB CNDB CW RBWF RC SB TCS TL TWC VM CT GRCFB �� { { { { { { { { { { {CNDB �� { { { { { { { { { {CW �� � � { { { { { { { { {RBWF ����� �� ��� � { { { { { { { {RC �� �� { { { { { { {SB �� �� � { { { { { {TCS � � � ��� { { { { {TL � �� � { { { {TWC ��� � ��� ���� � � � � { { {VM � �� �� � � � �� � { {CT ���� � ��� ���� � � �� �� ��� �� �� {GR �� � ��� ��� � � �� �� �� �� �Ea
h � in the table stands for a distin
t intera
tion.We did not distinguish feature
ombinations by the order of feature integration, hen
e the top right half of the tableis not used. Table 1. Feature Intera
tions Phase 1

12 Plath and Ryan� TCS & GR: Both features are triggered by an in
oming alert message inthe idle state (type 1 intera
tion). Therefore they
annot both be a
tiveon the same line.� TCS & CW:When the a subs
riber of Call Waiting is in a
all, furtherin
oming
alls (i alert message) are not s
reened, sin
e TCS is triggeredonly in the idle state; this is a type 2 intera
tion.� TCS & TWC: A typi
al type 3 intera
tion o

urs be
ause Terminat-ing Call S
reening introdu
es a new message (i inform). All lines in thenetwork are upgraded so that they
an deal with this new message, butonly in BC states. So if someone uses Three Way Calling to
all a CallS
reening subs
riber, an `i inform' message from that line to the (TWC)
aller
annot be pro
essed by the TWC feature.� RBWF & RC: Ring Ba
k When Free initiates the ring-ba
k without adial message, therefore Reverse Charging will not be triggered. This is atype 4 intera
tion, however, if the Ring Ba
k feature were rede�ned touse the dial message, we would still get an intera
tion, namely of type 2.7 Con
lusionsTaking part in the
ontest was fun, but also quite exasperating at times, dueto ambiguities in the
ontest instru
tions and bugs in the spe
i�
ations ofPOTS and the features. We spent a lot of time on getting our model to workat all { many problems were syn
hronisation problems and mismat
hes ofsending and re
eiving, i.e. bugs in the proto
ol.The veri�
ation task was made diÆ
ult by the la
k of a
lear des
riptionof what was
onsidered in
orre
t or undesirable behaviour on the one hand,by
ertain short
omings of the model
he
ker Fdr2 on the other. The formeris probably quite realisti
, be
ause at spe
i�
ation time, the requirements areoften not �xed, and only in the pro
ess of \playing with the system" does onedis
over
ontradi
tory requirements, or additional assumptions that need tohold.We fa
ed the usual problems of underspe
i�
ation and ambiguity whendealing with a natural language des
ription. For example, what
onstituteda
orre
t billing re
ord was not stated. The CNDB feature relied on someinternal bookkeeping in the swit
h, whi
h was never made expli
it. However,to assess the e�e
ts of `anonymous' messages, one needs to make assumptionsabout the
apabilities of the swit
h in this respe
t. It is unlikely that all
on-testants will make the same assumptions, hen
e it be
omes almost impossibleto
ompare their results about this feature.While the su

ess of the synta
ti
 method des
ribed in se
tion 4 seemsto
ast doubt on the value of model
he
king for the dete
tion of featureintera
tions, we would not have rea
hed an `implementation' of POTS andthe features without the aid of model
he
king. If ProBE and Fdr2 hadbeen nothing more than debugging aids in the development of our system,

De�ning Features for CSP 13they would have been invaluable in getting the system right, and moreovergaining a good understanding of it.Furthermore, we believe that the synta
ti
 method
aptures mainly the`obvious' intera
tions. On
e these are out of the way, one needs a way to�nd those intera
tions that
an result, e.g. from di�erent interpretations ofthe same data in di�erent features. These intera
tions may result in strangebehaviour or simply in the violation of invariants, but this will only be
omevisible in runs of the system (model).A
knowledgments. Thanks to anonymous referees for helping us to improvethe paper. Finan
ial support from the EU through Esprit working groupsFIREworks (23531), and from British Tele
om is gratefully a
knowledged.Referen
es1. M. Calder and E. Magill, editors. Feature Intera
tions in Tele
ommuni
ationsand Software Systems VI. IOS Press, 2000.2. M. Kolberg, E. Magill, D. Marples, and S. Rei�. Results of the se
ond featureintera
tion
ontest. In Calder and Magill [1℄, pages 311{325.3. M. Kolberg, E. Magill, D. Marples, and S. Rei�. Se
ond feature intera
tion
ontest. In Calder and Magill [1℄, pages 293{310.4. M. C. Plath and M. D. Ryan. Entry for FIW'00 Feature Intera
tion Contest.Te
hni
al report, S
hool of Computer S
ien
e, University of Birmingham, Febru-ary 2000. Available from ftp://ftp.
s.bham.a
.uk/pub/authors/M.D.Ryan/00-fiw-
ontest.ps.gz.5. A. W. Ros
oe. The Theory and Pra
ti
e of Con
urren
y. Prenti
e Hall, 1999.

