
Proving feature non-interation withAlternating-Time Temporal LogiFrank Cassez1, Mark Dermot Ryan2, and Pierre-Yves Shobbens31 IRCCyN { BP 92101, 1 rue de la No�e, 44321 Nantes edex 03, Frane.Frank.Cassez�iryn.e-nantes.fr2 Shool of Computer Siene, University of Birmingham, Edgbaston,Birmingham B15 2TT, England. mdr�s.bham.a.uk3 Institut d'Informatique, Fault�es Universitaires de Namur, RueGrandgagnage 21, 5000 Namur, Belgium. pys�info.fundp.a.be1 IntrodutionFeature Interation. When engineers design a system with features, they wishto have methods to prove that the features do not interat in ways whih areundesirable. A onsiderable literature is devoted to this `feature interationproblem' [13,5℄. One approah to demonstrating that features do not interatundesirably is to equip them with properties whih are intended to holdof a system having the feature [17℄. In this view, a feature is a pair (F; �)onsisting of the implementation of the feature F and a set of properties�. Integrating a feature (F; �) with a base system S onsists of modifyingthe base system in the way desribed by the feature implementation andobtaining S+F . The integration is deemed suessful if the resulting systemsatis�es the set of properties � orresponding to the feature. Evidene thata feature (F1; �1) does not negatively interat with feature (F2; �2) may beobtained by verifying that introduing F2 in S+F1, (obtaining S+F1+F2)does not destroy the properties �1 previous introdued by feature F1, andvie versa.Model-Cheking. Model heking [10℄ may be used to show that the featuredsystem has the desired properties (f. [6,17,16,14℄). However, the approahdesribed may involve heking the same property again and again eah timea new feature is introdued, to hek that a previously introdued featurehas not been broken. Sine model heking is omputationally expensive, it isworthwhile to �nd methods whih avoid these re-heks. For example, we maybe able to prove generally that a ertain feature does not destroy propertiesin a ertain lass. This would obviate the need to re-hek properties in thatlass when the feature is introdued.Users' Viewpoints and Conservative Features. A general result de�ning alass of properties whih are provably not broken by the introdution of anew feature ould be inspired by a number of intuitions. In this paper, wedevelop suh a result based on the idea that a feature whih adds to the

2 Cassez/Ryan/Shobbensapabilities of a user (and does not subtrat from them) should not breakproperties whih assert apabilities of this user. Let us look at the notion ofapabilities in more detail.A telephone system is usually made of a number of users and a networkmanaging the alls. Many features of telephone systems are designed so thatthey add to the apabilities (or powers), of the subsribing user, without sub-trating from them. For example, a user j who subsribes to all-forwardingnow has the power to forward his or her alls to another user, but has notlost any apabilities in the proess. When this is the ase, we say that thefeature is j-onservative. More generally, if U is a set of users, a feature isU -onservative if any behaviour of the system whih U ould enfore beforethe feature was added, U an also enfore it after the feature is added. Theprinipal idea in this paper is that a U -onservative feature does not breakproperties whih assert apabilities of the group U of users.Framework. To formalise this intuition, we propose to use Alternating-timeTemporal Logi [4℄ (ATL), whih allows us to desribe preisely the proper-ties of the di�erent agents (or users) involved in a system, and the strategiesthey have for ahieving their goals. ATL is a branhing temporal logi basedon game theory. It ontains the usual temporal operators (next, always, until)plus ooperation modalities hhAii�, where A is a set of players. This modal-ity quanti�es over the set of behaviours and means that A has a olletivestrategy to enfore �, whatever the hoies of the other players. ATL gen-eralises CTL, and similarly ATL� generalises CTL�, �-ATL generalises the�-alulus. These logis an be model-heked by generalising the tehniquesof CTL, often with the same omplexity.Outline of the paper. In setion 2 we reall the basi onepts of ATL andATL� and their semantis on ATSs. This setion also introdues the Moha-like language we use to desribe reative systems. The next setion 3 whihis the ore of the paper desribes the feature onstrut for our Moha-likelanguage and states the properties-preserving theorem. Finally in setion 4we disuss some diretions for future work.2 Alternating-time temporal logiAlternating-time temporal logi (ATL) is based on CTL. Let us �rst realla few fats about CTL. CTL [9℄ is a branhing-time temporal logi in whihwe an express properties of reative systems. For example, properties ofahe-oherene protools [15℄, telephone systems [17℄, and ommuniationprotools have been expressed in CTL. One problem with CTL is that itdoes not distinguish between di�erent soures of non-determinism. In a tele-phone system, for example, the di�erent soures inlude individual users, theenvironment, and internal non-determinism in the telephone exhange. CTL

Proving feature non-interation with Alternating-Time Temporal Logi 3provides the A quanti�er to talk about all paths, and the E quanti�er to assertthe existene of a path. A means that, no matter how the non-determinismis resolved, will be true of the resulting path. E asserts that, for at leastone way of resolving the non-determinism, will hold. But beause CTL doesnot distinguish between di�erent types of non-determinism, the A quanti�eris often too strong, and the E quanti�er too weak. For example, if we want tosay that user i an onverse with user j, CTL allows us to write the formulasA3talking(i,j), E3talking(i,j).The �rst one says that in all paths, somewhere along the path there is a statein whih i is talking to j, and is learly muh stronger than the intention. Theseond formula says that there is a path along whih i is eventually talkingj. This formula is weaker than the intention, beause to obtain that path wemay have to make hoies on behalf of all the omponents of the system thatbehave non-deterministially. What we wanted to say is that users i and jan resolve their non-deterministi hoies in suh a way that, no matter howthe other users or the system or the environment behaves, all the resultingpaths will eventually have a state in whih i is talking j. Of ourse, the fatthat i is talking to j requires the ooperation of j. This subtle di�erenes inexpressing the properties we want to hek an be aptured aurately withATL.Alternating-time temporal logi (ATL) [4℄ generalises CTL by introduingagents, whih represent di�erent soures of non-determinism. In ATL the Aand E path quanti�ers are replaed by a unique path quanti�er hhAii, indexedby a subset A of the set of agents. The formula hhAii means that the agentsin A an resolve their non-deterministi hoies suh that, no matter howthe other agents resolve their hoies, the resulting paths satisfy . We anexpress the property that user i has the power, or apability, of talking to jby the ATL formula1hhiii3talking(i,j).We read hhAii as saying that the agents in A an, by ooperating together,fore the system to exeute a path satisfying . If A is the empty set ofagents, hhAii says that the system will exeute without the ooperation ofany agents at all; in other words, hh;ii is equivalent to A in CTL. Dually,hh�ii (where � is the entire set of agents) is a weak assertion, saying thatif all the agents onspire together they may enfore , whih is equivalent toE in CTL.2.1 ATL and ATL*Let P be a set of atomi propositions and � a set of agents. The syntax ofATL is given by� ::= p j > j :�1 j �1 _ �2 j hhAii[�1 U �2℄ j hhAii2�1 j hhAii�11 We write hhiii instead of hhfigii .

4 Cassez/Ryan/Shobbenswhere p 2 P and A � �. We use the usual abbreviations for !, ^ in termsof :, _. The operator hh ii is a path quanti�er, and (next), 2 (always) andU (until) are temporal operators. The logi ATL is similar to the branhing-time logi CTL, exept that path quanti�ers are parameterised by sets ofagents. As in CTL, we write hhAii3� for hhAii[> U �℄.While the formula hhAii means that the agents in A an ooperate tomake true (they an \enfore"), the dual formula [[A℄℄ means that theagents in A annot ooperate to make false (they annot \avoid"). Theformulas [[A℄℄3�, [[A℄℄2�, and [[A℄℄� stand for :hhAii2:�, :hhAii3:�, and:hhAii:�.The logi ATL* generalises ATL in the same way that CTL* generalisesCTL, namely by allowing path quanti�ers and temporal operators to benested arbitrarily.For a subset A � � of agents, the fragment hhAii-ATL of ATL onsists ofATL formulas whose only modality is hhAii, and that does not our withinthe sope of a negation. The hhAii-ATL* fragment of ATL* is de�ned similarly.2.2 Alternating transitions systemsWhereas the semantis of CTL is given in terms of transition systems, thesemantis of ATL is given in terms of alternating transition systems (ATSs).An ATS over a set of atomi propositions P and a set of agents � is a tripleS = (Q; �; Æ; I), where Q is a set of states and � : Q ! 2P maps eah stateto the set of propositions that are true in it, andÆ : Q�� ! 22Qis a transition funtion whih maps a state and an agent to a non-empty setof hoies, where eah hoie is a non-empty set of possible next states. Ifthe system is in a state q, eah agent a hooses a set Qa 2 Æ(q; a); the systemwill move to a state whih is in Ta2� Qa. We require that the system is non-bloking and that the agents together hoose a unique next state; that is,for every q and every tuple (Qa)a2� of hoies Qa 2 Æ(q; a), we require thatTa2� Qa is a singleton. Similarly, the initial state is spei�ed by I : � ! 22Q .I maps eah agent to a set of hoies. The agents together hoose a singleinitial state: for eah tuple (Qa)a2� of hoies Qa 2 I(a), we require thatTa2� Qa is a singleton.For two states q and q0, we say that q0 is a suessor of q if, for eaha 2 �, there exists Q0 2 Æ(q; a) suh that q0 2 Q0. We write Æ(q) for the setof suessors of q; thus,Æ(q) = \a2� [Q2Æ(q;a)QA omputation of S is an in�nite sequene � = q0; q1; q2 : : : of states suhthat (for eah i) qi+1 is a suessor of qi. We write �[0; i℄ for the �nite pre�xq0; q1; q2; : : : ; qi.

Proving feature non-interation with Alternating-Time Temporal Logi 5Often, we are interested in the ooperation of a subset A � � of agents.Given A, we de�ne Æ(q; A) = fTa2AQa j Qa 2 Æ(q; a)g. Intuitively, when thesystem is in state q, the agents in A an hoose a set T 2 Æ(q; A) suh that,no matter what the other agents do, the next state of the system is in T . Notethat Æ(q; fag) is just Æ(q; a), and Æ(q;�) is the set of singleton suessors ofq.Example 1 ([4℄). Consider a system with two agents \user" u and \telephoneexhange" e. The user may lift the handset, represented as assigning valuetrue to the boolean variable \o�hook". The exhange may then send a tone,represented by assigning value true to the boolean variable \tone". Initially,both variables are false. Clearly, obtaining a tone requires ollaboration ofboth agents.We model this as an ATS S = (Q; �; Æ; I) over the agents � = fu; eg andpropositions P = fo�hook,toneg. Let Q = f00; 01; 10; 11g. 00 is the state inwhih both are false, 01 the state in whih \o�hook" is false and \tone" istrue, et. (thus, �(00) = ;, �(01) = ftoneg, et.). The transition funtion Æand initial states I are as indiated in the �gure.Æ(q; a) u e00 ff00; 01g; f10; 11gg ff00; 10gg10 ff10; 11gg ff00; 10g; f01; 11gg01 ff00; 01g; f10; 11gg ff01; 11gg11 ff10; 11gg ff01; 11ggI ff00; 01gg ff00; 10ggFig. 1. The transition funtion of the ATS.2.3 SemantisThe semantis of ATL uses the notion of strategy. A strategy for an agenta 2 � is a mapping fa : Q+ ! 2Q suh that fa(� � q) 2 Æ(q; a) with � 2 Q�.In other words, the strategy is a reipe for a to make its hoies. Given astate q, a set A of agents, and a family FA = ffa j a 2 Ag of strategies,the outomes of FA from q are the set out(q; FA) of all omputations from qwhere agents in A follow their strategies, that is,out(q0; FA) = f� = q0; q1; q2; � � � j 8i; qi+1 2 Æ(qi) \ � \a2A fa(�[0; i℄)�g:If A = ;, then out(q; FA) is the set of all omputations, while if A = � thenit onsists of preisely one omputation.The semantis of ATL* is as CTL*, with the addition of:

6 Cassez/Ryan/Shobbens� q � hhAii if there exists a set FA of strategies, one for eah agent in A,suh that for all omputations � 2 out(q; FA) we have � � .Remark 1. To help understand the ideas of ATL, we state below some validi-ties, and more surprising non-validities.1. If A � B, then hhAii ! hhBii , and [[B℄℄ ! [[A℄℄ . Intuitively, any-thing that A an enfore an also be enfored by a superset B; and ifanything that B is powerless to prevent annot be prevented by a subsetof B.2. In CTL, A distributes over ^. But in general, hhAii(1 ^ 2) only implies(hhAii 1)^(hhAii 2). The �rst formula asserts that A an enfore 1^ 2,while the seond is weaker, asserting that A has a way to enfore 1 andanother, possibly inompatible, way to enfore 2. Similarly, hhAii(1_ 2)and hhAii 1 _hhAii 2 are di�erent (for A 6= �). The �rst one asserts thatA an enfore 1 _ 2, but whih of the two is true might be hosen byothers. This is weaker than the seond formula, whih asserts that A anguarantee 1, or A an guarantee 2, but nobody an hoose whih. Thestrongest variant where A an hoose, is expressed as: hhAii(1 ^ : 2) ^hhAii(2 ^ : 1).3. By repeating a ooperation inside a temporal operator, we weaken theformula, for instane: hhAii23� ! hhAii2hhAii3�. This is beause thestrategies FA that A use in the outer modality may be adapted for theinner modality, by shifting its time: eah f 0a(x) is simply fa(� � x), where� is the path linking the points of evaluation of the two modalities. (Notethe CTL* validities E23�! E2E3� and A23�$ A2A3�.)2.4 Guarded ommand languageATSs may be desribed using a Moha-like guarded ommand language.(Moha [1℄ is the system modelling language used for ATL.) We illustratethis with the system S of the preeding setion.agentagentagent USERontrolsontrolsontrols offhook;initinitinitoffhook := false;updateupdateupdatetrue -> ;true -> offhook := true;endagentendagentendagent;

Proving feature non-interation with Alternating-Time Temporal Logi 7agentagentagent EXCHontrolsontrolsontrols tone;initinitinittone := false ;updateupdateupdatetrue -> ;offhook -> tone := true;endagentendagentendagent;The init lause gives the initial values of variables (if they are not mentioned,their initial values are seleted non-deterministially). The update lauseonsists of a set of guarded ommands, onsisting of a guard (before thearrow) and a ommand (after the arrow). The agents are run in parallel.At eah step, the guards in the agent are evaluated, and the agent hoosesone whih evaluates to true. The ommand orresponding to that guard isexeuted. If a variable is not assigned to in a ommand, it preserves its oldvalue. In partiular, if the ommand is empty, nothing hanges: the rypti-looking ommand true -> simply allows the user to wait. Every variable isontrolled by preisely one agent; only the ontrolling agent an assign to thevariable. Agents may refer to variables whih are ontrolled by other agents(for example, EXCH refers to offhook whih is ontrolled by USER).2.5 Simulation and trae ontainmentIt is known in CTL that if a transition system S0 simulates another one S,written S � S0, then all ACTL* formulas whih hold of S also hold of S0.(ACTL* is the universal fragment of CTL*, i.e. the fragment in whih theonly path quanti�er is A, and no negations are allowed whih inlude A intheir sope.)A similar result holds for ATL* [3℄. Instead of a single notion of simulation,they de�ne a notion indexed by a set of agents A. Let S = (Q; �; Æ; I) andS0 = (Q0; �0; Æ0; I 0) be ATSs over agents �, with P � P 0. For a subset A � �of agents, a relation H � Q�Q0 is an A-simulation from S to S0 if2:� For every set T 2 I(A), there exists a set T 0 2 I 0(A) suh that forevery set R0 2 I 0(� � A) there exists a set R 2 I(� � A) suh that(T \ R)� (T 0 \ R0) � H .and, for all states q; q0 with H(q; q0), we have� �(q) = �0(q0) \ P ;� For every set T 2 Æ(q; A), there exists a set T 0 2 Æ0(q0; A) suh that forevery set R0 2 Æ0(q0; �0 �A) there exists a set R 2 Æ(q;� �A) suh that(T \ R)� (T 0 \ R0) � H .2 Our de�nition slightly generalises that of [3℄ by allowing multiple initial statesand new propositions and agents.

8 Cassez/Ryan/ShobbensThe intuition is that whatever A an do in S, A an also do it in S0 so thatwhatever the other agents do in S0, they ould already do it in S to yield asimilar state. Intuitively, S0 onserves all the apabilities A has in S, perhapsadding some more.We say that S0 A-simulates S, and write S �A S0, if there is a simu-lation from S to S0. Intuitively, this holds if A has a superset in S0 of theapabilities it has in S. It is proved in [3℄ that S �A S0 i� every hhAii-ATL*formula satis�ed by S is also satis�ed by S0. This formalises the intuition justmentioned, sine formulas in hhAii-ATL* assert apabilities of A.3 Features and the feature onstrutOur goal in this paper is to show how ertain properties an be preservedthrough the addition of features. From this, we an demonstrate feature non-interation, as explained in the introdution.Our approah is to de�ne a feature onstrut for the Moha-like guardedommand language introdued in setion 2.4. The feature onstrut plays asimilar role to the one de�ned for SMV [17℄; it is also similar to the idea ofsuperimposition [12℄. Using it, we give examples of features and show, forspei� features, that the system without the feature is an A-simulation ofthe system with the feature. From this, we onlude that properties of thebase system are inherited by the system with features.This setion is strutured as follows. In setion 3.1 we model a Plain OldTelephone System (POTS) and some of its properties. Setion 3.2 de�nes thefeature onstrut, and gives some examples for POTS. We then study featureinterations in setion 3.4.3.1 POTS and its propertiesExample 2. A more omplete POTS model is de�ned using the guarded om-mand language of setion 2.4. In �gure 2, we model the user: she may ausethe phone to go o�hook or onhook at will (nondetnondetnondet is a shorthand for a hoieamong all possible values of the type), and while the phone is o�hook shemay dial a number.In �gure 3, we model the exhange (without tehnial details). It onsistsof n idential agents, one for eah user. It has a variable st, for status, whihis initially idle. When the user goes o�hook, st beomes dialt, for dialtone.If st is idle and another person tries to ring us, st beomes ringing, andwe note the identity of the aller. If two users i; j simultaneously ring a thirdone k, the exhange must arbitrate by hoosing one of them to sueed (getsringing-tone) and the other one to fail (gets busy-tone). The exhange doesthis by setting ex[k℄.aller to i or to j.The system onsists of an array of exhanges and an array of users. Notiethe parameter for EXCH: it is given the value of its own number, whih italls s (for `self').

Proving feature non-interation with Alternating-Time Temporal Logi 9agentagentagent USERontrolsontrolsontrolsoffhook : boolean;dialed : Number;initinitinitoffhook := false;updateupdateupdateoffhook -> dialed := nondetnondetnondet;-> offhook := nondetnondetnondet;endagentendagentendagent; Fig. 2. Code for USERagentagentagent EXCH (s)ontrolsontrolsontrolsst : fidle, dialt, trying, busyt, ringingt, talking,ringing, talked, ended g;allee : Number;aller : Number;initinitinitst' := idle;updateupdateupdateuser[s℄.offhook & !user[s℄.offhook' -> st'=idle;st=idle & user[s℄.offhook' -> st' := dialt;st=idle & ex[j℄.allee=s &ex[j℄.st=trying & !user[s℄.offhook'-> st' := ringing; aller' := j;st=dialt & user[s℄.offhook'& user[s℄.dialed'=n -> allee' := n;...st=trying & allee=j & ex[j℄.st=idle & ex[j℄.aller'=s& user[s℄.offhook' -> st' := ringingt;st=trying & allee=j & ex[j℄.st=idle & ex[j℄.aller'!=s& user[s℄.offhook' -> st' := busyt;st=trying & allee=j & !ex[j℄.st=idle& user[s℄.offhook'-> st' := busyt;...endagentendagentendagent Fig. 3. Code for EXCHex : array 1..n of EXCH;ex[i℄ := EXCH(i);user[i℄ := USER Fig. 4. Code for POTS

10 Cassez/Ryan/ShobbensThe logi ATL is well-suited for expressing spei�ations of telephone sys-tems, beause the users are autonomous, and we are interested in whetherthey have the power to enfore ertain behaviours. Compared with the prop-erties de�ned using CTL in [17℄, ATL o�ers us the opportunity to distinguishbetween di�erent soures of non-determinism, whih makes the spei�ationreet our intentions more preisely. We illustrate with a few examples:1. Any phone may all any other phone. In [17℄ this was approximated inCTL:8i 6= j: A2E3(ex[i℄.st=talking & ex[i℄.allee=j)indiating that, in all reahable states, there is a path whih eventuallyleads to i and j talking to eah other. This is rather weaker than theintention, whih was that it is within i's and j's joint power that i initiatea suessful all to j. We may express that as 8i 6= jA2hhuser[i℄; user[j℄ii3(ex[i℄.st=talking & ex[i℄.allee=j)A similar formula whih is slightly weaker but has the advantage of beingwithin hhuser[i℄; user[j℄ii-ATL is 8i 6= j:hhuser[i℄; user[j℄ii23(ex[i℄.st=talking & ex[i℄.allee=j)2. The user annot hange the allee without replaing the hand-set. In [17℄it is expressed in CTL as:A2 ((ex[i℄.allee=j & ex[i℄.st=trying)-> (A[ex[i℄.allee=j W ex[i℄.st=idle ℄))This is rather stronger than the intention: this forbids any hange ofallee. This CTL formula beomes false in the ontext of all-forwarding,where the system may hange the allee as i sets up the all. In ATL, weapture the requirement more preisely:A2(ex[i℄.allee=j & ex[i℄.st=trying-> [[user[i℄℄℄(ex[i℄.allee=j W ex[i℄.st=idle))This weaker formula is true even if the system an hange the allee.Again, a slightly weaker formula in [[user[i℄℄℄-ATL is possible:[[user[i℄℄℄2(ex[i℄.allee=j & ex[i℄.st=trying-> (ex[i℄.allee=j W ex[i℄.st=idle))3.2 Feature onstrut de�nitionThe feature onstrut that we use here is an adaptation of the generi idea of[17℄. The base language that we use is a simpli�ation of the Reative Modulesformalism [2℄ used by Moha [1℄, that we presented in setion 2.4.Following [17℄, a feature an be seen as a presription for hanging abasi system. That whih is assumed of a basi system will appear in therequirerequirerequire setion of the feature. Here, we an require partiular agents andvariables. The feature will add to the system new variables and agents todeal with the feature in the introdueintrodueintrodue setion. Beause many features need tobe ativated before taking e�et, we usually introdue a boolean variable usethat indiates whether the feature is ativated. Finally, the hangehangehange setionindiates how the behaviour of the existing system is hanged. Currently, wehave four types of hanges:

Proving feature non-interation with Alternating-Time Temporal Logi 111. ififif ondition thenthenthen overrideoverrideoverride means that when ondition is evaluated totrue, the existing ommands are disabled, and only the ommand isallowed to exeute.2. ififif ondition thenthenthen expandexpandexpand means that when ondition is evaluated totrue, the ommand is allowed to exeute. The existing ommands arestill enabled as before: the non-determinism of the system is inreased.3. ififif ondition thenthenthen imposeimposeimpose means that when ondition is evaluated to true,the ommand , whih is a set of parallel assignments x0 := e, determinesthe new values of these x variables. The values of other variables are setby an existing ommand.4. ififif ondition thenthenthen treattreattreat means that when ondition is evaluated to true,the ommand , whih is a set of parallel assignments x := e, is used todetermine the value of x in expressions. The variable x still exists, andwill be aessible again when the ondition reverts to false.Only the last two types were present in [17℄. The �rst two types an alsobe de�ned both in terms of syntati manipulations or semantially, on theagent's transitions.Finally a feature omes with propertiespropertiesproperties, that desribe its essential fun-tionalities in a high-level way. These properties need not exhaustively speifythe system. The spei�er is intended to write properties whih should be pre-served when this feature is ombined with other features. In this paper, weadvoate the use of ATL* for properties.Example 3. It is now very ommon to have many features on top of POTS.These features ome in many variants, and are now being standardised [8℄.For instane, the feature Call ForwardWhen Busy (CFB) adds the follow-ing typial behaviour: When CFB is ative and the subsriber's line is busy,inoming alls are diverted to a phone number pre-spei�ed by the subsriber.The number an be hanged, and the feature an be enabled or disabled atsubsriber's will. The feature is implemented by hanging the exhange ofthe aller, and adding new ommands to the subsriber i, see �g. 5.The fundamental property of forwarding is that user j an ensure thatany user who tries to reah him will try user k instead, and j an hoose anyk. Note the sope of the quanti�ations (f. remark 1.2).Example 4. The feature Ring Bak When Free (RBWF) also avoid the an-noyane of busy allees, but this time it is a feature of the aller (me, say): IfI get the busy tone when alling a number, I an ativate RBWF. RBWF willthen attempt to establish a onnetion as soon as the allee is free. It �rstalls me with a speial ring; when I then lift the handset, a all is initiatedon my behalf.To model this (see �g. 6), we introdue awaited, the number we are try-ing to reah. Sine we introdue a single number, only the last RBWF maybe pending. Also we use Moha's notion of eventeventevent to model ativation: it is

12 Cassez/Ryan/Shobbensfeaturefeaturefeature CFB(i)requirerequirerequire ...introdueintrodueintrodueagentagentagent USER[i℄ontrolsontrolsontrolsuse : booleanforw : Numberinitinitinituse := falsehangehangehangeagentagentagent USER[i℄expandexpandexpand use := nondetnondetnondet;expandexpandexpand forw := nondetnondetnondet;agentagentagent EXCH(i)ififif st = trying & allee = i & user[i℄.use & ex[i℄.st != idlethenthenthen overrideoverrideoverride allee' := user[i℄.forw;propertiespropertiesproperties8k:hhuser[i℄ii328j:(ex[j℄.st=trying & ex[j℄.allee=i & ex[i℄.st!=idle-> ex[j℄.st=trying U (ex[i℄.st=trying & ex[i℄.allee=k))Fig. 5. Call Forward when Busyan instantaneous ation, whose ourrene an be aused by event! (equiv-alent to toggling event) and tested by event? (equivalent to the onditionevent=event').Let us have a loser look at the properties: the �rst one simply says thatusers together an make my ringbak senario sueed: I hear the speialringing, then I take the phone o�hook and all j. The ollaboration of allusers is needed for this suess:� i must of ourse enable the feature.� j must agree to be �rst busy, then idle.� The ollaborations of other users is needed as well, sine they ould on-spire to hold i or j busy all the time.The user i alone is muh less powerful: He might deide not to use thefeature at all, by not setting ativate. (Indeed, the fat that the user anavoid using the feature is important to our main result, setion 3.4.)This leads to a natural ategorisation of features, similar in motivation to[7℄, but di�erent in detail: features an be ategorised aording to the set ofplayers that our in the ooperation modality of the ATL formula of theirproperties. This essentially says who is in ontrol of the feature. Spei�ally,we an distinguish single-user features, two-users features, group features,system features (where system is a spei� player).

Proving feature non-interation with Alternating-Time Temporal Logi 13featurefeaturefeature RBWF(i)requirerequirerequire ...introdueintrodueintrodueagentagentagent USER(i)eventeventevent ativateagentagentagent EXCH(i)ontrolsontrolsontrolsuse : booleanawaited : Numberspeial_ring : booleaninitinitinituse := false;speial_ring := false;hangehangehangeagentagentagent USER(i)expandexpandexpand ativate!agentagentagent EXCH(i)ififif st = busyt & user[i℄.ativate?thenthenthen imposeimposeimpose use' := true ; awaited' := dialed;ififif use & st = idle & ex[awaited℄.st = idlethenthenthen overrideoverrideoverride allee' := awaited;st' := ringing;speial_ring' := true;ififif use & st = ringing & speial_ring & user[i℄.offhook'thenthenthen overrideoverrideoverride st' := trying;speial_ring' := false; use' := falsepropertiespropertiespropertieshhuserii 3((ex[i℄.st = ringing & ex[i℄.speial_ring)U (user[i℄.offhook U ex[i℄.talking & ex[i℄.allee = j))hhuser[i℄ii !ex[i℄.usehhuser[i℄ii3((ex[i℄.use & ex[i℄.awaited=j) | (ex[i℄.st=ringingt))Fig. 6. Ring Bak When Free3.3 Feature Construt SemantisWe de�ne the semantis of the feature onstruts overrideoverrideoverride, imposeimposeimpose, expandexpandexpandand treattreattreat by syntati transformation of the Moha-like language. Dealingwith the requirerequirerequire and introdueintrodueintrodue setions is straightforward: for requirerequirerequire, wehek that the required items are present (the feature integration fails if theyare not), and for introdueintrodueintrodue we simply add the new data.The hangehangehange setion is dealt with as follows. Suppose we start with theprogram in �gure 7, and we integrate a feature.

14 Cassez/Ryan/Shobbensagentagentagent Aontrolsontrolsontrols: : :initinitinit: : :updateupdateupdateg1 -> 1;g2 -> 2;...gn -> n;endagentendagentendagent Fig. 7. Some arbitrary ode for an agent A.� For the feature ififif g thenthenthen imposeimposeimpose x := e, the update setion of the programbeomes:g1 & !g -> 1;g1 & g -> 1 [x:=e℄;g2 & !g -> 2;g2 & g -> 2 [x:=e℄;...gn & !g -> n;gn & g -> n [x:=e℄;The meaning of [x := e℄ where is a set of assigments is to replae (ifpresent) the assigment of x in by the new one x := e, or to add it (ifnot present). (Reall that in Moha the list of assignments are performedsimultaneously.)� For the feature ififif g thenthenthen overrideoverrideoverride , the update setion of the programbeomes:g1 & !g -> 1;g2 & !g -> 2;...gn & !g -> n;g -> ;� For the feature ififif g thenthenthen expandexpandexpand , the update setion of the programbeomes:

Proving feature non-interation with Alternating-Time Temporal Logi 15g1 -> 1;g2 -> 2;...gn -> n;g -> ;� For the feature ififif g thenthenthen treattreattreat x = f , the update setion of the programbeomes:g1 -> 1';g2 -> 2';...gn -> n';where x0i is i but with x replaed with the onditional expression g?f : x(i.e. if g then f else x).3.4 Feature interationsThanks to the properties that are part of our features, we an de�ne inter-ations as a disrepany between the expeted properties of the system withfeatures and the atual ones. We note a feature as (F; �) where � is the prop-erties setions and F is the desription of how the feature is implemented.Applying the feature F to a system S satisfying its requirements will be de-noted S + F . This operation is also alled \feature integration". We assumethat the requirerequirerequire setion, the hangehangehange setion, and the introdued propertiesare onsistent with eah other: that is, that S + F j= � for any S satisfyingthe requirements.Now we an de�ne a feature interation as non-preservation of the prop-erties of integrated features:� The feature F interats with the system S by destroying some ore prop-erty �S of the system: S + F 6j= �S ;� The feature F2 interats with the feature F1 by destroying a property �1introdued by F1: S + F1 + F2 6j= �1.The goal of feature-oriented programming is to be able to produe rapidlysystems with a large number of features integrated, and to ensure the abseneof feature interations for suh systems.It is thus important to prove generi preservation properties: a feature Fpreserves all properties of a lass C if (for all � 2 C) S j= � implies S+F j= �.We have seen that simulation relations are the right tool to this end:they ensure that a wide lass of properties are preserved when adding afeature. These relations give a preise meaning to the notion of bakwardompatibility.

16 Cassez/Ryan/ShobbensIn partiular, if we an show that S + F A-simulates S (for any S),when integrating F in a new system, we know that many properties of thisnew system do not need to be heked. Features are usually intended toaugment the power of their users: formulas talking about these powers arethus preserved.Proving this property of F an sometimes be done easily. First, we de-�ne an A-enabled variable use introdued by F (where A � �) to have thefollowing properties:� the variable is introdueintrodueintrodued by F in some agent a� the variable is initially false: use:=false appears in an initinitinitintrodueintrodueintrodued byF .� the variable an only be set by agents in A using expandexpandexpanded ommands.This an often be heked syntatially: For instane, if use is only setto true by an expandexpandexpanded ommand of an agent in A, as in CFB, this isimmediate. In RBWF, this is indiret: use is ontrolled by exh[i℄ (anagent outside A) but the guard ontains a variable ativate ontrolledby an expandexpandexpanded ommand of user[i℄. More generally, this an be veri�edby heking that the feature F 0, whih is F without the expandexpandexpand of agentsin A, satis�es A2:use, by whih we mean that for any base S, S +F 0 �A2:use.This ondition an be used to ensure that, if agents in A behave exatly asthey did in the old system, they will not enable the feature.Theorem 1. If all hanges of F are of one of the following forms:� a hange that is guarded by an A-enabled variable introdued by F� an imposeimposeimpose where all a�eted variables are introdueintrodueintrodued by F .� an expandexpandexpand of an agent in A.� \ififif g ^ g0 thenthenthen overrideoverrideoverride " in an agent in � � A, if g ! is a ommandof this agent.then F is A-preserving, i.e. S + F A-simulates S for any S that satis�es therequirerequirerequire lause.The idea of the proof is to note that the relation obtained by requiring thatall old variables have the same value, and that the enabling variables useare false, is an A-simulation from S to S + F . Thus all properties written inhhAii-ATL are preserved. We annot give a real proof of this theorem here,as it requires the preise semantis of our Moha-like language whih is notgiven in this paper.Example 5. The features CFB(i) and RBWF(i) are A-preserving for any set ofagents A ontaining user[i℄. Sine their properties are also in this fragment,these features will not interat (in the sense of this paper).Note that it is usually onsidered that these features do interat, sine auser A that alled B, was forwarded to C and ativated RBWF might well

Proving feature non-interation with Alternating-Time Temporal Logi 17end up alling bak C in some implementations, while he probably intendedto all B. Here this interation is orretly, but silently, handled by our model,sine it does not belong to the lass of interations de�ned in this paper.3.5 Preliminary ExperimentsCurrently, there is no automati translation from our Moha-like language toMoha. However, we have suessfully implemented the model of the POTSgiven in Fig. 2 to 4 of setion 3.1 with 4 users, and heked the propertiesdisussed in setion 3.1.4 ConlusionsWe have shown a general ase in whih introduing a feature provably doesnot break a lass of properties: this holds when integrating the feature resultsin a U -simulation of the original system for some group of users U , and theproperties assert apabilities of the users in U . We have indiated four typesof hanges that are U -preserving. We illustrated with examples from thetelephone system. Most telephone features naturally �t into one of the asesof the theorem. Thus the proofs of non-interation that [17℄ had to perform forall ombination of features an now be obtained by a simple, single syntatihek.The general tehnique, in priniple, an work for any logi and its assoi-ated notion of simulation. However, we have found that ATL* provides a rihset of fragments and assoiated simulations, that are suited to the applia-tion domain: features are valuable only beause they o�er new apabilities totheir users, and thus their properties are naturally expressed in ATL*. Atu-ally, our example properties were all in the smaller fragment hhAii-LTL[3℄, forwhih the weaker hhAii-trae ontainment suÆes. We didn't pursue this lineof researh sine all our features happen to be preserving also the strongerhhAii-simulation, and this preservation is easier to show.The speial ase where U = ; allows to show the preservation of invariantsof the system (or more generally, ACTL* formulas). However, the orrespond-ing simulation only allows features to make their agents more deterministi,whih is rarely useful.We have seen intuitively appealing properties of the form A2hhUii3�.Our method ould be extended by disovering the \simulation" relation or-responding to these formulas, and looking for a simple way to prove thata feature preserves this relation. We plan to de�ne a suitable notion of U-resettable systems. Intuitively, the telephone system is resettable by its users:if they all hang up and swith o� their features, the system returns to its ini-tial state. We would like to de�ne this preisely, and prove of U -resettablesystems that hhUii3� is equivalent to A2hhUii3� (from left to right is done

18 Cassez/Ryan/Shobbensby pre�xing the strategy with a reset). This would imply that formulas ofthe form A2hhUii3� are preserved by U -onservative features.The idea of this paper may be seen as a speial ase of a proof rule of theform S � � ondition on F; �S + F � �whih allows us to preserve the property � through the addition of thefeature F . In this paper, the ondition on F; � is that F is U -onservative and� is in hhUii-ATL*. Other onditions on F; � an be used. In another paper,we are modelling features as warps in the transition system and deriving from� a simpler formula whih the warp is required to preserve [11℄.A related problem is to show the internal onsisteny of features, by whihwe mean that S + F � � for any S that satis�es the requires lause. Byinserting the needed properties in the requires lause, the ombination offeatures ould eventually beome a matter of plug and play, with well de�nedand easily ombinable ompatibility properties.Finally, we used here only two levels for desribing a property: the level ofmodels, and of formulas. Lower levels indiating how to integrate features atthe level of ode would make the approah pratial, and heking onsistenybetween levels will improve our on�dene in features.Ahkowledgments. The three authors are members of the FIREworks3 EspritWorking Group, and gratefully aknowledge support for travel whih enabledthem to meet together. Mark Dermot Ryan also aknowledges British Tele-om for generous support, and Pierre-Yves Shobbens thanks the Universityof Birmingham for funding an invited professorship that provided a furtheropportunity to work on this material.Referenes1. R. Alur, H. Anand, R. Grosu, F. Ivani, M. Kang, M. MDougall, B.-Y. Wang,L. de Alfaro, T. Henzinger, B. Horowitz, R. Majumdar, F. Mang, C. Meyer,M. Minea, S. Qadeer, S. Rajamani, and J.-F. Raskin. Moha User Manual.University of California, Berkeley. www.ees.berkeley.edu/~moha.2. R. Alur and T. Henzinger. Reative modules. Formal Methods in SystemDesign, 15(1):7{48, 1999.3. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating re�nementrelations. In D. Sangiorgi and R. de Simone, editors, CONCUR 98: ConurrenyTheory, Leture Notes in Computer Siene 1466, pages 163{178. Springer-Verlag, 1998.4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logi.In Proeedings of the 38th Annual Symposium on Foundations of ComputerSiene, pages 100{109. IEEE Computer Soiety Press, 1997.3 www.s.bham.a.uk/~mp/fireworks/

Proving feature non-interation with Alternating-Time Temporal Logi 195. M. Calder and E. Magill, editors. Feature Interations in Teleommuniationsand Software Systems VI. IOS Press, 2000.6. M. Calder and S. Rei�. Modelling legay teleommuniations swithing systemsfor interation analysis. In Systems Engineering for Business Proess Change.Springer Verlag.7. E. Cameron, N. Gri�eth, Y.-J. Lin, M. Nilson, W. Shnure, and H. Velthui-jsen. A feature interation benhmark for in and beyond. In W. Bouma andH. Velthuijsen, editors, Feature Interations in Teleommuniation Systems.IOS Press, 1994.8. CCITT. Reommendation Q.1215, Distributed Funtional Plane for IntelligentNetwork CS1., 1992.9. E. M. Clarke and E. A. Emerson. Synthesis of synhronization skeletons forbranhing time temporal logi. In D. Kozen, editor, Logi of Programs Work-shop, number 131 in LNCS. Springer Verlag, 1981.10. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Cheking. MIT Press,1999.11. H.-D. Ehrih, M. D. Ryan, and P.-Y. Shobbens. Preserving temporal proper-ties through time warps. In preparation.12. S. Katz. A superimposition ontrol onstrut for distributed systems. ACMTransations on Programming Languages and Systems, 15(2):337{356, April1993.13. K. Kimbler and L. G. Bouma, editors. Feature Interations in Teleommuni-ations and Software Systems V. IOS Press, Sept. 1998.14. M. Kolberg, E. Magill, D. Marples, and S. Rei�. Results of the seond featureinteration ontest. In Calder and Magill [5℄, pages 311{325.15. H. Korver. Deteting feature interations with C�sar/Ald�ebaran. Sieneof Computer Programming, 29(1{2):259{278, July 1997.16. K. L. MMillan. Symboli Model Cheking. Kluwer Aademi Publishers, 1993.17. M. Plath and M. D. Ryan. Entry for FIW'00 Feature Interation Contest.Tehnial report, Shool of Computer Siene, University of Birmingham, 2000.Available from www.s.bham.a.uk/~mdr/papers.html. Also summarised in[?℄.18. M. C. Plath and M. D. Ryan. Feature integration using a feature onstrut.Siene of Computer Programming, 2000. To appear. A shorter and earlierversion of this paper appeared in [13℄, pages 150{164.

