Proving feature non-interaction with
Alternating-Time Temporal Logic

Franck Cassez', Mark Dermot Ryan?, and Pierre-Yves Schobbens?
! TRCCyN - BP 92101, 1 rue de la Noé, 44321 Nantes cedex 03, France.
Franck.Cassez@ircyn.ec-nantes.fr

School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, England. mdr@cs.bham.ac.uk

Institut d’Informatique, Facultés Universitaires de Namur, Rue
Grandgagnage 21, 5000 Namur, Belgium. pys@info.fundp.ac.be

1 Introduction

Feature Interaction. When engineers design a system with features, they wish
to have methods to prove that the features do not interact in ways which are
undesirable. A considerable literature is devoted to this ‘feature interaction
problem’ [13,5]. One approach to demonstrating that features do not interact
undesirably is to equip them with properties which are intended to hold
of a system having the feature [17]. In this view, a feature is a pair (F,¢)
consisting of the implementation of the feature F' and a set of properties
¢. Integrating a feature (F,¢) with a base system S consists of modifying
the base system in the way described by the feature implementation and
obtaining S + F'. The integration is deemed successful if the resulting system
satisfies the set of properties ¢ corresponding to the feature. Evidence that
a feature (Fy, ¢1) does not negatively interact with feature (Fs, ¢2) may be
obtained by verifying that introducing F;, in S + Fi, (obtaining S + Fy + Fy)
does not destroy the properties ¢, previous introduced by feature Fj, and
vice versa.

Model-Checking. Model checking [10] may be used to show that the featured
system has the desired properties (cf. [6,17,16,14]). However, the approach
described may involve checking the same property again and again each time
a new feature is introduced, to check that a previously introduced feature
has not been broken. Since model checking is computationally expensive, it is
worthwhile to find methods which avoid these re-checks. For example, we may
be able to prove generally that a certain feature does not destroy properties
in a certain class. This would obviate the need to re-check properties in that
class when the feature is introduced.

Users’ Viewpoints and Conservative Features. A general result defining a
class of properties which are provably not broken by the introduction of a
new feature could be inspired by a number of intuitions. In this paper, we
develop such a result based on the idea that a feature which adds to the

2 Cassez/Ryan/Schobbens

capabilities of a user (and does not subtract from them) should not break
properties which assert capabilities of this user. Let us look at the notion of
capabilities in more detail.

A telephone system is usually made of a number of users and a network
managing the calls. Many features of telephone systems are designed so that
they add to the capabilities (or powers), of the subscribing user, without sub-
tracting from them. For example, a user j who subscribes to call-forwarding
now has the power to forward his or her calls to another user, but has not
lost any capabilities in the process. When this is the case, we say that the
feature is j-conservative. More generally, if U is a set of users, a feature is
U-conservative if any behaviour of the system which U could enforce before
the feature was added, U can also enforce it after the feature is added. The
principal idea in this paper is that a U-conservative feature does not break
properties which assert capabilities of the group U of users.

Framework. To formalise this intuition, we propose to use Alternating-time
Temporal Logic [4] (ATL), which allows us to describe precisely the proper-
ties of the different agents (or users) involved in a system, and the strategies
they have for achieving their goals. ATL is a branching temporal logic based
on game theory. It contains the usual temporal operators (next, always, until)
plus cooperation modalities {(A) ¢, where A is a set of players. This modal-
ity quantifies over the set of behaviours and means that A has a collective
strategy to enforce ¢, whatever the choices of the other players. ATL gen-
eralises CTL, and similarly ATL* generalises CTL*, u-ATL generalises the
p-calculus. These logics can be model-checked by generalising the techniques
of CTL, often with the same complexity.

Outline of the paper. In section 2 we recall the basic concepts of ATL and
ATL* and their semantics on ATSs. This section also introduces the Mocha-
like language we use to describe reactive systems. The next section 3 which
is the core of the paper describes the feature construct for our Mocha-like
language and states the properties-preserving theorem. Finally in section 4
we discuss some directions for future work.

2 Alternating-time temporal logic

Alternating-time temporal logic (ATL) is based on CTL. Let us first recall
a few facts about CTL. CTL [9] is a branching-time temporal logic in which
we can express properties of reactive systems. For example, properties of
cache-coherence protocols [15], telephone systems [17], and communication
protocols have been expressed in CTL. One problem with CTL is that it
does not distinguish between different sources of non-determinism. In a tele-
phone system, for example, the different sources include individual users, the

environment, and internal non-determinism in the telephone exchange. CTL

Proving feature non-interaction with Alternating-Time Temporal Logic 3

provides the A quantifier to talk about all paths, and the E quantifier to assert
the existence of a path. Ay means that, no matter how the non-determinism
is resolved, ¥ will be true of the resulting path. E¢) asserts that, for at least
one way of resolving the non-determinism, ¢ will hold. But because CTL does
not distinguish between different types of non-determinism, the A quantifier
is often too strong, and the E quantifier too weak. For example, if we want to
say that user i can converse with user j, CTL allows us to write the formulas

AOtalking(i,j), EOtalking(i,j).

The first one says that in all paths, somewhere along the path there is a state
in which 4 is talking to 7, and is clearly much stronger than the intention. The
second formula says that there is a path along which 7 is eventually talking
j. This formula is weaker than the intention, because to obtain that path we
may have to make choices on behalf of all the components of the system that
behave non-deterministically. What we wanted to say is that users ¢ and j
can resolve their non-deterministic choices in such a way that, no matter how
the other users or the system or the environment behaves, all the resulting
paths will eventually have a state in which i is talking 7. Of course, the fact
that 4 is talking to j requires the cooperation of j. This subtle differences in
expressing the properties we want to check can be captured accurately with
ATL.

Alternating-time temporal logic (ATL) [4] generalises CTL by introducing
agents, which represent different sources of non-determinism. In ATL the A
and E path quantifiers are replaced by a unique path quantifier ((4)), indexed
by a subset A of the set of agents. The formula {{A))1) means that the agents
in A can resolve their non-deterministic choices such that, no matter how
the other agents resolve their choices, the resulting paths satisfy). We can
express the property that user i has the power, or capability, of talking to j
by the ATL formula’

(i) Ctalking(i,j) .

We read ((A))t) as saying that the agents in A can, by cooperating together,
force the system to execute a path satisfying ¢. If A is the empty set of
agents, ((A)1) says that the system will execute ¢ without the cooperation of
any agents at all; in other words, ()% is equivalent to At in CTL. Dually,
{(ZW (where X is the entire set of agents) is a weak assertion, saying that
if all the agents conspire together they may enforce i, which is equivalent to
Ev in CTL.

2.1 ATL and ATL*

Let P be a set of atomic propositions and X' a set of agents. The syntax of
ATL is given by

¢=p T2 |1V | (Ao U] | (AT | {(ANOo
! We write ((i)¢ instead of ({i})v.

4 Cassez/Ryan/Schobbens

where p € P and A C Y. We use the usual abbreviations for —, A in terms
of =, V. The operator (()) is a path quantifier, and O (next), O (always) and
U (until) are temporal operators. The logic ATL is similar to the branching-
time logic CTL, except that path quantifiers are parameterised by sets of
agents. As in CTL, we write ((A)<C¢ for (AN[T U 4.

While the formula (A)1 means that the agents in A can cooperate to
make 1) true (they can “enforce”), the dual formula [[A]]¢) means that the
agents in A cannot cooperate to make 1 false (they cannot “avoid”). The
formulas [[A]]<¢, [[A]]O¢, and [[A]]O¢ stand for = A)O-¢, =(A)O—¢, and
~(AYO-.

The logic ATL* generalises ATL in the same way that CTL* generalises
CTL, namely by allowing path quantifiers and temporal operators to be
nested arbitrarily.

For a subset A C X' of agents, the fragment (A)-ATL of ATL consists of
ATL formulas whose only modality is ((A)), and that does not occur within
the scope of a negation. The ((A))-ATL* fragment of ATL* is defined similarly.

2.2 Alternating transitions systems

Whereas the semantics of CTL is given in terms of transition systems, the
semantics of ATL is given in terms of alternating transition systems (ATSs).
An ATS over a set of atomic propositions P and a set of agents X is a triple
S = (Q,m,6,I), where Q is a set of states and 7 : Q — 27 maps each state
to the set of propositions that are true in it, and

5:Q x 5 —22°

is a transition function which maps a state and an agent to a non-empty set
of choices, where each choice is a non-empty set of possible next states. If
the system is in a state ¢, each agent a chooses a set), € (g, a); the system
will move to a state which is in [, ; Q.. We require that the system is non-
blocking and that the agents together choose a unique next state; that is,
for every ¢ and every tuple (Q,)q.ex of choices @, € d(g,a), we require that
Naeyx Qa is a singleton. Similarly, the initial state is specified by 1 : X' — 229
I maps each agent to a set of choices. The agents together choose a single
initial state: for each tuple (Q,)q.ex of choices @, € I(a), we require that
Naex Qa is a singleton.

For two states ¢ and ¢', we say that ¢' is a successor of ¢ if, for each
a € X, there exists Q' € d(q,a) such that ¢’ € Q'. We write d(¢q) for the set
of successors of ¢; thus,

= U @
a€X Qed(q,a)

A computation of S is an infinite sequence A = qo,q1,¢2 ... of states such
that (for each) g;41 is a successor of ¢;. We write A[0, 7] for the finite prefix

qo, 41,92, - --,4i-

Proving feature non-interaction with Alternating-Time Temporal Logic 5

Often, we are interested in the cooperation of a subset A C X' of agents.
Given A, we define d(q, A) = {(N,c 4 Qa | Qu € (g, a)}. Intuitively, when the
system is in state ¢, the agents in A can choose a set T' € §(¢, A) such that,
no matter what the other agents do, the next state of the system is in T'. Note
that d(q, {a}) is just d(g,a), and §(g, X') is the set of singleton successors of
q.

Ezample 1 ([4]). Consider a system with two agents “user” u and “telephone
exchange” e. The user may lift the handset, represented as assigning value
true to the boolean variable “ofthook”. The exchange may then send a tone,
represented by assigning value true to the boolean variable “tone”. Initially,
both variables are false. Clearly, obtaining a tone requires collaboration of
both agents.

We model this as an ATS S = (Q, 7,9,) over the agents X' = {u,e} and
propositions P = {offhook,tone}. Let) = {00,01,10,11}. 00 is the state in
which both are false, 01 the state in which “offhook” is false and “tone” is
true, etc. (thus, w(00) = @, 7(01) = {tone}, etc.). The transition function §
and initial states I are as indicated in the figure.

4(q,a) u e
00]{{00, 01}, {10, 11]} {{00,10}}
10({{10,11}} {{00, 10}, {01,11}}
01]{{00, 01}, {10, 11}} {{01,11}}
11|{{10,11}} {{01,11}}

7[{{00, 011} 100, 10}}

Fig. 1. The transition function of the ATS.

2.3 Semantics

The semantics of ATL uses the notion of strategy. A strategy for an agent
a € X is a mapping f, : Q* — 29 such that f,(\-q) € d(q,a) with X € Q*.
In other words, the strategy is a recipe for a to make its choices. Given a
state ¢, a set A of agents, and a family Fy = {f, | a € A} of strategies,
the outcomes of F4 from ¢ are the set out(q, F'a) of all computations from ¢
where agents in A follow their strategies, that is,

out(qo, Fa) = {X=qo, 1. q2, - - | Vi, gir1 € d(q;) N (ﬂ fa()‘[():i]))}'
a€A

If A =0, then out(q, Fa) is the set of all computations, while if A = X' then
it consists of precisely one computation.
The semantics of ATL* is as CTL*, with the addition of:

6 Cassez/Ryan/Schobbens

e g F (AN if there exists a set Fa4 of strategies, one for each agent in A,
such that for all computations A € out(q, F4) we have A E).

Remark 1. To help understand the ideas of ATL, we state below some validi-
ties, and more surprising non-validities.

1. If A C B, then {(A)yY — (B)v, and [[B]]yy — [[A]]¢. Intuitively, any-
thing that A can enforce can also be enforced by a superset B; and if
anything that B is powerless to prevent cannot be prevented by a subset
of B.

2. In CTL, A distributes over A. But in general, {(4)(¢1 At)2) only implies
({ANY1) A ((AN)2). The first formula asserts that A can enforce 1)1 A)s,
while the second is weaker, asserting that A has a way to enforce ¥; and
another, possibly incompatible, way to enforce 5. Similarly, { A)) (¢ Vibs)
and (A1 V (AN, are different (for A # X). The first one asserts that
A can enforce 11 V 19, but which of the two is true might be chosen by
others. This is weaker than the second formula, which asserts that A can
guarantee 11, or A can guarantee ¥, but nobody can choose which. The
strongest variant where A can choose, is expressed as: {(A)) (11 A —)2) A
(A (s A).

3. By repeating a cooperation inside a temporal operator, we weaken the
formula, for instance: {(A)OCd — (ANO(AN<C@. This is because the
strategies F'4 that A use in the outer modality may be adapted for the
inner modality, by shifting its time: each f(z) is simply f,(X-z), where
A is the path linking the points of evaluation of the two modalities. (Note
the CTL* validities EOO¢ — EOEC@ and AOCY +» AOAOE.)

2.4 Guarded command language

ATSs may be described using a Mocha-like guarded command language.
(Mocha [1] is the system modelling language used for ATL.) We illustrate
this with the system S of the preceding section.

agent USER
controls offhook;
init
offhook := false;
update
true -> ;
true -> offhook := true;

endagent;

Proving feature non-interaction with Alternating-Time Temporal Logic 7

agent EXCH
controls tone;
init
tone := false ;
update
true -> ;
offhook -> tone := true;
endagent;

The init clause gives the initial values of variables (if they are not mentioned,
their initial values are selected non-deterministically). The update clause
consists of a set of guarded commands, consisting of a guard (before the
arrow) and a command (after the arrow). The agents are run in parallel.
At each step, the guards in the agent are evaluated, and the agent chooses
one which evaluates to true. The command corresponding to that guard is
executed. If a variable is not assigned to in a command, it preserves its old
value. In particular, if the command is empty, nothing changes: the cryptic-
looking command true -> simply allows the user to wait. Every variable is
controlled by precisely one agent; only the controlling agent can assign to the
variable. Agents may refer to variables which are controlled by other agents
(for example, EXCH refers to offhook which is controlled by USER).

2.5 Simulation and trace containment

It is known in CTL that if a transition system S’ simulates another one S,
written S < S’, then all ACTL* formulas which hold of S also hold of S’.
(ACTL* is the universal fragment of CTL*, i.e. the fragment in which the
only path quantifier is A, and no negations are allowed which include A in
their scope.)

A similar result holds for ATL* [3]. Instead of a single notion of simulation,
they define a notion indexed by a set of agents A. Let S = (Q,n,d,I) and
S'=(Q',«',§',I') be ATSs over agents X, with P C P'. For a subset A C ¥
of agents, a relation H C Q x Q' is an A-simulation from S to S’ if?:

e For every set T' € I(A), there exists a set T’ € I'(A) such that for
every set R' € I'(X — A) there exists a set R € I(XY — A) such that
(TNR) x (T'NR') C H.

and, for all states ¢, ¢’ with H(q,q'), we have

o 7(q) =7'(¢") N P;

e For every set T' € §(q, A), there exists a set T' € §'(¢’, A) such that for
every set R' € §'(¢', X' — A) there exists a set R € d(q, ¥ — A) such that
(TNR) x (T'NR') C H.

2 Qur definition slightly generalises that of [3] by allowing multiple initial states
and new propositions and agents.

8 Cassez/Ryan/Schobbens

The intuition is that whatever A can do in S, A can also do it in S’ so that
whatever the other agents do in S’, they could already do it in S to yield a
similar state. Intuitively, S’ conserves all the capabilities A has in S, perhaps
adding some more.

We say that S’ A-simulates S, and write S <4 §’, if there is a simu-
lation from S to S’. Intuitively, this holds if A has a superset in S’ of the
capabilities it has in S. It is proved in [3] that S <4 S’ iff every ((4)-ATL*
formula satisfied by S is also satisfied by S’. This formalises the intuition just
mentioned, since formulas in ((A)-ATL* assert capabilities of A.

3 Features and the feature construct

Our goal in this paper is to show how certain properties can be preserved
through the addition of features. From this, we can demonstrate feature non-
interaction, as explained in the introduction.

Our approach is to define a feature construct for the Mocha-like guarded
command language introduced in section 2.4. The feature construct plays a
similar role to the one defined for SMV [17]; it is also similar to the idea of
superimposition [12]. Using it, we give examples of features and show, for
specific features, that the system without the feature is an A-simulation of
the system with the feature. From this, we conclude that properties of the
base system are inherited by the system with features.

This section is structured as follows. In section 3.1 we model a Plain Old
Telephone System (POTS) and some of its properties. Section 3.2 defines the
feature construct, and gives some examples for POTS. We then study feature
interactions in section 3.4.

3.1 POTS and its properties

Ezample 2. A more complete POTS model is defined using the guarded com-
mand language of section 2.4. In figure 2, we model the user: she may cause
the phone to go offhook or onhook at will (nondet is a shorthand for a choice
among all possible values of the type), and while the phone is offhook she
may dial a number.

In figure 3, we model the exchange (without technical details). It consists
of n identical agents, one for each user. It has a variable st, for status, which
is initially idle. When the user goes offthook, st becomes dialt, for dialtone.
If st is idle and another person tries to ring us, st becomes ringing, and
we note the identity of the caller. If two users i, 7 simultaneously ring a third
one k, the exchange must arbitrate by choosing one of them to succeed (gets
ringing-tone) and the other one to fail (gets busy-tone). The exchange does
this by setting ex[k] .caller to ¢ or to j.

The system consists of an array of exchanges and an array of users. Notice
the parameter for EXCH: it is given the value of its own number, which it
calls s (for ‘self’).

Proving feature non-interaction with Alternating-Time Temporal Logic

agent USER
controls
offhook : boolean;
dialed : Number;
init
offhook :
update
offhook -> dialed := nondet;
-> offhook := nondet;
endagent ;

false;

Fig. 2. Code for USER

agent EXCH (s)
controls
st : {idle, dialt, trying, busyt, ringingt, talking,
ringing, talked, ended };
callee : Number;
caller : Number;

init
st’ := idle;

update
user[s].offhook & !user[s].offhook’ -> st’=idle;
st=idle & user[s].offhook’ -> st’ := dialt;

st=idle & ex[j].callee=s &
ex[j].st=trying & 'user[s].offhook’

-> st’ := ringing; caller’ := j;
st=dialt & user[s].offhook’
& user[s].dialed’=n -> callee’ := n;

st=trying & callee=j & ex[j].st=idle & ex[j].caller’=s

& user[s].offhook’ -> st’ := ringingt;
st=trying & callee=j & ex[j].st=idle & ex[j].caller’!=s

& user[s].offhook’ -> st’ := busyt;
st=trying & callee=j & '!ex[j].st=idle

& user[s].offhook’-> st’ := busyt;

endagent

Fig. 3. Code for EXCH
ex : array 1..n of EXCH;

ex[i] := EXCH(i);
user[i] := USER

Fig. 4. Code for POTS

10 Cassez/Ryan/Schobbens

The logic ATL is well-suited for expressing specifications of telephone sys-
tems, because the users are autonomous, and we are interested in whether
they have the power to enforce certain behaviours. Compared with the prop-
erties defined using CTL in [17], ATL offers us the opportunity to distinguish
between different sources of non-determinism, which makes the specification
reflect our intentions more precisely. We illustrate with a few examples:

1. Any phone may call any other phone. In [17] this was approximated in
CTL:
Vi # j. ADEO (ex[i] . st=talking & ex[i].callee=j)
indicating that, in all reachable states, there is a path which eventually
leads to ¢ and j talking to each other. This is rather weaker than the
intention, which was that it is within ¢’s and j’s joint power that ¢ initiate
a successful call to j. We may express that as Vi # j
AO((user[i], user[j]) O (ex[i] .st=talking & ex[i].callee=j)
A similar formula which is slightly weaker but has the advantage of being
within ((user[i], user[j])-ATL is Vi # j:
{(user[i], user[j])OC (ex[i] . st=talking & ex[i].callee=j)
2. The user cannot change the callee without replacing the hand-set. In [17]
it is expressed in CTL as:
AD ((ex[i].callee=j & ex[i].st=trying)
-> (A[ex[i].callee=j W ex[i].st=idle 1))
This is rather stronger than the intention: this forbids any change of
callee. This CTL formula becomes false in the context of call-forwarding,
where the system may change the callee as i sets up the call. In ATL, we
capture the requirement more precisely:
AO(ex[¢] .callee=j & ex[i].st=trying
-> [[user[i]]](ex[i].callee=j W ex[i].st=idle))
This weaker formula is true even if the system can change the callee.
Again, a slightly weaker formula in [[user[i]]]-ATL is possible:
[[user[i]]]O(ex[i].callee=j & ex[i].st=trying
-> (ex[i].callee=j W ex[i].st=idle))

3.2 Feature construct definition

The feature construct that we use here is an adaptation of the generic idea of
[17]. The base language that we use is a simplification of the Reactive Modules
formalism [2] used by Mocha [1], that we presented in section 2.4.

Following [17], a feature can be seen as a prescription for changing a
basic system. That which is assumed of a basic system will appear in the
require section of the feature. Here, we can require particular agents and
variables. The feature will add to the system new variables and agents to
deal with the feature in the introduce section. Because many features need to
be activated before taking effect, we usually introduce a boolean variable use
that indicates whether the feature is activated. Finally, the change section
indicates how the behaviour of the existing system is changed. Currently, we

have four types of changes:

Proving feature non-interaction with Alternating-Time Temporal Logic 11

1. if condition then override ¢ means that when condition is evaluated to
true, the existing commands are disabled, and only the command ¢ is
allowed to execute.

2. if condition then expand ¢ means that when condition is evaluated to
true, the command c is allowed to execute. The existing commands are
still enabled as before: the non-determinism of the system is increased.

3. if condition then impose ¢ means that when condition is evaluated to true,
the command ¢, which is a set of parallel assignments z' := e, determines
the new values of these = variables. The values of other variables are set
by an existing command.

4. if condition then treat ¢ means that when condition is evaluated to true,
the command ¢, which is a set of parallel assignments = := e, is used to
determine the value of z in expressions. The variable z still exists, and
will be accessible again when the condition reverts to false.

Only the last two types were present in [17]. The first two types can also
be defined both in terms of syntactic manipulations or semantically, on the
agent’s transitions.

Finally a feature comes with properties, that describe its essential func-
tionalities in a high-level way. These properties need not exhaustively specify
the system. The specifier is intended to write properties which should be pre-
served when this feature is combined with other features. In this paper, we
advocate the use of ATL* for properties.

Ezample 3. It is now very common to have many features on top of POTS.
These features come in many variants, and are now being standardised [8].

For instance, the feature Call Forward When Busy (CFB) adds the follow-
ing typical behaviour: When CFB is active and the subscriber’s line is busy,
incoming calls are diverted to a phone number pre-specified by the subscriber.
The number can be changed, and the feature can be enabled or disabled at
subscriber’s will. The feature is implemented by changing the exchange of
the caller, and adding new commands to the subscriber i, see fig. 5.

The fundamental property of forwarding is that user j can ensure that
any user who tries to reach him will try user k instead, and j can choose any
k. Note the scope of the quantifications (cf. remark 1.2).

Example 4. The feature Ring Back When Free (RBWF) also avoid the an-
noyance of busy callees, but this time it is a feature of the caller (me, say): If
I get the busy tone when calling a number, I can activate RBWF. RBWF will
then attempt to establish a connection as soon as the callee is free. It first
calls me with a special ring; when I then lift the handset, a call is initiated
on my behalf.

To model this (see fig. 6), we introduce awaited, the number we are try-
ing to reach. Since we introduce a single number, only the last RBWF may
be pending. Also we use Mocha’s notion of event to model activation: it is

12 Cassez/Ryan/Schobbens

feature CFB(i)
require ...
introduce
agent USER[il]
controls
use : boolean
forw : Number

init
use := false
change
agent USER[i]
expand use := nondet;
expand forw := nondet;

agent EXCH(:)

if st = trying & callee = i & user[i].use & ex[i].st != idle
then override callee’ := user[i].forw;
properties

Vk.(user[i])) ©0OVj.(ex[j] .st=trying & ex[j].callee=i & ex[i].st!=idle
-> ex[j].st=trying U (ex[:].st=trying & ex[i].callee=k))

Fig. 5. Call Forward when Busy

an instantaneous action, whose occurrence can be caused by event! (equiv-
alent to toggling event) and tested by event? (equivalent to the condition
event=event’).

Let us have a closer look at the properties: the first one simply says that
users together can make my ringback scenario succeed: I hear the special
ringing, then I take the phone ofthook and call j. The collaboration of all
users is needed for this success:

e i must of course enable the feature.

e j must agree to be first busy, then idle.

e The collaborations of other users is needed as well, since they could con-
spire to hold i or j busy all the time.

The user i alone is much less powerful: He might decide not to use the
feature at all, by not setting activate. (Indeed, the fact that the user can
avoid using the feature is important to our main result, section 3.4.)

This leads to a natural categorisation of features, similar in motivation to
[7], but different in detail: features can be categorised according to the set of
players that occur in the cooperation modality of the ATL formula of their
properties. This essentially says who is in control of the feature. Specifically,
we can distinguish single-user features, two-users features, group features,
system features (where system is a specific player).

Proving feature non-interaction with Alternating-Time Temporal Logic 13

feature RBWF (i)
require ...
introduce
agent USER(i)
event activate
agent EXCH(i)
controls
use : boolean
awaited : Number
special_ring : boolean

init
use := false;
special_ring := false;
change

agent USER(i)
expand activate!
agent EXCH(i)
if st = busyt & user[i].activate?
then impose use’ := true ; awaited’ := dialed;

if use & st = idle & ex[awaited].st = idle

then override callee’ := awaited;
st’ := ringing;
special_ring’ := true;

if use & st = ringing & special_ring & user[i].offhook’
then override st’ := trying;
special_ring’ := false; use’ := false

properties
{(user)) ©((ex[il.st = ringing & ex[il.special_ring)
U (user[i].offhook U ex[i].talking & ex[i].callee = j))
{(user[i])) 'ex[i].use
{(user[i])© ((ex[i]l .use & ex[i].awaited=j) | (ex[i].st=ringingt))

Fig. 6. Ring Back When Free

3.3 Feature Construct Semantics

We define the semantics of the feature constructs override, impose, expand
and treat by syntactic transformation of the Mocha-like language. Dealing
with the require and introduce sections is straightforward: for require, we
check that the required items are present (the feature integration fails if they
are not), and for introduce we simply add the new data.

The change section is dealt with as follows. Suppose we start with the
program in figure 7, and we integrate a feature.

14 Cassez/Ryan/Schobbens

agent A
controls
init
update
gl -> ci;
g2 —> c2;
gn -> cn;
endagent

Fig. 7. Some arbitrary code for an agent A.

e For the feature if g then impose z := ¢, the update section of the program
becomes:

gl & !'g -> cl1;
gl & g -> cl [x:=e];
g2 & 'g -> c2;
g2 & g -> c2 [x:=el;

gn & !g -> cn;
gn & g -> cn [x:=e];

The meaning of ¢[z := e] where ¢ is a set of assigments is to replace (if
present) the assigment of z in ¢ by the new one z := e, or to add it (if
not present). (Recall that in Mocha the list of assignments are performed
simultaneously.)

e For the feature if g then override ¢, the update section of the program
becomes:

gl & !'g -> c1;
g2 & !'g -> c2;

gn & !g -> cn;
g —-> c;

e For the feature if g then expand c, the update section of the program
becomes:

Proving feature non-interaction with Alternating-Time Temporal Logic 15

gl -> ci;
g2 -> c2;
gn -> cn;
g —> c;

e For the feature if g then treat x = f, the update section of the program

becomes:
gl -> cl17;

g2 -> c2’;

gn -> cn’;

where 2} is ¢; but with z replaced with the conditional expression g7f : x
(i.e. if g then f else z).

3.4 Feature interactions

Thanks to the properties that are part of our features, we can define inter-
actions as a discrepancy between the expected properties of the system with
features and the actual ones. We note a feature as (F', ¢) where ¢ is the prop-
erties sections and F' is the description of how the feature is implemented.
Applying the feature F' to a system S satisfying its requirements will be de-
noted S + F. This operation is also called “feature integration”. We assume
that the require section, the change section, and the introduced properties
are consistent with each other: that is, that S + F' |= ¢ for any S satisfying
the requirements.

Now we can define a feature interaction as non-preservation of the prop-
erties of integrated features:

e The feature F' interacts with the system .S by destroying some core prop-
erty ¢g of the system: S + F [~ ¢s;

e The feature F, interacts with the feature F; by destroying a property ¢,
introduced by Fy: S+ Fy + F» [~ ¢1.

The goal of feature-oriented programming is to be able to produce rapidly
systems with a large number of features integrated, and to ensure the absence
of feature interactions for such systems.

It is thus important to prove generic preservation properties: a feature F
preserves all properties of a class C'if (forall ¢ € C) S |= ¢ implies S+ F |= ¢.

We have seen that simulation relations are the right tool to this end:
they ensure that a wide class of properties are preserved when adding a
feature. These relations give a precise meaning to the notion of backward
compatibility.

16 Cassez/Ryan/Schobbens

In particular, if we can show that S + F A-simulates S (for any S),
when integrating F' in a new system, we know that many properties of this
new system do not need to be checked. Features are usually intended to
augment the power of their users: formulas talking about these powers are
thus preserved.

Proving this property of F' can sometimes be done easily. First, we de-
fine an A-enabled variable use introduced by F (where A C X) to have the
following properties:

e the variable is introduced by F' in some agent a

e the variable is initially false: use:=false appears in an initintroduced by
F.

e the variable can only be set by agents in A using expanded commands.
This can often be checked syntactically: For instance, if use is only set
to true by an expanded command of an agent in A, as in CFB, this is
immediate. In RBWF, this is indirect: use is controlled by exch[i] (an
agent outside A) but the guard contains a variable activate controlled
by an expanded command of user[i]. More generally, this can be verified
by checking that the feature F’, which is F' without the expand of agents
in A, satisfies AO—use, by which we mean that for any base S, S+ F' E
ADO-use.

This condition can be used to ensure that, if agents in A behave exactly as
they did in the old system, they will not enable the feature.

Theorem 1. If all changes of F' are of one of the following forms:

a change that is guarded by an A-enabled variable introduced by F

an impose where all affected variables are introduced by F'.

an expand of an agent in A.

“f g A ¢’ then override ¢” in an agent in X — A, if ¢ — ¢ is a command
of this agent.

then F' is A-preserving, i.e. S + F A-simulates S for any S that satisfies the
require clause.

The idea of the proof is to note that the relation obtained by requiring that
all old variables have the same value, and that the enabling variables use
are false, is an A-simulation from S to S + F'. Thus all properties written in
{(A)-ATL are preserved. We cannot give a real proof of this theorem here,
as it requires the precise semantics of our Mocha-like language which is not
given in this paper.

Ezxample 5. The features CFB(i) and RBWF (i) are A-preserving for any set of
agents A containing user[i]. Since their properties are also in this fragment,
these features will not interact (in the sense of this paper).

Note that it is usually considered that these features do interact, since a
user A that called B, was forwarded to C and activated RBWF might well

Proving feature non-interaction with Alternating-Time Temporal Logic 17

end up calling back C' in some implementations, while he probably intended
to call B. Here this interaction is correctly, but silently, handled by our model,
since it does not belong to the class of interactions defined in this paper.

3.5 Preliminary Experiments

Currently, there is no automatic translation from our Mocha-like language to
Mocha. However, we have successfully implemented the model of the POTS
given in Fig. 2 to 4 of section 3.1 with 4 users, and checked the properties
discussed in section 3.1.

4 Conclusions

We have shown a general case in which introducing a feature provably does
not break a class of properties: this holds when integrating the feature results
in a U-simulation of the original system for some group of users U, and the
properties assert capabilities of the users in U. We have indicated four types
of changes that are U-preserving. We illustrated with examples from the
telephone system. Most telephone features naturally fit into one of the cases
of the theorem. Thus the proofs of non-interaction that [17] had to perform for
all combination of features can now be obtained by a simple, single syntactic
check.

The general technique, in principle, can work for any logic and its associ-
ated notion of simulation. However, we have found that ATL* provides a rich
set of fragments and associated simulations, that are suited to the applica-
tion domain: features are valuable only because they offer new capabilities to
their users, and thus their properties are naturally expressed in ATL*. Actu-
ally, our example properties were all in the smaller fragment ((A)-LTL[3], for
which the weaker ((A))-trace containment suffices. We didn’t pursue this line
of research since all our features happen to be preserving also the stronger
{(A)-simulation, and this preservation is easier to show.

The special case where U = () allows to show the preservation of invariants
of the system (or more generally, ACTL* formulas). However, the correspond-
ing simulation only allows features to make their agents more deterministic,
which is rarely useful.

We have seen intuitively appealing properties of the form AO(U) <.
Our method could be extended by discovering the “simulation” relation cor-
responding to these formulas, and looking for a simple way to prove that
a feature preserves this relation. We plan to define a suitable notion of U-
resettable systems. Intuitively, the telephone system is resettable by its users:
if they all hang up and switch off their features, the system returns to its ini-
tial state. We would like to define this precisely, and prove of U-resettable
systems that (U)<¢ is equivalent to AO(U)O¢ (from left to right is done

18 Cassez/Ryan/Schobbens

by prefixing the strategy with a reset). This would imply that formulas of
the form AO(U)<O¢ are preserved by U-conservative features.

The idea of this paper may be seen as a special case of a proof rule of the
form

SFEo¢ condition on F, ¢
S+FE¢

which allows us to preserve the property ¢ through the addition of the
feature F'. In this paper, the condition on F ¢ is that F' is U-conservative and
¢ is in (U))-ATL*. Other conditions on F, ¢ can be used. In another paper,
we are modelling features as warps in the transition system and deriving from
¢ a simpler formula which the warp is required to preserve [11].

A related problem is to show the internal consistency of features, by which
we mean that S + F F ¢ for any S that satisfies the requires clause. By
inserting the needed properties in the requires clause, the combination of
features could eventually become a matter of plug and play, with well defined
and easily combinable compatibility properties.

Finally, we used here only two levels for describing a property: the level of
models, and of formulas. Lower levels indicating how to integrate features at
the level of code would make the approach practical, and checking consistency
between levels will improve our confidence in features.

Achkowledgments. The three authors are members of the FIREworks® Esprit
Working Group, and gratefully acknowledge support for travel which enabled
them to meet together. Mark Dermot Ryan also acknowledges British Tele-
com for generous support, and Pierre-Yves Schobbens thanks the University
of Birmingham for funding an invited professorship that provided a further
opportunity to work on this material.

References

1. R. Alur, H. Anand, R. Grosu, F. Ivancic, M. Kang, M. McDougall, B.-Y. Wang,
L. de Alfaro, T. Henzinger, B. Horowitz, R. Majumdar, F. Mang, C. Meyer,
M. Minea, S. Qadeer, S. Rajamani, and J.-F. Raskin. Mocha User Manual.
University of California, Berkeley. www.eecs.berkeley.edu/ mocha.

2. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7 48, 1999.

3. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement
relations. In D. Sangiorgi and R. de Simone, editors, CONCUR 98: Concurrency
Theory, Lecture Notes in Computer Science 1466, pages 163-178. Springer-
Verlag, 1998.

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 100 109. IEEE Computer Society Press, 1997.

? www.cs.bham.ac.uk/ mcp/fireworks/

10.

11.

12.

13.

14.

15.

16.
17.

18.

Proving feature non-interaction with Alternating-Time Temporal Logic 19

M. Calder and E. Magill, editors. Feature Interactions in Telecommunications
and Software Systems VI. I0S Press, 2000.

M. Calder and S. Reiff. Modelling legacy telecommunications switching systems
for interaction analysis. In Systems Engineering for Business Process Change.
Springer Verlag.

. E. Cameron, N. Griffeth, Y.-J. Lin, M. Nilson, W. Schnure, and H. Velthui-

jsen. A feature interaction benchmark for in and beyond. In W. Bouma and
H. Velthuijsen, editors, Feature Interactions in Telecommunication Systems.
IOS Press, 1994.

CCITT. Recommendation @.1215, Distributed Functional Plane for Intelligent
Network CS1., 1992.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In D. Kozen, editor, Logic of Programs Work-
shop, number 131 in LNCS. Springer Verlag, 1981.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

H.-D. Ehrich, M. D. Ryan, and P.-Y. Schobbens. Preserving temporal proper-
ties through time warps. In preparation.

S. Katz. A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337-356, April
1993.

K. Kimbler and L. G. Bouma, editors. Feature Interactions in Telecommuni-
cations and Software Systems V. I0S Press, Sept. 1998.

M. Kolberg, E. Magill, D. Marples, and S. Reiff. Results of the second feature
interaction contest. In Calder and Magill [5], pages 311 325.

H. Korver. Detecting feature interactions with C&£SAR/ALDEBARAN. Science
of Computer Programming, 29(1-2):259-278, July 1997.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
M. Plath and M. D. Ryan. Entry for FIW’00 Feature Interaction Contest.
Technical report, School of Computer Science, University of Birmingham, 2000.
Available from www.cs.bham.ac.uk/ mdr/papers.html. Also summarised in
[?].

M. C. Plath and M. D. Ryan. Feature integration using a feature construct.
Science of Computer Programming, 2000. To appear. A shorter and earlier
version of this paper appeared in [13], pages 150-164.

