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.be1 Introdu
tionFeature Intera
tion. When engineers design a system with features, they wishto have methods to prove that the features do not intera
t in ways whi
h areundesirable. A 
onsiderable literature is devoted to this `feature intera
tionproblem' [13,5℄. One approa
h to demonstrating that features do not intera
tundesirably is to equip them with properties whi
h are intended to holdof a system having the feature [17℄. In this view, a feature is a pair (F; �)
onsisting of the implementation of the feature F and a set of properties�. Integrating a feature (F; �) with a base system S 
onsists of modifyingthe base system in the way des
ribed by the feature implementation andobtaining S+F . The integration is deemed su

essful if the resulting systemsatis�es the set of properties � 
orresponding to the feature. Eviden
e thata feature (F1; �1) does not negatively intera
t with feature (F2; �2) may beobtained by verifying that introdu
ing F2 in S+F1, (obtaining S+F1+F2)does not destroy the properties �1 previous introdu
ed by feature F1, andvi
e versa.Model-Che
king. Model 
he
king [10℄ may be used to show that the featuredsystem has the desired properties (
f. [6,17,16,14℄). However, the approa
hdes
ribed may involve 
he
king the same property again and again ea
h timea new feature is introdu
ed, to 
he
k that a previously introdu
ed featurehas not been broken. Sin
e model 
he
king is 
omputationally expensive, it isworthwhile to �nd methods whi
h avoid these re-
he
ks. For example, we maybe able to prove generally that a 
ertain feature does not destroy propertiesin a 
ertain 
lass. This would obviate the need to re-
he
k properties in that
lass when the feature is introdu
ed.Users' Viewpoints and Conservative Features. A general result de�ning a
lass of properties whi
h are provably not broken by the introdu
tion of anew feature 
ould be inspired by a number of intuitions. In this paper, wedevelop su
h a result based on the idea that a feature whi
h adds to the
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apabilities of a user (and does not subtra
t from them) should not breakproperties whi
h assert 
apabilities of this user. Let us look at the notion of
apabilities in more detail.A telephone system is usually made of a number of users and a networkmanaging the 
alls. Many features of telephone systems are designed so thatthey add to the 
apabilities (or powers), of the subs
ribing user, without sub-tra
ting from them. For example, a user j who subs
ribes to 
all-forwardingnow has the power to forward his or her 
alls to another user, but has notlost any 
apabilities in the pro
ess. When this is the 
ase, we say that thefeature is j-
onservative. More generally, if U is a set of users, a feature isU -
onservative if any behaviour of the system whi
h U 
ould enfor
e beforethe feature was added, U 
an also enfor
e it after the feature is added. Theprin
ipal idea in this paper is that a U -
onservative feature does not breakproperties whi
h assert 
apabilities of the group U of users.Framework. To formalise this intuition, we propose to use Alternating-timeTemporal Logi
 [4℄ (ATL), whi
h allows us to des
ribe pre
isely the proper-ties of the di�erent agents (or users) involved in a system, and the strategiesthey have for a
hieving their goals. ATL is a bran
hing temporal logi
 basedon game theory. It 
ontains the usual temporal operators (next, always, until)plus 
ooperation modalities hhAii�, where A is a set of players. This modal-ity quanti�es over the set of behaviours and means that A has a 
olle
tivestrategy to enfor
e �, whatever the 
hoi
es of the other players. ATL gen-eralises CTL, and similarly ATL� generalises CTL�, �-ATL generalises the�-
al
ulus. These logi
s 
an be model-
he
ked by generalising the te
hniquesof CTL, often with the same 
omplexity.Outline of the paper. In se
tion 2 we re
all the basi
 
on
epts of ATL andATL� and their semanti
s on ATSs. This se
tion also introdu
es the Mo
ha-like language we use to des
ribe rea
tive systems. The next se
tion 3 whi
his the 
ore of the paper des
ribes the feature 
onstru
t for our Mo
ha-likelanguage and states the properties-preserving theorem. Finally in se
tion 4we dis
uss some dire
tions for future work.2 Alternating-time temporal logi
Alternating-time temporal logi
 (ATL) is based on CTL. Let us �rst re
alla few fa
ts about CTL. CTL [9℄ is a bran
hing-time temporal logi
 in whi
hwe 
an express properties of rea
tive systems. For example, properties of
a
he-
oheren
e proto
ols [15℄, telephone systems [17℄, and 
ommuni
ationproto
ols have been expressed in CTL. One problem with CTL is that itdoes not distinguish between di�erent sour
es of non-determinism. In a tele-phone system, for example, the di�erent sour
es in
lude individual users, theenvironment, and internal non-determinism in the telephone ex
hange. CTL
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 3provides the A quanti�er to talk about all paths, and the E quanti�er to assertthe existen
e of a path. A means that, no matter how the non-determinismis resolved,  will be true of the resulting path. E asserts that, for at leastone way of resolving the non-determinism,  will hold. But be
ause CTL doesnot distinguish between di�erent types of non-determinism, the A quanti�eris often too strong, and the E quanti�er too weak. For example, if we want tosay that user i 
an 
onverse with user j, CTL allows us to write the formulasA3talking(i,j), E3talking(i,j).The �rst one says that in all paths, somewhere along the path there is a statein whi
h i is talking to j, and is 
learly mu
h stronger than the intention. These
ond formula says that there is a path along whi
h i is eventually talkingj. This formula is weaker than the intention, be
ause to obtain that path wemay have to make 
hoi
es on behalf of all the 
omponents of the system thatbehave non-deterministi
ally. What we wanted to say is that users i and j
an resolve their non-deterministi
 
hoi
es in su
h a way that, no matter howthe other users or the system or the environment behaves, all the resultingpaths will eventually have a state in whi
h i is talking j. Of 
ourse, the fa
tthat i is talking to j requires the 
ooperation of j. This subtle di�eren
es inexpressing the properties we want to 
he
k 
an be 
aptured a

urately withATL.Alternating-time temporal logi
 (ATL) [4℄ generalises CTL by introdu
ingagents, whi
h represent di�erent sour
es of non-determinism. In ATL the Aand E path quanti�ers are repla
ed by a unique path quanti�er hhAii, indexedby a subset A of the set of agents. The formula hhAii means that the agentsin A 
an resolve their non-deterministi
 
hoi
es su
h that, no matter howthe other agents resolve their 
hoi
es, the resulting paths satisfy  . We 
anexpress the property that user i has the power, or 
apability, of talking to jby the ATL formula1hhiii3talking(i,j).We read hhAii as saying that the agents in A 
an, by 
ooperating together,for
e the system to exe
ute a path satisfying  . If A is the empty set ofagents, hhAii says that the system will exe
ute  without the 
ooperation ofany agents at all; in other words, hh;ii is equivalent to A in CTL. Dually,hh�ii (where � is the entire set of agents) is a weak assertion, saying thatif all the agents 
onspire together they may enfor
e  , whi
h is equivalent toE in CTL.2.1 ATL and ATL*Let P be a set of atomi
 propositions and � a set of agents. The syntax ofATL is given by� ::= p j > j :�1 j �1 _ �2 j hhAii[�1 U �2℄ j hhAii2�1 j hhAii
�11 We write hhiii instead of hhfigii .
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hobbenswhere p 2 P and A � �. We use the usual abbreviations for !, ^ in termsof :, _. The operator hh ii is a path quanti�er, and
 (next), 2 (always) andU (until) are temporal operators. The logi
 ATL is similar to the bran
hing-time logi
 CTL, ex
ept that path quanti�ers are parameterised by sets ofagents. As in CTL, we write hhAii3� for hhAii[> U �℄.While the formula hhAii means that the agents in A 
an 
ooperate tomake  true (they 
an \enfor
e"  ), the dual formula [[A℄℄ means that theagents in A 
annot 
ooperate to make  false (they 
annot \avoid"  ). Theformulas [[A℄℄3�, [[A℄℄2�, and [[A℄℄
� stand for :hhAii2:�, :hhAii3:�, and:hhAii
:�.The logi
 ATL* generalises ATL in the same way that CTL* generalisesCTL, namely by allowing path quanti�ers and temporal operators to benested arbitrarily.For a subset A � � of agents, the fragment hhAii-ATL of ATL 
onsists ofATL formulas whose only modality is hhAii, and that does not o

ur withinthe s
ope of a negation. The hhAii-ATL* fragment of ATL* is de�ned similarly.2.2 Alternating transitions systemsWhereas the semanti
s of CTL is given in terms of transition systems, thesemanti
s of ATL is given in terms of alternating transition systems (ATSs).An ATS over a set of atomi
 propositions P and a set of agents � is a tripleS = (Q; �; Æ; I), where Q is a set of states and � : Q ! 2P maps ea
h stateto the set of propositions that are true in it, andÆ : Q�� ! 22Qis a transition fun
tion whi
h maps a state and an agent to a non-empty setof 
hoi
es, where ea
h 
hoi
e is a non-empty set of possible next states. Ifthe system is in a state q, ea
h agent a 
hooses a set Qa 2 Æ(q; a); the systemwill move to a state whi
h is in Ta2� Qa. We require that the system is non-blo
king and that the agents together 
hoose a unique next state; that is,for every q and every tuple (Qa)a2� of 
hoi
es Qa 2 Æ(q; a), we require thatTa2� Qa is a singleton. Similarly, the initial state is spe
i�ed by I : � ! 22Q .I maps ea
h agent to a set of 
hoi
es. The agents together 
hoose a singleinitial state: for ea
h tuple (Qa)a2� of 
hoi
es Qa 2 I(a), we require thatTa2� Qa is a singleton.For two states q and q0, we say that q0 is a su

essor of q if, for ea
ha 2 �, there exists Q0 2 Æ(q; a) su
h that q0 2 Q0. We write Æ(q) for the setof su

essors of q; thus,Æ(q) = \a2� [Q2Æ(q;a)QA 
omputation of S is an in�nite sequen
e � = q0; q1; q2 : : : of states su
hthat (for ea
h i) qi+1 is a su

essor of qi. We write �[0; i℄ for the �nite pre�xq0; q1; q2; : : : ; qi.
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 5Often, we are interested in the 
ooperation of a subset A � � of agents.Given A, we de�ne Æ(q; A) = fTa2AQa j Qa 2 Æ(q; a)g. Intuitively, when thesystem is in state q, the agents in A 
an 
hoose a set T 2 Æ(q; A) su
h that,no matter what the other agents do, the next state of the system is in T . Notethat Æ(q; fag) is just Æ(q; a), and Æ(q;�) is the set of singleton su

essors ofq.Example 1 ([4℄). Consider a system with two agents \user" u and \telephoneex
hange" e. The user may lift the handset, represented as assigning valuetrue to the boolean variable \o�hook". The ex
hange may then send a tone,represented by assigning value true to the boolean variable \tone". Initially,both variables are false. Clearly, obtaining a tone requires 
ollaboration ofboth agents.We model this as an ATS S = (Q; �; Æ; I) over the agents � = fu; eg andpropositions P = fo�hook,toneg. Let Q = f00; 01; 10; 11g. 00 is the state inwhi
h both are false, 01 the state in whi
h \o�hook" is false and \tone" istrue, et
. (thus, �(00) = ;, �(01) = ftoneg, et
.). The transition fun
tion Æand initial states I are as indi
ated in the �gure.Æ(q; a) u e00 ff00; 01g; f10; 11gg ff00; 10gg10 ff10; 11gg ff00; 10g; f01; 11gg01 ff00; 01g; f10; 11gg ff01; 11gg11 ff10; 11gg ff01; 11ggI ff00; 01gg ff00; 10ggFig. 1. The transition fun
tion of the ATS.2.3 Semanti
sThe semanti
s of ATL uses the notion of strategy. A strategy for an agenta 2 � is a mapping fa : Q+ ! 2Q su
h that fa(� � q) 2 Æ(q; a) with � 2 Q�.In other words, the strategy is a re
ipe for a to make its 
hoi
es. Given astate q, a set A of agents, and a family FA = ffa j a 2 Ag of strategies,the out
omes of FA from q are the set out(q; FA) of all 
omputations from qwhere agents in A follow their strategies, that is,out(q0; FA) = f� = q0; q1; q2; � � � j 8i; qi+1 2 Æ(qi) \ � \a2A fa(�[0; i℄)�g:If A = ;, then out(q; FA) is the set of all 
omputations, while if A = � thenit 
onsists of pre
isely one 
omputation.The semanti
s of ATL* is as CTL*, with the addition of:
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hobbens� q � hhAii if there exists a set FA of strategies, one for ea
h agent in A,su
h that for all 
omputations � 2 out(q; FA) we have � �  .Remark 1. To help understand the ideas of ATL, we state below some validi-ties, and more surprising non-validities.1. If A � B, then hhAii ! hhBii , and [[B℄℄ ! [[A℄℄ . Intuitively, any-thing that A 
an enfor
e 
an also be enfor
ed by a superset B; and ifanything that B is powerless to prevent 
annot be prevented by a subsetof B.2. In CTL, A distributes over ^. But in general, hhAii( 1 ^ 2) only implies(hhAii 1)^(hhAii 2). The �rst formula asserts that A 
an enfor
e  1^ 2,while the se
ond is weaker, asserting that A has a way to enfor
e  1 andanother, possibly in
ompatible, way to enfor
e  2. Similarly, hhAii( 1_ 2)and hhAii 1 _hhAii 2 are di�erent (for A 6= �). The �rst one asserts thatA 
an enfor
e  1 _  2, but whi
h of the two is true might be 
hosen byothers. This is weaker than the se
ond formula, whi
h asserts that A 
anguarantee  1, or A 
an guarantee  2, but nobody 
an 
hoose whi
h. Thestrongest variant where A 
an 
hoose, is expressed as: hhAii( 1 ^ : 2) ^hhAii( 2 ^ : 1).3. By repeating a 
ooperation inside a temporal operator, we weaken theformula, for instan
e: hhAii23� ! hhAii2hhAii3�. This is be
ause thestrategies FA that A use in the outer modality may be adapted for theinner modality, by shifting its time: ea
h f 0a(x) is simply fa(� � x), where� is the path linking the points of evaluation of the two modalities. (Notethe CTL* validities E23�! E2E3� and A23�$ A2A3�.)2.4 Guarded 
ommand languageATSs may be des
ribed using a Mo
ha-like guarded 
ommand language.(Mo
ha [1℄ is the system modelling language used for ATL.) We illustratethis with the system S of the pre
eding se
tion.agentagentagent USER
ontrols
ontrols
ontrols offhook;initinitinitoffhook := false;updateupdateupdatetrue -> ;true -> offhook := true;endagentendagentendagent;
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 7agentagentagent EXCH
ontrols
ontrols
ontrols tone;initinitinittone := false ;updateupdateupdatetrue -> ;offhook -> tone := true;endagentendagentendagent;The init 
lause gives the initial values of variables (if they are not mentioned,their initial values are sele
ted non-deterministi
ally). The update 
lause
onsists of a set of guarded 
ommands, 
onsisting of a guard (before thearrow) and a 
ommand (after the arrow). The agents are run in parallel.At ea
h step, the guards in the agent are evaluated, and the agent 
hoosesone whi
h evaluates to true. The 
ommand 
orresponding to that guard isexe
uted. If a variable is not assigned to in a 
ommand, it preserves its oldvalue. In parti
ular, if the 
ommand is empty, nothing 
hanges: the 
rypti
-looking 
ommand true -> simply allows the user to wait. Every variable is
ontrolled by pre
isely one agent; only the 
ontrolling agent 
an assign to thevariable. Agents may refer to variables whi
h are 
ontrolled by other agents(for example, EXCH refers to offhook whi
h is 
ontrolled by USER).2.5 Simulation and tra
e 
ontainmentIt is known in CTL that if a transition system S0 simulates another one S,written S � S0, then all ACTL* formulas whi
h hold of S also hold of S0.(ACTL* is the universal fragment of CTL*, i.e. the fragment in whi
h theonly path quanti�er is A, and no negations are allowed whi
h in
lude A intheir s
ope.)A similar result holds for ATL* [3℄. Instead of a single notion of simulation,they de�ne a notion indexed by a set of agents A. Let S = (Q; �; Æ; I) andS0 = (Q0; �0; Æ0; I 0) be ATSs over agents �, with P � P 0. For a subset A � �of agents, a relation H � Q�Q0 is an A-simulation from S to S0 if2:� For every set T 2 I(A), there exists a set T 0 2 I 0(A) su
h that forevery set R0 2 I 0(� � A) there exists a set R 2 I(� � A) su
h that(T \ R)� (T 0 \ R0) � H .and, for all states q; q0 with H(q; q0), we have� �(q) = �0(q0) \ P ;� For every set T 2 Æ(q; A), there exists a set T 0 2 Æ0(q0; A) su
h that forevery set R0 2 Æ0(q0; �0 �A) there exists a set R 2 Æ(q;� �A) su
h that(T \ R)� (T 0 \ R0) � H .2 Our de�nition slightly generalises that of [3℄ by allowing multiple initial statesand new propositions and agents.
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hobbensThe intuition is that whatever A 
an do in S, A 
an also do it in S0 so thatwhatever the other agents do in S0, they 
ould already do it in S to yield asimilar state. Intuitively, S0 
onserves all the 
apabilities A has in S, perhapsadding some more.We say that S0 A-simulates S, and write S �A S0, if there is a simu-lation from S to S0. Intuitively, this holds if A has a superset in S0 of the
apabilities it has in S. It is proved in [3℄ that S �A S0 i� every hhAii-ATL*formula satis�ed by S is also satis�ed by S0. This formalises the intuition justmentioned, sin
e formulas in hhAii-ATL* assert 
apabilities of A.3 Features and the feature 
onstru
tOur goal in this paper is to show how 
ertain properties 
an be preservedthrough the addition of features. From this, we 
an demonstrate feature non-intera
tion, as explained in the introdu
tion.Our approa
h is to de�ne a feature 
onstru
t for the Mo
ha-like guarded
ommand language introdu
ed in se
tion 2.4. The feature 
onstru
t plays asimilar role to the one de�ned for SMV [17℄; it is also similar to the idea ofsuperimposition [12℄. Using it, we give examples of features and show, forspe
i�
 features, that the system without the feature is an A-simulation ofthe system with the feature. From this, we 
on
lude that properties of thebase system are inherited by the system with features.This se
tion is stru
tured as follows. In se
tion 3.1 we model a Plain OldTelephone System (POTS) and some of its properties. Se
tion 3.2 de�nes thefeature 
onstru
t, and gives some examples for POTS. We then study featureintera
tions in se
tion 3.4.3.1 POTS and its propertiesExample 2. A more 
omplete POTS model is de�ned using the guarded 
om-mand language of se
tion 2.4. In �gure 2, we model the user: she may 
ausethe phone to go o�hook or onhook at will (nondetnondetnondet is a shorthand for a 
hoi
eamong all possible values of the type), and while the phone is o�hook shemay dial a number.In �gure 3, we model the ex
hange (without te
hni
al details). It 
onsistsof n identi
al agents, one for ea
h user. It has a variable st, for status, whi
his initially idle. When the user goes o�hook, st be
omes dialt, for dialtone.If st is idle and another person tries to ring us, st be
omes ringing, andwe note the identity of the 
aller. If two users i; j simultaneously ring a thirdone k, the ex
hange must arbitrate by 
hoosing one of them to su

eed (getsringing-tone) and the other one to fail (gets busy-tone). The ex
hange doesthis by setting ex[k℄.
aller to i or to j.The system 
onsists of an array of ex
hanges and an array of users. Noti
ethe parameter for EXCH: it is given the value of its own number, whi
h it
alls s (for `self').
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 9agentagentagent USER
ontrols
ontrols
ontrolsoffhook : boolean;dialed : Number;initinitinitoffhook := false;updateupdateupdateoffhook -> dialed := nondetnondetnondet;-> offhook := nondetnondetnondet;endagentendagentendagent; Fig. 2. Code for USERagentagentagent EXCH (s)
ontrols
ontrols
ontrolsst : fidle, dialt, trying, busyt, ringingt, talking,ringing, talked, ended g;
allee : Number;
aller : Number;initinitinitst' := idle;updateupdateupdateuser[s℄.offhook & !user[s℄.offhook' -> st'=idle;st=idle & user[s℄.offhook' -> st' := dialt;st=idle & ex[j℄.
allee=s &ex[j℄.st=trying & !user[s℄.offhook'-> st' := ringing; 
aller' := j;st=dialt & user[s℄.offhook'& user[s℄.dialed'=n -> 
allee' := n;...st=trying & 
allee=j & ex[j℄.st=idle & ex[j℄.
aller'=s& user[s℄.offhook' -> st' := ringingt;st=trying & 
allee=j & ex[j℄.st=idle & ex[j℄.
aller'!=s& user[s℄.offhook' -> st' := busyt;st=trying & 
allee=j & !ex[j℄.st=idle& user[s℄.offhook'-> st' := busyt;...endagentendagentendagent Fig. 3. Code for EXCHex : array 1..n of EXCH;ex[i℄ := EXCH(i);user[i℄ := USER Fig. 4. Code for POTS
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hobbensThe logi
 ATL is well-suited for expressing spe
i�
ations of telephone sys-tems, be
ause the users are autonomous, and we are interested in whetherthey have the power to enfor
e 
ertain behaviours. Compared with the prop-erties de�ned using CTL in [17℄, ATL o�ers us the opportunity to distinguishbetween di�erent sour
es of non-determinism, whi
h makes the spe
i�
ationre
e
t our intentions more pre
isely. We illustrate with a few examples:1. Any phone may 
all any other phone. In [17℄ this was approximated inCTL:8i 6= j: A2E3(ex[i℄.st=talking & ex[i℄.
allee=j)indi
ating that, in all rea
hable states, there is a path whi
h eventuallyleads to i and j talking to ea
h other. This is rather weaker than theintention, whi
h was that it is within i's and j's joint power that i initiatea su

essful 
all to j. We may express that as 8i 6= jA2hhuser[i℄; user[j℄ii3(ex[i℄.st=talking & ex[i℄.
allee=j)A similar formula whi
h is slightly weaker but has the advantage of beingwithin hhuser[i℄; user[j℄ii-ATL is 8i 6= j:hhuser[i℄; user[j℄ii23(ex[i℄.st=talking & ex[i℄.
allee=j)2. The user 
annot 
hange the 
allee without repla
ing the hand-set. In [17℄it is expressed in CTL as:A2 ((ex[i℄.
allee=j & ex[i℄.st=trying)-> (A[ ex[i℄.
allee=j W ex[i℄.st=idle ℄))This is rather stronger than the intention: this forbids any 
hange of
allee. This CTL formula be
omes false in the 
ontext of 
all-forwarding,where the system may 
hange the 
allee as i sets up the 
all. In ATL, we
apture the requirement more pre
isely:A2(ex[i℄.
allee=j & ex[i℄.st=trying-> [[user[i℄℄℄(ex[i℄.
allee=j W ex[i℄.st=idle))This weaker formula is true even if the system 
an 
hange the 
allee.Again, a slightly weaker formula in [[user[i℄℄℄-ATL is possible:[[user[i℄℄℄2(ex[i℄.
allee=j & ex[i℄.st=trying-> (ex[i℄.
allee=j W ex[i℄.st=idle))3.2 Feature 
onstru
t de�nitionThe feature 
onstru
t that we use here is an adaptation of the generi
 idea of[17℄. The base language that we use is a simpli�
ation of the Rea
tive Modulesformalism [2℄ used by Mo
ha [1℄, that we presented in se
tion 2.4.Following [17℄, a feature 
an be seen as a pres
ription for 
hanging abasi
 system. That whi
h is assumed of a basi
 system will appear in therequirerequirerequire se
tion of the feature. Here, we 
an require parti
ular agents andvariables. The feature will add to the system new variables and agents todeal with the feature in the introdu
eintrodu
eintrodu
e se
tion. Be
ause many features need tobe a
tivated before taking e�e
t, we usually introdu
e a boolean variable usethat indi
ates whether the feature is a
tivated. Finally, the 
hange
hange
hange se
tionindi
ates how the behaviour of the existing system is 
hanged. Currently, wehave four types of 
hanges:
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 111. ififif 
ondition thenthenthen overrideoverrideoverride 
 means that when 
ondition is evaluated totrue, the existing 
ommands are disabled, and only the 
ommand 
 isallowed to exe
ute.2. ififif 
ondition thenthenthen expandexpandexpand 
 means that when 
ondition is evaluated totrue, the 
ommand 
 is allowed to exe
ute. The existing 
ommands arestill enabled as before: the non-determinism of the system is in
reased.3. ififif 
ondition thenthenthen imposeimposeimpose 
 means that when 
ondition is evaluated to true,the 
ommand 
, whi
h is a set of parallel assignments x0 := e, determinesthe new values of these x variables. The values of other variables are setby an existing 
ommand.4. ififif 
ondition thenthenthen treattreattreat 
 means that when 
ondition is evaluated to true,the 
ommand 
, whi
h is a set of parallel assignments x := e, is used todetermine the value of x in expressions. The variable x still exists, andwill be a

essible again when the 
ondition reverts to false.Only the last two types were present in [17℄. The �rst two types 
an alsobe de�ned both in terms of synta
ti
 manipulations or semanti
ally, on theagent's transitions.Finally a feature 
omes with propertiespropertiesproperties, that des
ribe its essential fun
-tionalities in a high-level way. These properties need not exhaustively spe
ifythe system. The spe
i�er is intended to write properties whi
h should be pre-served when this feature is 
ombined with other features. In this paper, weadvo
ate the use of ATL* for properties.Example 3. It is now very 
ommon to have many features on top of POTS.These features 
ome in many variants, and are now being standardised [8℄.For instan
e, the feature Call ForwardWhen Busy (CFB) adds the follow-ing typi
al behaviour: When CFB is a
tive and the subs
riber's line is busy,in
oming 
alls are diverted to a phone number pre-spe
i�ed by the subs
riber.The number 
an be 
hanged, and the feature 
an be enabled or disabled atsubs
riber's will. The feature is implemented by 
hanging the ex
hange ofthe 
aller, and adding new 
ommands to the subs
riber i, see �g. 5.The fundamental property of forwarding is that user j 
an ensure thatany user who tries to rea
h him will try user k instead, and j 
an 
hoose anyk. Note the s
ope of the quanti�
ations (
f. remark 1.2).Example 4. The feature Ring Ba
k When Free (RBWF) also avoid the an-noyan
e of busy 
allees, but this time it is a feature of the 
aller (me, say): IfI get the busy tone when 
alling a number, I 
an a
tivate RBWF. RBWF willthen attempt to establish a 
onne
tion as soon as the 
allee is free. It �rst
alls me with a spe
ial ring; when I then lift the handset, a 
all is initiatedon my behalf.To model this (see �g. 6), we introdu
e awaited, the number we are try-ing to rea
h. Sin
e we introdu
e a single number, only the last RBWF maybe pending. Also we use Mo
ha's notion of eventeventevent to model a
tivation: it is
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hobbensfeaturefeaturefeature CFB(i)requirerequirerequire ...introdu
eintrodu
eintrodu
eagentagentagent USER[i℄
ontrols
ontrols
ontrolsuse : booleanforw : Numberinitinitinituse := false
hange
hange
hangeagentagentagent USER[i℄expandexpandexpand use := nondetnondetnondet;expandexpandexpand forw := nondetnondetnondet;agentagentagent EXCH(i)ififif st = trying & 
allee = i & user[i℄.use & ex[i℄.st != idlethenthenthen overrideoverrideoverride 
allee' := user[i℄.forw;propertiespropertiesproperties8k:hhuser[i℄ii328j:(ex[j℄.st=trying & ex[j℄.
allee=i & ex[i℄.st!=idle-> ex[j℄.st=trying U (ex[i℄.st=trying & ex[i℄.
allee=k))Fig. 5. Call Forward when Busyan instantaneous a
tion, whose o

urren
e 
an be 
aused by event! (equiv-alent to toggling event) and tested by event? (equivalent to the 
onditionevent=event').Let us have a 
loser look at the properties: the �rst one simply says thatusers together 
an make my ringba
k s
enario su

eed: I hear the spe
ialringing, then I take the phone o�hook and 
all j. The 
ollaboration of allusers is needed for this su

ess:� i must of 
ourse enable the feature.� j must agree to be �rst busy, then idle.� The 
ollaborations of other users is needed as well, sin
e they 
ould 
on-spire to hold i or j busy all the time.The user i alone is mu
h less powerful: He might de
ide not to use thefeature at all, by not setting a
tivate. (Indeed, the fa
t that the user 
anavoid using the feature is important to our main result, se
tion 3.4.)This leads to a natural 
ategorisation of features, similar in motivation to[7℄, but di�erent in detail: features 
an be 
ategorised a

ording to the set ofplayers that o

ur in the 
ooperation modality of the ATL formula of theirproperties. This essentially says who is in 
ontrol of the feature. Spe
i�
ally,we 
an distinguish single-user features, two-users features, group features,system features (where system is a spe
i�
 player).
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 13featurefeaturefeature RBWF(i)requirerequirerequire ...introdu
eintrodu
eintrodu
eagentagentagent USER(i)eventeventevent a
tivateagentagentagent EXCH(i)
ontrols
ontrols
ontrolsuse : booleanawaited : Numberspe
ial_ring : booleaninitinitinituse := false;spe
ial_ring := false;
hange
hange
hangeagentagentagent USER(i)expandexpandexpand a
tivate!agentagentagent EXCH(i)ififif st = busyt & user[i℄.a
tivate?thenthenthen imposeimposeimpose use' := true ; awaited' := dialed;ififif use & st = idle & ex[awaited℄.st = idlethenthenthen overrideoverrideoverride 
allee' := awaited;st' := ringing;spe
ial_ring' := true;ififif use & st = ringing & spe
ial_ring & user[i℄.offhook'thenthenthen overrideoverrideoverride st' := trying;spe
ial_ring' := false; use' := falsepropertiespropertiespropertieshhuserii 3((ex[i℄.st = ringing & ex[i℄.spe
ial_ring)U (user[i℄.offhook U ex[i℄.talking & ex[i℄.
allee = j))hhuser[i℄ii !ex[i℄.usehhuser[i℄ii3((ex[i℄.use & ex[i℄.awaited=j) | (ex[i℄.st=ringingt))Fig. 6. Ring Ba
k When Free3.3 Feature Constru
t Semanti
sWe de�ne the semanti
s of the feature 
onstru
ts overrideoverrideoverride, imposeimposeimpose, expandexpandexpandand treattreattreat by synta
ti
 transformation of the Mo
ha-like language. Dealingwith the requirerequirerequire and introdu
eintrodu
eintrodu
e se
tions is straightforward: for requirerequirerequire, we
he
k that the required items are present (the feature integration fails if theyare not), and for introdu
eintrodu
eintrodu
e we simply add the new data.The 
hange
hange
hange se
tion is dealt with as follows. Suppose we start with theprogram in �gure 7, and we integrate a feature.
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hobbensagentagentagent A
ontrols
ontrols
ontrols: : :initinitinit: : :updateupdateupdateg1 -> 
1;g2 -> 
2;...gn -> 
n;endagentendagentendagent Fig. 7. Some arbitrary 
ode for an agent A.� For the feature ififif g thenthenthen imposeimposeimpose x := e, the update se
tion of the programbe
omes:g1 & !g -> 
1;g1 & g -> 
1 [x:=e℄;g2 & !g -> 
2;g2 & g -> 
2 [x:=e℄;...gn & !g -> 
n;gn & g -> 
n [x:=e℄;The meaning of 
[x := e℄ where 
 is a set of assigments is to repla
e (ifpresent) the assigment of x in 
 by the new one x := e, or to add it (ifnot present). (Re
all that in Mo
ha the list of assignments are performedsimultaneously.)� For the feature ififif g thenthenthen overrideoverrideoverride 
, the update se
tion of the programbe
omes:g1 & !g -> 
1;g2 & !g -> 
2;...gn & !g -> 
n;g -> 
;� For the feature ififif g thenthenthen expandexpandexpand 
, the update se
tion of the programbe
omes:
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1;g2 -> 
2;...gn -> 
n;g -> 
;� For the feature ififif g thenthenthen treattreattreat x = f , the update se
tion of the programbe
omes:g1 -> 
1';g2 -> 
2';...gn -> 
n';where x0i is 
i but with x repla
ed with the 
onditional expression g?f : x(i.e. if g then f else x).3.4 Feature intera
tionsThanks to the properties that are part of our features, we 
an de�ne inter-a
tions as a dis
repan
y between the expe
ted properties of the system withfeatures and the a
tual ones. We note a feature as (F; �) where � is the prop-erties se
tions and F is the des
ription of how the feature is implemented.Applying the feature F to a system S satisfying its requirements will be de-noted S + F . This operation is also 
alled \feature integration". We assumethat the requirerequirerequire se
tion, the 
hange
hange
hange se
tion, and the introdu
ed propertiesare 
onsistent with ea
h other: that is, that S + F j= � for any S satisfyingthe requirements.Now we 
an de�ne a feature intera
tion as non-preservation of the prop-erties of integrated features:� The feature F intera
ts with the system S by destroying some 
ore prop-erty �S of the system: S + F 6j= �S ;� The feature F2 intera
ts with the feature F1 by destroying a property �1introdu
ed by F1: S + F1 + F2 6j= �1.The goal of feature-oriented programming is to be able to produ
e rapidlysystems with a large number of features integrated, and to ensure the absen
eof feature intera
tions for su
h systems.It is thus important to prove generi
 preservation properties: a feature Fpreserves all properties of a 
lass C if (for all � 2 C) S j= � implies S+F j= �.We have seen that simulation relations are the right tool to this end:they ensure that a wide 
lass of properties are preserved when adding afeature. These relations give a pre
ise meaning to the notion of ba
kward
ompatibility.
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hobbensIn parti
ular, if we 
an show that S + F A-simulates S (for any S),when integrating F in a new system, we know that many properties of thisnew system do not need to be 
he
ked. Features are usually intended toaugment the power of their users: formulas talking about these powers arethus preserved.Proving this property of F 
an sometimes be done easily. First, we de-�ne an A-enabled variable use introdu
ed by F (where A � �) to have thefollowing properties:� the variable is introdu
eintrodu
eintrodu
ed by F in some agent a� the variable is initially false: use:=false appears in an initinitinitintrodu
eintrodu
eintrodu
ed byF .� the variable 
an only be set by agents in A using expandexpandexpanded 
ommands.This 
an often be 
he
ked synta
ti
ally: For instan
e, if use is only setto true by an expandexpandexpanded 
ommand of an agent in A, as in CFB, this isimmediate. In RBWF, this is indire
t: use is 
ontrolled by ex
h[i℄ (anagent outside A) but the guard 
ontains a variable a
tivate 
ontrolledby an expandexpandexpanded 
ommand of user[i℄. More generally, this 
an be veri�edby 
he
king that the feature F 0, whi
h is F without the expandexpandexpand of agentsin A, satis�es A2:use, by whi
h we mean that for any base S, S +F 0 �A2:use.This 
ondition 
an be used to ensure that, if agents in A behave exa
tly asthey did in the old system, they will not enable the feature.Theorem 1. If all 
hanges of F are of one of the following forms:� a 
hange that is guarded by an A-enabled variable introdu
ed by F� an imposeimposeimpose where all a�e
ted variables are introdu
eintrodu
eintrodu
ed by F .� an expandexpandexpand of an agent in A.� \ififif g ^ g0 thenthenthen overrideoverrideoverride 
" in an agent in � � A, if g ! 
 is a 
ommandof this agent.then F is A-preserving, i.e. S + F A-simulates S for any S that satis�es therequirerequirerequire 
lause.The idea of the proof is to note that the relation obtained by requiring thatall old variables have the same value, and that the enabling variables useare false, is an A-simulation from S to S + F . Thus all properties written inhhAii-ATL are preserved. We 
annot give a real proof of this theorem here,as it requires the pre
ise semanti
s of our Mo
ha-like language whi
h is notgiven in this paper.Example 5. The features CFB(i) and RBWF(i) are A-preserving for any set ofagents A 
ontaining user[i℄. Sin
e their properties are also in this fragment,these features will not intera
t (in the sense of this paper).Note that it is usually 
onsidered that these features do intera
t, sin
e auser A that 
alled B, was forwarded to C and a
tivated RBWF might well
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alling ba
k C in some implementations, while he probably intendedto 
all B. Here this intera
tion is 
orre
tly, but silently, handled by our model,sin
e it does not belong to the 
lass of intera
tions de�ned in this paper.3.5 Preliminary ExperimentsCurrently, there is no automati
 translation from our Mo
ha-like language toMo
ha. However, we have su

essfully implemented the model of the POTSgiven in Fig. 2 to 4 of se
tion 3.1 with 4 users, and 
he
ked the propertiesdis
ussed in se
tion 3.1.4 Con
lusionsWe have shown a general 
ase in whi
h introdu
ing a feature provably doesnot break a 
lass of properties: this holds when integrating the feature resultsin a U -simulation of the original system for some group of users U , and theproperties assert 
apabilities of the users in U . We have indi
ated four typesof 
hanges that are U -preserving. We illustrated with examples from thetelephone system. Most telephone features naturally �t into one of the 
asesof the theorem. Thus the proofs of non-intera
tion that [17℄ had to perform forall 
ombination of features 
an now be obtained by a simple, single synta
ti

he
k.The general te
hnique, in prin
iple, 
an work for any logi
 and its asso
i-ated notion of simulation. However, we have found that ATL* provides a ri
hset of fragments and asso
iated simulations, that are suited to the appli
a-tion domain: features are valuable only be
ause they o�er new 
apabilities totheir users, and thus their properties are naturally expressed in ATL*. A
tu-ally, our example properties were all in the smaller fragment hhAii-LTL[3℄, forwhi
h the weaker hhAii-tra
e 
ontainment suÆ
es. We didn't pursue this lineof resear
h sin
e all our features happen to be preserving also the strongerhhAii-simulation, and this preservation is easier to show.The spe
ial 
ase where U = ; allows to show the preservation of invariantsof the system (or more generally, ACTL* formulas). However, the 
orrespond-ing simulation only allows features to make their agents more deterministi
,whi
h is rarely useful.We have seen intuitively appealing properties of the form A2hhUii3�.Our method 
ould be extended by dis
overing the \simulation" relation 
or-responding to these formulas, and looking for a simple way to prove thata feature preserves this relation. We plan to de�ne a suitable notion of U-resettable systems. Intuitively, the telephone system is resettable by its users:if they all hang up and swit
h o� their features, the system returns to its ini-tial state. We would like to de�ne this pre
isely, and prove of U -resettablesystems that hhUii3� is equivalent to A2hhUii3� (from left to right is done
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hobbensby pre�xing the strategy with a reset). This would imply that formulas ofthe form A2hhUii3� are preserved by U -
onservative features.The idea of this paper may be seen as a spe
ial 
ase of a proof rule of theform S � � 
ondition on F; �S + F � �whi
h allows us to preserve the property � through the addition of thefeature F . In this paper, the 
ondition on F; � is that F is U -
onservative and� is in hhUii-ATL*. Other 
onditions on F; � 
an be used. In another paper,we are modelling features as warps in the transition system and deriving from� a simpler formula whi
h the warp is required to preserve [11℄.A related problem is to show the internal 
onsisten
y of features, by whi
hwe mean that S + F � � for any S that satis�es the requires 
lause. Byinserting the needed properties in the requires 
lause, the 
ombination offeatures 
ould eventually be
ome a matter of plug and play, with well de�nedand easily 
ombinable 
ompatibility properties.Finally, we used here only two levels for des
ribing a property: the level ofmodels, and of formulas. Lower levels indi
ating how to integrate features atthe level of 
ode would make the approa
h pra
ti
al, and 
he
king 
onsisten
ybetween levels will improve our 
on�den
e in features.A
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