
Privacy supporting cloud computing:

ConfiChair, a case study

Myrto Arapinis, Sergiu Bursuc, and Mark Ryan

School of Computer Science, University of Birmingham
{m.d.arapinis,s.bursuc,m.d.ryan}@cs.bham.ac.uk

Abstract. Cloud computing means entrusting data to information systems that are man-
aged by external parties on remote servers, in the ”cloud”, raising new privacy and confi-
dentiality concerns. We propose a general technique for designing cloud services that allows
the cloud to see only encrypted data, while still allowing it to perform data-dependent
computations. The technique is based on key translations and mixes in web browsers.

We focus on the particular cloud computing application of conference management.
We identify the specific security and privacy risks that existing systems like EasyChair and
EDAS pose, and address them with a protocol underlying ConfiChair, a novel cloud-based
conference management system that offers strong security and privacy guarantees.

In ConfiChair, authors, reviewers, and the conference chair interact through their
browsers with the cloud, to perform the usual tasks of uploading and downloading pa-
pers and reviews. In contrast with current systems, in ConfiChair the cloud provider does
not have access to the content of papers and reviews and the scores given by reviewers, and
moreover is unable to link authors with reviewers of their paper.

We express the ConfiChair protocol and its properties in the language of ProVerif, and
prove that it does provide the intended properties.

1 Introduction

Cloud computing means entrusting data to information systems that are managed by external par-
ties on remote servers, “in the cloud.” Cloud-based storage (such as Dropbox), on-line documents
(such as Google docs), and customer-relationship management systems (such as salesforce.com)
are familiar examples. Cloud computing raises privacy and confidentiality concerns because the
service provider has access to all the data, and could accidentally or deliberately disclose it.

Cloud-based conference management systems such as EasyChair or the Editor’s Assistant
(EDAS) represent a particularly interesting example [32]. For example, EasyChair currently hosts
more than 3000 conferences per year, and therefore contains a vast quantity of sensitive data
about the authoring and reviewing performance of tens of thousands of researchers world-wide.
This data is in the possession of the EasyChair administrators, and could be accidentally or
deliberately disclosed. A conference chair that is thinking of hosting her conference on a cloud-
based conference system therefore faces a dilemma: if she uses the system, she adds to this mountain
of data and the risks associated with it; if she doesn’t use the system, she deprives herself of the
advantages of a readily-available, well-engineered system that already has user accounts for the
majority of participants in her conference (authors, PC members, and reviewers).

Note that the data confidentiality issue concerns the cloud conference system administrator
(who administrates the system for all conferences), not the conference chair (who is concerned with
a single conference). The conference system administrator has access to all the data on the system,
across thousands of conferences and tens of thousands of authors and reviewers. An individual
conference chair, on the other hand, has access to the data only for the particular conference of
which she is chair. Moreover, an author or reviewer that chooses to participate in the conference
can be assumed to be willing to trust the chair (for if he didn’t, he would not participate); but
there is no reason to assume that he trusts or even knows the conference management system
provider.

In this paper, we identify a set of confidentiality requirements for conference management
and propose ConfiChair, a cloud-based conference management protocol that supports them. The
confidentiality guarantees ensure that no-one has access to conference data, beyond the access that
is explicitly granted to them by their participation in the conference. In particular, this is true
about the cloud provider and managers. ConfiChair is loosely modelled on EasyChair or EDAS,
but with the additional security guarantees. We describe a protocol in which authors, reviewers
and the conference chair interact through their web browsers with the cloud-based management
system, to perform the usual tasks of uploading and downloading papers and reviews. The cloud
is responsible for fine-grained routing of information, in order to ensure that the right agents
are equipped with the right data to perform their task. It is also responsible for enforcing access
control, for example concerning conflicts of interest and to ensure that a reviewer doesn’t see other
reviews of a paper before writing her own. However, all the sensitive data is seen by the cloud
only in encrypted form.

For brevity, we use the term “cloud” to include all roles that are not an explicit part of the
conference management; that includes the conference management system administrator, the cloud
service provider, the network administrator, etc. The security properties that our system provides
may be summarised as follows.

– Secrecy of papers, reviews and scores. The cloud does not have access to the content of
papers or reviews, or the numerical scores given by reviewers to papers.

– Unlinkability of author-reviewer. The cloud does have access to the names of authors
and the names of reviewers. This access is required in order to route information correctly,
to enforce access control, and to allow a logged-in researcher to see all his data in a unified
way. However, the cloud does not have ability to tell if a particular author was reviewed by
a particular reviewer. In particular, for each encryption of each review or score held by the
cloud, either the cloud does not know which author it applies to, or does not know which
reviewer submitted it.

Summary of contribution

1. We identify a set of requirements for cloud-based conference management systems, notably
privacy requirements such as secrecy and unlinkability.

2. We propose ConfiChair, a conference management protocol that provides the usual function-
alities while offering strong privacy guaranties.

3. We show the usability of ConfiChair by providing a prototype implementation. We demonstrate
that using ConfiChair is as easy and useful as using EasyChair, except for the requirement of
two copy-paste operations (one performed by authors, one performed by reviewers).

4. We formalise the required privacy properties and automatically prove them with ProVerif.

Applicability of the ideas Cloud-based services are being adopted widely throughout business. The
following examples raise similar security concerns to those of conference management:

– Customer relationship management systems (such as salesforce.com);
– Cloud-hosted recruitment process services, in which applicants, referees, recruiters and em-

ployers interact to process job applications;
– Cloud-based finance and accounting services;
– Social networks, in which users share posts and status updates without wishing that data to

be mined by the cloud provider for profiling purposes.

We believe our technique of browser-based key translation and mixnets is readily applicable to
these examples too.

2 Description of the problem and related work

Our problem is determined by three conflicting sets of requirements, namely functionality, privacy
and usability. As we show below, there is much existing work related to our paper, but it can not be
used to solve our problem either because of its complexity, or because of its different perspectives
on privacy, or because it does not achieve the required balance between privacy and functionality.

2

2.1 Desired properties and threat model

Functional requirements. As previously mentioned, we use the term “cloud” to refer to the
cloud service provider, conference management system and its administrators, and the network.
The responsibilities of the cloud are:

– To collect and store data relevant to the conference, including names of reviewers and authors,
papers, reviews and scores.

– To enforce access control in respect of conflicts of interest and ensuring that reviewers see
other reviews of a paper only after they have submitted their own.

– To manage the information flow of the conference: from authors, to conference chair, to re-
viewers and back.

– To notify the authors of the acceptance decision about their papers.

Privacy requirements. We require that the cloud does not know

– the content of submitted papers,
– the content of submitted reviews,
– the scores attributed to submitted papers.

Further, when data is necessarily known to the cloud in order that it can fulfil the functional
requirements, we require what we call unlinkability property: the cloud is unable to link

– authors to reviewers of their papers

Threat model. It is reasonable to trust the cloud to execute the specified functional requirements.
Indeed, an incorrect functionality would be detected in the long run and the users would simply
move into another cloud. On the other hand, the cloud may try to violate privacy without affecting
functionality, in a way that cannot readily be detected. ConfiChair is designed to remove this
possibility. Obviously, there are inherent limitations on any protocol’s ability to achieve this. For
instance, if the cloud provider was invited to participate as a PC member or a chair, then he
necessarily would have access to privileged information. Consequently, the privacy requirements
are expected to hold in our threat model only for conferences in which the cloud provider does
not participate, except as provider of the cloud service or as author of a paper.

We assume that users are running uncorrupted browsers on malware-free machines. The HTML,
Java, and Javascript code that they download is also assumed to be obtained from a trustworthy
source and properly authenticated (e.g. by digital signatures).

Usability requirements. The system should be as easy to use as present day conference man-
agement systems, such as EasyChair, iChair, OpenConf or HotCRP. The cost of security should
not be unreasonable waiting time (e.g. for encryption, data download), or software installation on
the client-side (e.g. a browser should be sufficient), or complex key management (e.g. public key
infrastructure), etc. We discuss more about usability in section 4 which describes our prototype
implementation.

2.2 Related work

Generic solutions. Much work has been done that highlights the confidentiality and security
risks that are inherent in cloud computing (e.g., [14] includes an overview), and there is now
a conference series devoted to that topic [19]. Although the issue is well-known, the solutions
described are mostly based on legislative and procedural approaches. Some generic technological
solutions have appeared in the literature. The first one uses trusted hardware tokens [33], in
which some trusted hardware performs the computations (such as key translations) that involve
sensitive data. Solutions based on trusted hardware tokens may work, but appear to have significant
scalability issues, and require much more research. Other papers advise designing cloud services
to avoid having to store private data, and include measures to limit privacy loss [29].

3

Fully-homomorphic encryption (FHE) has been suggested as another generic solution to cloud-
computing security. FHE is the idea that data processing can be done through the encryption,
and has recently been shown to be possible in theory [22]. However, the range of functionality
that can be provided through the encryption is not completely general. For example, one cannot
extract from a list the items satisfying a given predicate, but one can return a list of encrypted
truth values that indicate the items that satisfy the predicate, which is less useful. It is not clear
to what extent FHE could alleviate the requirement to perform the browser-side computations of
ConfiChair. Moreover, FHE is currently woefully inefficient in practice, and can only be considered
usable in very specialised circumstances.
Data confidentiality and access control. Many works consider the problem of restricting the
access of data in the cloud to authorised users only. For example, attribute-based encryption [8,
6] allows fine-grained control over what groups of users are allowed to decrypt a piece of data. A
different example is work that aims to identify functionally encryptable data, i.e. data that can
be encrypted while preserving the functionality of a system [30]. Such systems, and others, aim to
guarantee that the cloud, or unauthorised third parties, do not access sensitive data. Our problem
requires a different perspective: how to design systems that allow the cloud, i.e. the intruder, to
handle sensitive data, but at the same time ensure that sensitive data value links between them
are not revealed.
Unlinkability. In many applications it is important that links between participants, data, or
transactions are kept hidden. In RFID-based systems [16] or in privacy enhancing identity man-
agement systems [18] for example, an important requirement is that two transactions of a same
agent should not be linkable in order to prevent users from being tracked or profiled. Another
exemplar application that requires unlinkability is electronic voting: a voter must not be linked to
the vote that he has cast [20]. Moreover, like scores or identities in our case study, a vote is at the
same time functional (to be counted) and sensitive (to be private). Voting systems achieve unlink-
ability by relying either on mix nets [26, 25], or on restricted versions of homomorphic encryption
that allow the addition of plaintexts [4, 7]. Our proposed protocol also relies on mixing, showing
how that idea can be adapted to new application areas.

Other systems identify applications where the cloud can be provided with “fake” data without
affecting functionality [23]. In that case, privacy of “real” data may be preserved, without the
cloud being able to detect the substitution. That is a stronger property than what we aim for,
and at the same time the solution proposed in [23] is restricted to very specific applications. In
particular, a conference management system can not function correctly with “fake” data provided
to the cloud.
Conference management. There has been work exposing particular issues with conference
management systems, related to data secrecy, integrity and access control [27, 31]. These are also
important concerns, but that are quite orthogonal to ours, where we are interested in system
design for ensuring unlinkability properties. More importantly, none of these works considers our
threat model, where the attacker is the cloud.

3 The protocol

3.1 Description

The protocol is informally described in Figures 1-3 on the following pages. Some details, such as
different tags for messages in each phase of the conference, are left out, but the detailed formal
definition is given in Appendix A. The main idea of the protocol is to use a symmetric key KConf

that is shared among the members of the programme committee. This key will be used to encrypt
sensitive data before uploading it to the cloud. However, the cloud needs access to some sensitive
data, like the reviewers of a paper, in order to implement the functional requirements of the pro-
tocol. To reveal that data to the cloud, without compromising privacy, our protocol makes use of
the fact that different types of data are needed by the cloud at different phases of the conference.
Thus, in transitioning from one phase to another, the conference chair can hide the links between
authors and reviewers. He does so by performing a random mix on the data he needs to send to

4

the cloud before moving to the next phase. Each conference has a public key, that authors use to
encrypt symmetric keys, that in turn serves to encrypt papers.

Notation As we just explained, the privacy of participants relies on the chair performing random
mixes of the data he sends to the cloud. This is specified in Figures 1-3 by representing the
databases DBr

Keys, DBr
notf as random permutations (denoted by by ←R) of sets rather than as

lists, i.e. with no order on their entries.

3.2 Discussion

Distribution of the reviewing symmetric key The privacy properties of our protocol rely
on the sharing of a symmetric key KConf among the members of the programme committee in
such a way that the cloud does not get hold of KConf. Here we suggest a few possible solutions in
the context of our application, reflecting different trade-offs between security and usability. Our
protocol is independent of which of the three solutions is adopted:
Public keys. Each reviewer may be expected to have a public key. Then, the symmetric key
can be encrypted with each of the chosen reviewer’s public key and uploaded to the cloud. The
distribution can be made more flexible and efficient by relying on key distribution protocols like
[12]. An important issue in this setting is the authentication of public keys of reviewers invited to
participate in the conference. This may be done either relying on a hierarchical certification model
such as PKI or, what is more probable in the case of conference management, on a distributed
web of trust, such as that of PGP.
Token. In this solution, each reviewer generates a symmetric key kR and uploads {kR}pub(Conf)

to the cloud. Then, the chair sends {KConf}kR
to the reviewer using a channel that is outside

the control of the cloud. He does this by checking the reviewer’s authenticated email address and
sends {KConf}kR

to that address. The reviewer then decrypts this token to obtain KConf. In this
case, even if the cloud has access later to a reviewer’s email, it cannot compromise the privacy
properties that our protocol ensures.
Email. If we assume that email infrastructure is not in the control of the cloud service provider
that hosts ConfiChair (as is most probably the case in conference management), the key KConf

could be sent to reviewers directly by email. In that case, if the email of a reviewer is compromised
later on, its privacy for the conference Conf is also compromised. Note also that it is only the key
KConf that must be sent by email, all the rest of the protocol being executed in the cloud.

Computation in the cloud We stress that non-trivial computation takes place in the cloud,
namely routing of messages, and optionally collection of statistics. It is essential for usability and
take-up of the proposed system that these computations are done by the cloud. The difficulties
in designing the protocol thus lie in releasing the necessary information for the cloud to perform
these operations without compromising the users of our system’s privacy. In particular, the link
between the sender of a message (e.g. the author of a paper) and the end receiver of this message
(e.g. the reviewer of this paper) should remain private and this although it is the cloud that is
responsible for routing messages.

Optionally, the protocol can be extended to allow the cloud to collect statisticts or other
anonymised data about the conference, its authors, papers, and reviewers. This can be achieved
by adding code which extracts this information during the manipulations performed by the chair’s
browser. For example, along with the computation of DBr

notf in Figure 3.1, the chair could also
compute the average score asµ = (s1 + · · ·+ snµ

)/nµ for each paper and return the vector (asµ)µ

to the cloud. (Such optional features must be carefully designed to avoid weakening the security
properties, and are not considered in our formal model in Secrion 5.)

Efficiency and usability It may seem that there is a considerable amount of work to be done by
the chair, especially in the transition between phases. As we discuss in the next section, this does
not have to be evident to the chair. Our experiments with our prototype show that the browser
can transparently execute the protocol.

5

C Cloud R A

Initialisation

create Conf, KConf, pub(Conf), priv(Conf)

Conf, R1, . . . , Rℓ

DBKeys ← ∅
DBPapers ← ∅

KConf

Submission

create λ, p, k

key ← (λ, A, {λ, k}pub(Conf))
paper ← (λ, A, {λ, A, p}k)

(key, paper)

DBKeys ← DBKeys ∪ {key}
DBPapers ← DBPapers ∪ {paper}

Initialisation. The conference chair C generates the symmetric key KConf, a public key pub(Conf) and
a corresponding private key priv(Conf). The symmetric key is then shared among the reviewers in a
way that does not reveal it to the cloud (see section 3.2). Then C requests from the cloud the creation
of the conference named Conf, sending along the names of the chosen reviewers R1, . . . , Rℓ for the
programme committee.

Submission. An author A creates a paper p and a symmetric key k. He uploads to the cloud p encrypted
with k and k encrypted with pub(Conf). An identifier λ is used to refer to this encrypted submission.
The first role of the key k is to provide a symmetric key for the encryption of papers. The second
role of k will be to encrypt the reviews assigned to p, for the notification that will be sent through
the cloud back to the author. The cloud creates two corresponding databases: one with encrypted
submission keys and one with encrypted papers.

Fig. 1. ConfiChair: initialisation and submission phases

6

C Cloud R A

Reviewing
DBKeys

DBPapers

DBr
Keys ←R

(µ, {µ, λ, k}KConf
,R, C)

˛

˛

˛

˛

(λ, A, {λ, k}pub(Conf)) ∈ DBKeys,

µ ∈r N, R, C ⊆r {R1, . . . , Rℓ}, R∩ C = ∅

ff

DBr
Keys

for all (µ, {µ, λ, k}KConf
,R, C) ∈ DBr

Keys ∧ R 6∈ C
DBµ ← ∅

(µ, {µ, λ, k}KConf
,R)

if R ∈ R then
pick s ∈ S
create r

rev ← {µ, λ, k, r, s, ∅}KConf

(µ, rev)

DBµ ← DBµ ∪ {(R, rev)}

Reviewing. The chair downloads the database with encrypted keys, decrypts them using the private key
of the conference and encrypts them back with the shared symmetric key KConf. A new identifier µ

is introduced for each paper. C also assigns the reviewers R to review the paper corresponding to µ,
and declares the conflicts C restricting the set of reviewers that are allowed to see the data concerning
µ. Finally, he mixes the elements in DBr

Keys before sending it to the cloud. The cloud filters the
submissions according to these choices and sends them to reviewers.
The reviewers download the database with papers and can decrypt the papers for which they hold
the keys. They read the papers, and for the papers they have been assigned to review (R ∈ R), they
write reviews, pick scores from S, and upload them in encrypted form back to the cloud. Note that
the cloud is told to what identifier µ this encrypted review refers to. This allows the cloud to manage
the data flow, without being able to link µ with λ, and hence the reviewer with the author.

Fig. 2. ConfiChair: reviewing phase

7

C Cloud R A

Discussion
(R′, {(µ, λ, k, r′, s′, D)}KConf

) ∈ DBµ

create d

rev′ ← {µ, λ, k, r′, s′, (D, d)}KConf

(µ, rev′)

DBµ ← DBµ ∪ {(R, rev′)}

Notification & report generation
[

µ

(µ, DBµ)

DBr
notf ←R

8

>

>

<

>

>

:

(λ, {λ, dec, revs}k)

˛

˛

˛

˛

˛

˛

˛

˛

DBµ =
[

j∈{1,...,nµ}

(Rij
, {µ, λ, k, rj , sj , dj}KConf

,

revs = (r1, . . . , rnµ)
dec ∈R {acc, rej}

9

>

>

=

>

>

;

DBnotf

(λ, A, sub) ∈ DBConf

(λ, notf) ∈ DBnotf

(λ, notf)

Report generation

Discussion. The reviews of each paper are submitted to the programme committee members (except for
the conflicting reviewers) for discussion. Each reviewer can read a submitted review and the ongoing
discussion D and add a comment d to it. Reviewers upload their comments together with the review
to which they refer to in encrypted form back to the cloud.

Notification. After reviewing, ranking and possible discussions, the chair of the conference makes a
decision and, for each paper, creates a notification including the decision and the reviews. This noti-
fication is encrypted with the corresponding symmetric key k that was created by the author during
the submission phase. The encrypted notification is uploaded to the cloud, who is also given in unen-
crypted form the identifier λ that refers to this submission. Again, this allows the cloud to manage
the information flow, without compromising the privacy of the authors. Henceforth, the cloud is able
to route the notification messages to the corresponding authors.

Fig. 3. ConfiChair: discussion and notification phases

8

4 Implementation

The ideal implementation of our protocol would look and feel very similar to existing cloud-based
conference management systems such as OpenConf, EDAS and EasyChair, and should require no
additional software beyond a web browser.

We constructed a prototype implementation [1], in order to discover any potential problems
with a practical implementation and to find how much time and memory such a system may
require, both on server-side and on client-side.

Overview. We implemented the ConfiChair prototype so that only a browser is necessary for
participating as an author, a reviewer, or a chair. Overall, our prototype of ConfiChair feels very
similar to current web-based management systems. A user of the system can perform his usual
tasks by simply clicking a few buttons.

For example, to submit a paper an author logs to his ConfiChair account, selects the link for
the conference to which he wants to submit, clicks the new submission button, selects the PDF file
of his paper and clicks the submit button to complete his submission. All the key generation and
the secure storing, as well as the encryption dictated by our protocol is transparently performed
by the browser. The only aspect not currently performed by the browser is the retrieval of the
conference public-key pub(Conf); this key must be manually input by the author (by copy-paste
from the call for papers for example).

Similarily, the chair of a conference wanting to create a ConfiChair page for his conference
Conf, loggins to his ConfiChair account and clicks the create new conference button. His browser
will transparently, generate and securily store the keys KConf, pub(Conf), and priv(Conf).

Performance. The system is expected to handle hundreds of papers without overhead on the
chair. In particular, browser-side re-encryption and mixing while transitioning between phases
should not take more than a few minutes. From that perspective, the results of our experiments
with the prototype implementation are promising. They are presented in figure 4. Also, experiments
with any number of random files can be easily re-run on [1]. The tables show the waiting time for
a corresponding number of papers when transiting between phases: always within a few minutes.
The submissions in our experiments are PDF files of scientific papers, thus reflecting a real-case
situation.

Fig. 4. Performance evaluation. The time taken for transitioning to the review stage is about 25s for 500
papers. The times for the other two transitions are about 70s and 350s.

Transparency of key management. To hide the complexity of the encryption keys from the
user, these are managed and retrieved by the browser transparently when logging to ConfiChair.
The login procedure implemented relies on each user having an identity id and a secret password
pswid from which the browser derives two keys: the ConfiChair account key Kdf1(pswid) to au-
thenticate the user to the the cloud provider, and a second key Kdf2(pswid) used to encrypt the
key purse of the user. This key purse contains the set of keys generated by the browser in previous

9

accesses to the ConfiChair system, for example submission keys if the user has used ConfiChair as
an author in the past, or conference keys if he has used it as a programme committee member.

When submitting a paper, the author’s browser generates a symmetric key k which it uses
to automatically encrypt the paper before sending it to the cloud. This key k is in turn added
to the key purse of the user, which is uploaded encrypted with Kdf2(pswauthorid) to the cloud.
To the submitter, this does not look like anything other than a normal file upload. Similarly,
when the chair moves the conference to the review stage, it appears to be just like clicking on a
normal link, since the chair’s browser has already retrieved from the cloud the chair’s key purse,
and decrypted it with Kdf2(pswchairid), and can then transparently decrypt and reencrypt the
submissions according to the protocol.

Currently, the authors need to copy and paste from the call for papers the public key of the
conference pub(Conf) to which they want to submit, and the reviewers need to copy and paste
from their email the shared-key of the conference K(Conf) for which they are reviewers.

Future improvements In contrast to the ideal system that we envisage, our prototype requires
the use of a Java plug-in for the users’ browsers, since a Java applet is used to provide cryptographic
routines. These routines are called from the JavaScript code using LiveConnect. An alternative to
Java would be to use HTML5 which, unlike previous versions of HTML, provides the necessary
features to implement ConfiChair, such as the possibility to program on-the-fly stream encryption
and decryption. However, as the experiences of [4, 5, 24] suggest, Java applets are not necessarily
an impediment in the usability and the take-up of the system. Moreover, while the use of the Java
plug-in may look unattractive to some, it presents the following two advantages over HTML5:

– HTML5 is not yet widely adopted. Only the Chrome browser currently supports all the nec-
essary features of HTML5 that an implementation of ConfiChair would require.

– In order for the user to trust the code that their web browser runs, the code should be reviewed,
certified and signed by one or more trusted parties. The user’s web browser would then verify
the certificates without the user’s intervention. Currently Java applets are the only way to
achieve this.

All these implementation platform related issues will be further investigated in the future, for a
real implementation and deployment of the ConfiChair protocol.

5 Formal model and verification

It is difficult to ascertain whether or not a cryptographic protocol satisfies its security requirements.
Numerous deployed protocols have subsequently been found to be flawed, e.g. the Needham-
Schroeder public-key protocol [28], the public-key Kerberos protocol [15], the PKCS#11 API [13],
or the BAC protocol in e-Passports [17]. In this section, we formally show that ConfiChair does
satisfy the announced security properties. The formal verification of the protocol has been done
automatically using the ProVerif tool [9, 11]. The ProVerif source code is available online [1]. The
verification requires a rigorous description of the protocol in the ProVerif calculus as well as formal
definitions of the desired properties, each discussed in detail in the following section.

5.1 The process calculus

The ProVerif calculus [9, 11] is a language for modelling distributed systems and their interactions.
It is a dialect of the applied pi calculus [3]. In this section, we briefly review the basic ideas and
concepts of the ProVerif calculus.

Terms The calculus assumes an infinite set of names, a, b, c, . . ., an infinite set of variables,
x, y, z, . . . and a finite signature Σ, that is, a finite set of function symbols each with an associ-
ated arity. Function symbols are divided in two categories, namely constructors and destructors.

10

Constructors are used for building messages from other messages, while destructors are used for
analysing messages and obtaining parts of the messages they are applied to. Names and variables
are messages. A new message M may be built by applying a constructor f ∈ Σ, to names, variables
and other messages, M1, . . . ,Mn, and denoted as usual f(M1, . . . ,Mn). A term evaluation D is
built by applying any function symbol g ∈ Σ (constructor or destructor) to variables, messages or
term evaluations, D1, . . . ,Dn, denoted g(D1, . . . ,Dn). The semantics of a destructor g of arity n is
given by a finite set of rewrite rules of the form g(M1, . . . ,Mn) → M0, where M0,M1, . . . ,Mn are
messages that only contain constructors and variables. Constructors and destructors are used to
model cryptographic primitives such as shared-key or public-key encryption. The ProVerif calculus
uses tuples of messages (M1, . . . ,Mn), keeping the obvious projection rules implicit.

In the following, and for the purpose of modelling the ConfiChair protocol presented in sec-
tion 3, we will consider the signature

Σ = {senc/3, sdec/2, pub/1aenc/3, adec/2, subm/0, initrv/0, revw/0, dsc/0, ntf/0, one/0, two/0}

where senc (resp. aenc) is a constructor of arity 3 that models the randomised shared-key (resp.
randomised public-key) encryption primitive, sdec (resp. adec) is the corresponding destructor of
arity 2, and pub is a constructor of arity 1 that models the public key associated to the private
key given in argument. The signature also contains the constants initrv, revw, dsc, and ntf corre-
sponding to the tags used to label messages originating from different phases of the protocol; and
the constants one and two representing the possible scores for papers. The semantics of the two
destructors is given by the two following rules

sdec(x, senc(x, y, z)) → z
adec(x, aenc(pub(x), y, z)) → z

We model the probabilistic shared-key encryption of the message m with the key k by senc(k, r,m),
where the r is fresh for every encryption; and the probabilistic public-key encryption of the message
m with the pubic key corresponding to the secret key k by aenc(pub(k), r,m).

We will write D ⇓ M if the term evaluation D can be reduced to the message M by applying
some destructor rules. For example, if we consider the following term evaluation E and message
N

E = senc(k, r, sdec(k′, senc(k′, r′, s)))
N = senc(k, r, s),

by application of the first rewrite rule given above, we have E ⇓ N .

Processes Processes are built according to the grammar given below, where M is a message, D
is a term evaluation, n is a name, c is a channel name, and x is a variable.

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
new n;P name restriction
let M = D in P else Q term evaluation
in(c,M);P message input
out(c,M);P message output

Replication handles the creation of an unbounded number of instances of a process. The process
let M = D in P else Q tries to evaluate D and matches the result with M ; if this succeeds, then
the variables in M are instantiated accordingly and P is executed; otherwise Q is executed. We
will omit the else branch of a let when the process Q is 0. Names that are introduced by a new
construct are bound in the subsequent process, and they represent the creation of fresh data.

11

Variables that are introduced in the term M of an input or of a let construct are bound in the
subsequent process, and they represent the reception or computation of fresh data. Names and
variables that are not bound are called free. We denote by fn(P), respectively fv(P), the free
names, respectively free variables, that occur in P .

Notation. A process definition P will sometimes be denoted by P (~v), where ~v is a vector of
free variables that occur in P and that can be seen as parameters for the process P . Then we will
abbreviate the process let ~v = ~w in P simply by P (~w), and we will say that P (~w) is an instance
of P (~v).

Example 1. The process A models the authors’ part of the ConfiChair protocol.

A
def
= new ida; !A′(ida)

A′(xida)
def
= new p; new k; A′′(xida, p, k)

A′′(yida, yp, yk)
def
= new l; new r1; new r2;

in(cpbk, xpbk);
let k subm = (l, ida, aenc(xpbk, r1, (subm, l, k))) in (
let p subm = (l, ida, senc(k, r2, (l, ida, pap))) in (
out(c, (k subm, p subm));
in(c, xn)))

An author with identity ida can submit many times to many different conferences (!A′(ida)).
For each submission he generates the paper p and the submission key k, he chooses the confer-
ence he wants to submit to, fetches the corresponding public (in(cpbk, xpbk)), and generates the
identifier l (corresponding to the λ in the diagrams of section 3). He then builds the submission
message ((k subm, p subm)) as described in the diagrams of section 3, and sends his submission
to the cloud on the public channel c. He finally waits for the notification (in(c, xn)).

Altogether, the ConfiChair protocol can be fully modelled by the process

CC
def
= new cshk; new cpbk; (!C | !R | !A)

The subprocesses C, R, and A model the behaviour of a conference chair, a reviewer, and an author
respectively. A is fully detailed above, and C and R are detailed in Appendix A. We consider a
general system CC with an unbounded number of chairs, reviewers, and authors. In CC, cshk is
the private channel (discussed in the first paragraph of Section 3.2) on which the shared-keys of
conferences are sent to reviewers. The channel cpbk is an authenticated channel from which the
authors can access the public key of a conference in order to submit a paper. Although this channel
is restricted to model that the public keys of conferences should be authenticated, the chair (as
detailed in Appendix A) also publishes on the public channel c the public key of his conference,
for anyone including the attacker to submit papers to it.

Semantics. The possible actions of the environment are captured by evaluation contexts. A
context is a process with a hole. We denote by C[A] the process obtained by filling C[]’s hole
with the process A. An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

We define the operational semantics of the process calculus by the means of two relations: struc-
tural equivalence and internal reductions. Structural equivalence (≡) is the smallest equivalence
relation on processes closed under α-conversion of bound names and bound variables, applica-
tion of evaluation contexts and of standard rules (see [11] for full definition) that capture the
associativity, the commutativity and the interplay of | and ν.

Internal reduction (−→) is the smallest relation closed under structural equivalence, application
of evaluation contexts and such that

c〈M〉.P | c(x).Q −→ P | Q{M/x}
let M = D in P else Q −→ Pσ, if D ⇓ N & σ = µ(M,N)
let M = D in P else Q −→ Q, otherwise

12

where we let µ(M,N) denote the substitution that matches M with N , if such a substitution
exists. We write →∗ for an arbitrary (possibly zero) number of internal reductions.

Observational equivalence We write A ⇓ c when A can evolve into a process that can send a
message on c, that is, when A →∗ C[c〈M〉.P] for some term M and some evaluation context C[]
that does not bind c.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R between processes
such that A R B implies:

1. if A ⇓ c, then B ⇓ c.
2. if A −→∗ A′ then, for some B′, we have B −→∗ B′ and A′ R B′;
3. C[A] R C[B] for all closing evaluation contexts C[].

We will express secrecy and unlinkability as the observational equivalence of two processes,
that share the same operational structure and differ only on data that they handle. Formally, such
two processes are represented in the ProVerif calculus as a bi-process. A bi-process is constructed
in the same way as a process, with the single difference that the binary operator choice may be
used in term evaluations. A bi-process P represents two processes with the same structure in
the following sense: from P we can obtain a first process fst(P), by replacing all occurrences of
choice[M1,M2] with M1; a second process snd(P) can be obtained by replacing all occurrences
of choice[M1,M2] with M2, for all terms M1,M2. For example, the bi-process out(c, choice[a, b])
represents in ProVerif a test of whether out(c, a) ≈ out(c, b), which is false.

5.2 Properties and analysis

In this work, we prove using the ProVerif tool, that the ConfiChair protocol satisfies the intended
secrecy and unlinkability properties informally described in section 2.1. The purpose of this section
is to formally define these properties, and to show how they can be automatically verified with
ProVerif. We define both secrecy and unlinkability properties as equivalences between processes
adapting the classical approach of [34, 2, 20] to our context.

To express security properties we will need to consider particular authors and reviewers in
interaction with the rest of the system. For this we consider a hole in the process CC, where we
can plug any process, i.e. we let:

CC[]
def
= new cshk; new cpbk; (!C | !R | !A |)

To express authors and reviewers who submit some specific data (of which the privacy will be
tested), we consider the processes:

– Apap(ida, p, k) - for an author whose identity is ida and that behaves like a regular author,
with the single difference that amongst other submissions, he also submits the paper p with
the corresponding submission-key k.

– Rsc(idr, sc) - for a reviewer whose identity is idr and that behaves like a regular reviewer, with
the single difference that amongst other reviews, he also reviews a paper to which it attributes
the score s.

– Rrev(idr, k, rev) - for a reviewer whose identity is idr and that behaves like a regular reviewer,
with the single difference that amongst other reviews, he also reviews the paper corresponding
to the submission-key k, and writes the review rev.

The formal definition of these processes is detailed in Appendix B.

Secrecy properties To formalise the considered secrecy properties, we rely on the notion of
strong secrecy defined in [10].

13

Paper secrecy We say that a conference management protocol satisfies strong secrecy of papers
if, even if the cloud initially knows p1 and p2, the cloud cannot make a distinction between an
execution of the protocol where an author submitted the paper p1 and an execution where he has
submitted the paper p2.

To formally capture this, we construct from CC[] two processes: in the first one the hole is
filled with an author that submits the publicly known (i.e. free) paper p1, and in the second one
the hole is filled with that author submitting the publicly known (i.e. free) paper p2. We verify
using ProVerif that these two processes are observationally equivalent:

CC[new ida; new k; Apap(ida, p1, k)] ≈ CC[new ida; new k; Apap(ida, p2, k)]

Score secrecy Similarly, in order to verify the strong secrecy of scores, we build from CC[] one
process in which the hole is filled with a reviewer that attributes one to some paper, and one
process in which the hole is filled with the reviewer attributing two to it.

CC[new idr; Rsc(idr, one)] ≈ CC[new idr; Rsc(idr, two)]

Review secrecy The definition of secrecy of reviews is a bit more subtle. Reviews are sent to the
authors at the notification phase, and the attacker could very well have submitted a paper. He
would then rightfully obtain the review to his paper. So the property we want to formalise is that
an attacker doesn’t get to see the reviews of other authors’ papers. In other words, review secrecy
holds if, even if the cloud initially knows rev1 and rev2, the cloud cannot distinguish an execution
of the protocol where a reviewer to a paper not submitted by the attacker writes the review rev1

from an execution where the reviewer writes the review rev2.
To capture this, we construct from CC[] two processes. In the first one, the hole is filled with

an honest author that submits a paper p with the corresponding submission-key k and a reviewer
reviewing this paper and writing the publicly known (i.e. free) review rev1. In the second one,
an honest author that submits a paper p with the corresponding submission-key k and a reviewer
reviewing this paper and writing the publicly known (i.e. free) review rev2. For review secrecy to
hold, the following equivalence must hold:

CC

[

new ida; new p; new k; new idr;
(Apap(ida, p, k) | Rrev(idr, k, rev1))

]

≈ CC

[

new ida; new p; new k; new idr;
(Apap(ida, p, k) | Rrev(idr, k, rev2))

]

Analysis We used the ProVerif tool to prove that the equivalences described above hold, and thus
that as announced ConfiChair does provide secrecy of papers, scores and reviews. The ProVerif
source code for each of these equivalences is available online [1].

Author-reviewer unlinkability This property aims to guarantee that the links between a given
author and the reviewers of his papers remain hidden from the cloud. To formalise it one could
ask whether two processes are in observational equivalence: one in which ida’s paper is reviewed
by a reviewer idr1, and another in which ida’s paper is reviewed by a reviewer idr2.

However, similarly to privacy in electronic voting [20], definitions of unlinkability are a bit
more tricky. Since the identities of the authors that submit papers are revealed to the cloud at
submission time, and the identities of the reviewers are published when the review is submitted,
unlinkability can not be ensured when there is a single reviewer, or a single author.

In order to give robust definitions of unlinkability we need to consider conferences with at least
two reviewers and at least two authors submitting papers to it that are being reviewed by these
reviewers. It is the chair’s task to ensure that this is indeed the case. Accordingly, there is in the
formal model a processes Car that ensures that at each stage of the conference at least two authors
and two reviewers have executed their role. The detailed definition of Car is given in appendix B.

We prove that there is no observable difference between the case where reviewer idr1 reviews
ida1’s paper and reviewer idr2 reviews ida2’s paper (left-handside process), and the case where

14

reviewer idr2 reviews ida1’s paper and reviewer idr1 reviews ida2’s paper (right-handside process):

CC

new p1; new p2; new k1; new k2;
new rev1; new rev2

Car(k1, k2, idr1, idr2) |
Apap(ida1, p1, k1) | Apap(ida2, p2, k2) |
Rrev(idr1, k1, rev1) | Rrev(idr2, k2, rev2)

≈ CC

new p1; new p2; new k1; new k2;
new rev1; new rev2

Car(k1, k2, idr2, idr1) |
Apap(ida1, p1, k1) | Apap(ida2, p2, k2) |
Rrev(idr1, k2, rev1) | Rrev(idr2, k1, rev2)

Analysis We used the ProVerif tool to prove that the equivalence described above hold, and thus
that as announced ConfiChair does provide author-reviewer unlinkability. The ProVerif source
code for this equivalence is available online [1].

A few words on the ProVerif code This section discusses an encoding technique that we use
in order to help ProVerif handle the commutativity of the | operator.

As it has already been pointed in [21], although the equivalence out(c, a) | out(c, b) ≈ out(c, b) |
out(c, a) trivially holds by commutativity of the parallel operator, ProVerif cannot prove it. Indeed,
according to ProVerif the biprocess out(c, choice[a, b]) | out(c, choice[b, a]) corresponding to this
equivalence doesn’t satisfy uniformity under reductions, and therefore the equivalence cannot be
proved by ProVerif.

In the ProVerif equivalence queries that we verified, we used the technique suggested in [21],
consisting in swapping data so that ProVerif doesn’t need to invoke the commutativity of the |
operator to establish the considered equivalences. This technique uses the fact that the biprocesses
C[out(c,M) | out(c,N)] and C[out(c, choice[M,N]) | out(c, choice[N,M])] are equivalent (i.e. the
first satisfies observational equivalence if and only if the second does too), where C[] is any context
(not necessarily an evaluation context).

When applying this technique to our trivial example we obtain the following biprocess for
which ProVerif can now prove that observational equivalence holds:

let x = choice[choice[a, b], choice[b, a]] in
let y = choice[choice[b, a], choice[a, b]] in
out(c, x) | out(c, y)

This biprocess corresponds to the equivalence

out(c, a) | out(c, b) ≈ out(c, a) | out(c, b)

which holds trivially, and can be established without having to invoke the commutativity of the |
operator.

In our application, we use this technique when we communicate reviewer names to the cloud,
while testing for the unlinkability of author-reviewer.

6 Conclusion

The accumulation of sensitive data on servers around the world is a major problem for society, and
will be considerably exacerbated by the anticipated take-up of cloud-computing technology. The
fact that confidential data about the authoring and reviewing performance of tens of thousands
of researchers across thousands of conferences is stored by well-known cloud-based systems serves
to show how widespread and ubiquitous the problem is [32].

We have introduced a general technique that can be used to address this problem in a wide
variety of circumstances, namely, the technique of translating between keys and mixing data in
a trustworthy browser. We have proposed ConfiChair, a conference management system that
uses this technique to obtain strong privacy properties while having all the advantages of cloud
computing. In ConfiChair, the cloud sees sensitive data only in encrypted form, with no single
person holding all the encryption keys (our protocol uses a different key for each conference). The

15

conference chair’s browser decrypts data with one key and encrypts it with possibly another one,
while mixing and re-randomising to ensure unlinkability properties.

We are able to state and prove strong secrecy and unlinkability properties for ConfiChair. The
protocol still enables the cloud provider to route information to the necessary chairs, reviewers and
authors, to enforce access control, and optionally to perform statistics collection. We have demon-
strated that the cryptography and key management can be handled by a regular web browser [1]
(specifically, we used LiveConnect). We plan to continue developing our prototype into a complete
system.

An important design decision in ConfiChair is the fact that a single key KConf is used to
encrypt all the information for the conference Conf. Stronger secrecy properties could be obtained
if a different key were used for different subsets of reviewers and papers, but this would be at
the cost of simplicity. Using a single key per conference seems to strike a good balance between
usability and security. Finer-grained access control is implemented (as on current systems) by the
cloud, e.g. for managing the conflicts of interest.

In further work, we intend to apply the ideas to work with other cloud-computing applications
(such as those mentioned in the introduction), and to provide a framework for expressing secrecy
and unlinkability properties in a more systematic way.

References

1. ToughChair - prototype privacy-supporting conference management system. https://toughchair.

dyndns.org.
2. Mart́ın Abadi. Security protocols and their properties. In Foundations of Secure Computation, NATO

Science Series, pages 39–60. IOS Press, 2000.
3. Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Pro-

ceedings of the 28th ACM Symposium on Principles of Programming Languages (POPL’01), pages
104–115, January 2001.

4. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor, USENIX Security
Symposium, pages 335–348. USENIX Association, 2008.

5. Ben Adida, Olivier Pereira, Olivier De Marneffe, and Jean-Jacques Quisquater. Electing a univer-
sity president using open-audit voting: Analysis of real-world use of helios. In In Electronic Voting
Technology/Workshop on Trustworthy Elections (EVT/WOTE, 2009.

6. Randolph Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel Starin. Persona: an
online social network with user-defined privacy. In Pablo Rodriguez, Ernst W. Biersack, Konstantina
Papagiannaki, and Luigi Rizzo, editors, SIGCOMM, pages 135–146. ACM, 2009.

7. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guillaume Poupard.
Practical multi-candidate election system. In PODC, pages 274–283, 2001.

8. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

9. Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Computer
Security Foundations Workshop (CSFW’01), 2001.

10. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium on
Security and Privacy, pages 86–, 2004.

11. Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming, 2007. To appear.

12. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 258–275. Springer, 2005.

13. Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel. Attacking and fixing
PKCS#11 security tokens. In ACM Conference on Computer and Communications Security, pages
260–269, 2010.

14. Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

15. Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and Christopher Walstad. Breaking
and fixing public-key kerberos. Inf. Comput., 206:402–424, February 2008.

16

16. C. Chatmon, T. van Le, and T. Burmester. Secure anonymous RFID authentication protocols. Tech-
nical Report TR-060112, Florida Stat University, Department of Computer Science, 2006.

17. Tom Chothia and Vitaly Smirnov. A traceability attack against e-passports. In Financial Cryptogra-
phy, 2010.

18. Sebastian Clauß, Dogan Kesdogan, Tobias Kölsch, Lexi Pimenidis, Stefan Schiffner, and Sandra Stein-
brecher. Privacy enhancing identity management: Protection against re-identification and profiling.
In Proceedings of the 2005 ACM Workshop on Digital Identity Management, 2005.

19. Cloud Security Alliance. Secure Cloud. www.cloudsecurityalliance.org/sc2010.html, 2010.
20. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic

voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.
21. Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification of privacy properties in

the applied pi calculus. In Proceedings of the 2nd Joint iTrust and PST Conferences on Privacy, Trust
Management and Security (IFIPTM’08), volume 263, pages 263–278. IFIP International Federation
for Information Processing, 2008.

22. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM Symposium on Theory
of Computing (STOC), 2009.

23. Saikat Guha, Kevin Tang, and Paul Francis. NOYB: Privacy in online social networks. In In Proceed-
ings of the First ACM SIGCOMM Workshop on Online Social Networks, 2008.

24. Yan Huang and David Evans. Private editing using untrusted cloud services. In Second International
Workshop on Security and Privacy in Cloud Computing, Minneapolis, Minnesota. 24 June 2011.

25. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for electronic voting by
randomized partial checking. In Dan Boneh, editor, USENIX Security Symposium, pages 339–353.
USENIX, 2002.

26. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In Vijay
Atluri, Sabrina De Capitani di Vimercati, and Roger Dingledine, editors, WPES, pages 61–70. ACM,
2005.

27. Swee-Won Lo, Raphael C.-W. Phan, and Bok-Min Goi. On the security of a popular web submission
and review software (WSaR) for cryptology conferences. In WISA’07: Proceedings of the 8th inter-
national conference on Information security applications, pages 245–265, Berlin, Heidelberg, 2007.
Springer-Verlag.

28. Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Information
Processing Letters, 56(3):131–133, 1996.

29. Siani Pearson, Yun Shen, and Miranda Mowbray. A privacy manager for cloud computing. In Mar-
tin Gilje Jaatun, Gansen Zhao, and Chunming Rong, editors, Cloud Computing, First International
Conference, CloudCom 2009, Beijing, China, December 1-4, 2009. Proceedings, pages 90–106, 2009.

30. Krishna P. N. Puttaswamy, Christopher Kruegel, and Ben Y. Zhao. Silverline: Toward data confiden-
tiality in third-party clouds. Technical Report 08, University of California Santa Barbara, 2010.

31. Hasan Qunoo and Mark Ryan. Modelling dynamic access control policies for web-based collaborative
systems. In Data and Applications Security and Privacy XXIV, volume 6166 of LNCS, pages 295–302,
2010.

32. Mark D. Ryan. Cloud computing privacy concerns on our doorstep. Communications of the ACM,
54(1):36–38, 2011.

33. Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. Token-based cloud computing. In
Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza Sadeghi, editors, Trust and Trustworthy Com-
puting, Third International Conference, TRUST 2010, Berlin, Germany, June 21-23, 2010. Proceed-
ings, pages 417–429, 2010.

34. Steve Schneider and Abraham Sidiropoulos. Csp and anonymity. In ESORICS, pages 198–218, 1996.

A Formal definition of the protocol

We will make extensive use of the following syntactic sugar of ProVerif: in the expression M from the
construct ”let M = D in P else Q” one is allowed to have subexpressions of the form ”=N”, for some
term N . In that case, the subexpressions ”=N” is an additional constraint on the matching of M and D,
requiring that the term at the corresponding position in M matches also with N .

(***
SIGNATURE & EQUATIONAL THEORY
***)

17

free c.

fun pub/1.

fun aenc/3.
reduc adec(x, aenc(pub(x), y, z)) = z.

fun senc/3.
reduc sdec(x, senc(x, y, z)) = z.

fun one/0. fun two/0.

fun subm/0. fun initrev/0. fun revw/0. fun dsc/0. fun ntf/0. fun true/0.

(***
CHAIR
***)
let C = new shkconf; new prvconf; ((C_init) | (!(C_review)) | (!(C_notify))).

let C_init =
((!out(cshkconf, shkconf)) | (out(cpubconf, pub(prvconf))) | (!out(c, pub(prvconf)))).

let C_review =
new mu;
new rand;
in(c, xsubmission);
let (xlambda, xidauthor, xblob) = xsubmission in (
let (=subm, =xlambda, xsubmissionkey) = adec(prvconf, xblob) in (
in(c, xreviewer);
in(c, xconflict);
let for_rev = (mu, xreviewer, xconflict, senc(shkconf, rand, (initrev, xreviewer, mu, xlambda,

xsubmissionkey))) in (
out(c, for_rev)))).

let C_notify =
new rand;
in(c, zsubmission);
let (zmu, zreviewer, zblob) = zsubmission in (
let (=dsc, =zmu, zlambda, zsubmissionkey, zreview, zscore, zdiscussion) = sdec(shkconf, zblob) in (
in(ccoin, zntf);
let for_notf = (zlambda, senc(zsubmissionkey, rand, (ntf, zlambda, zntf, zreview))) in(
out(c, for_notf)))).

(***
REVIEWER
***)
let R = new idreviewer; out(c, idreviewer); (!(R_main)).

let R_main =
in(cshkconf, xshkconf);
out(c, idreviewer);
out(c, idreviewer);
in(c, xdbpapers);
((!R_review) | (!R_discuss)).

let R_review =
new rand;
in(c, xsubmission);
let (xmu, =idreviewer, xblob) = xsubmission in (
let (=initrev, =idreviewer, =xmu, xlambda, xsubmissionkey) = sdec(xshkconf, xblob) in (
in(ccoin, xscore);
new review;
let subm_reviewed = (xmu, idreviewer, senc(xshkconf, rand, (revw, xmu, xlambda, xsubmissionkey,

review, xscore))) in (
out(c, subm_reviewed)))).

let R_discuss =
new rand’;
in(c, yreview);
let (ymu, yblob) = yreview in (
let (=revw, =ymu, ylambda, ysubmissionkey, yr, ys) = sdec(xshkconf, yblob) in (
new discussion;
let subm_discussion = (ymu, idreviewer, senc(xshkconf, rand’, (dsc, ymu, ylambda, ysubmissionkey,

yr, ys, discussion))) in (
out(c, subm_discussion)))).

(***
AUTHOR
***)
let A = new idauthor; (!(A_create)).

18

let A_create =
new lambda; new paper; new submissionkey; (A_submit).

let A_submit =
new rand1; new rand2;
in(cpubconf, xpubconf);
let key = (lambda, idauthor, aenc(xpubconf, rand1, (subm, lambda, submissionkey))) in (
let pap = (lambda, idauthor, senc(submissionkey, rand2, (lambda, idauthor, paper))) in (
out(c, (key, pap));
in(c, xntf))).

(***
COIN
***)
let Coin = ((!(out(ccoin, one))) | (!(out(ccoin, two)))).

(***
CC
***)
process new cshkconf; new cpubconf; new ccoin; ((!C) | (!R) | (!A) | Coin)

B Formal definition of witnessing processes

To formalise our secrecy and unlinkability properties, we need to consider particular instances of authors
and reviewers called witnesses (of the considered property). The witnessing authors are instances of the
process Apap defined bellow. According to the considered property, the witnessing reviewers are instances
of the processes Rsc or Rrev, whose intuitive meaning is given in section 5.2.

B.1 Definition of Apap

The process Apap(xida, xp, xk) models an author whose identity is xida and is ready to submit new papers,
as well as the paper xp encrypted with the key xk given in argument:

1. Apap(xida, xp, xk)
def
=

2. ((!A create) | (Apap create))
3.

4. Apap create
def
=

5. let idauthor = xida in (
6. let paper = xp in (
7. let submissionkey = xk in (
8. A submit)))

where A create and A submit are as defined in Appendix A.

B.2 Definition of Rsc

The process Rsc(xidr, xsc) models a reviewer with identity xidr, ready to submit many reviews, as well
as a review to a paper that gets attributed the score xsc given in argument:

19

1. Rsc(xidr, xsc)
def
=

2. let idreviewer = xidr in (
3. out(c, xidr)
4. ((!R main) | (Rsc main)))
5.

6. Rsc main
def
=

7. in(cshkconf, xshkconf);
8. out(c, idreviewer);
9. out(c, idreviewer);
10. in(c, xdbpapers);
11. ((!R review) | (Rsc review) | (!R discuss))
12.

13. Rsc review
def
=

14. new rand;
15. in(c, xsubmission)
16. let (xmu, = xidr, xblob) = xsubmission in (
17. let (= initrev, = xidr, = xmu, xlambda, xsubmissionkey) = sdec(xshkconf, xblob) in (
18. (∗ in(ccoin, xscore); ∗)

19. let xscore = xsc in (

20. new review;
21. let subm reviewed = in
22. (xmu, xidr, senc(xshkconf, rand, (revw, xmu, xlambda, xsubmissionkey, review, xscore))) in (
23. out((, c), subm reviewed)))))

where R main, R review and R discuss are as defined in Appendix A. Note that Rsc review and the
normal behaviour R review, only differ in the score attributed to the paper under review. Normally, i.e.
in R review, the reviewer picks randomly a score. In Rsc review this is not the case. We have commented
the original choice of the score (line 18), and instead have added line 19 to assign xsc given in argument
to the variable xscore.

B.3 Definition of Rrev

The definition of Rrev is very similarly to the one of Rsc. The process Rrev(xidr, xk, xrev) models a re-
viewer with identity xidr, ready to review many papers, as well as a paper encrypted with the key xk and
to write the review xrev for it:

20

1. Rrev(xidr, xk, xrev)
def
=

2. let idreviewer = xidr in (
3. out(c, xidr)
4. ((!R main) | (Rrev main)))
5.

6. Rrev main
def
=

7. in(cshkconf, xshkconf);
8. out(c, idreviewer);
9. out(c, idreviewer);
10. in(c, xdbpapers);
11. ((!R review) | (Rrev review) | (!R discuss))
12.

13. Rrev review
def
=

14. new rand;
15. in(c, xsubmission)
16. let (xmu, = xidr, xblob) = xsubmission in (
17. let (= initrev, = xidr, = xmu, xlambda, = xk) = sdec(xshkconf, xblob) in (
18. in(ccoin, xscore);
19. (∗ new review; ∗)

20. let review = xrev in (

21. let subm reviewed = in
22. (xmu, xidr, senc(xshkconf, rand, (revw, xmu, xlambda, xsubmissionkey, review, xsc))) in (
23. out((, c), subm reviewed)))))

B.4 Definition of Rrev

The process Car(xk1, xk2, xidr1, xidr2) models the chair of a confairence who has assign the reviewer
xidr1 to the paper encrypted with the key xk1, and the reviewer xidr2 to the paper encrypted with the
key xk2:

21

1. Car(xk1, xk2, xidr1, xidr2)
def
=

2. new shkconf ; new prvconf ;
3 ((C init)|(!(C review))|(!(C notify))
4. (Car review)|(Car notify)|
5. (Rrev(xidr1, xk1, rev1))|(Rrev(xidr2, xk2, rev2))|(Apap(ida1, p1, xk1))|(Apap(ida2, p2, xk2))).

6.

7. Carreview
def
=

8. new rand1; new rand2;
9. new mu1; new mu2;
10. in(c, xsubmission1); in(c, xsubmission2);
11. let (xlambda1, xidauthor1, xblob1) = xsubmission1 in (
12. let (xlambda2, xidauthor2, xblob2) = xsubmission2 in (
13. let (= subm, = xlambda1, = wtn(k1)) = adec(prvconf, xblob1) in (
14. let (= subm, = xlambda2, = wtn(k2)) = adec(prvconf, xblob2) in (
15. in(c, = idr1);
16. in(c, = idr2);
17. in(c, xconflict1);
18. in(c, xconflict2);
19. let for rev1 = in
20. (mu1, choice[idr1, idr2], senc(shkconf, rand1, (initrev, choice[idr1, idr2], mu1, xlambda1, wtn(k1)))) in (
21. let for rev2 = in
22. (mu2, choice[idr2, idr1], senc(shkconf, rand2, (initrev, choice[idr2, idr1], mu2, xlambda2, wtn(k2)))) in (
23. out(c, choice[for rev1, for rev2])|out(c, choice[for rev2, for rev1]))))))).
24.

25. Car notify
def
=

26. in(c, zsubmission1); in(c, zsubmission2);
27. let (zmu1, zreviewer1, zblob1) = zsubmission1 in (
28. let (zmu2, zreviewer2, zblob2) = zsubmission2 in (
29. let (= dsc, = zmu1, zlambda1, = choice[wtn(k1), wtn(k2)], zreview1, zscore1, zdiscussion1) = in
30. sdec(shkconf, zblob1) in (
30. let (= dsc, = zmu2, zlambda2, = choice[wtn(k2), wtn(k1)], zreview2, zscore2, zdiscussion2) = in
32. sdec(shkconf, zblob2) in (
31. in(ccoin, zntf1); in(ccoin, zntf2);
32. new rand1; new rand2;
33. let for notf1 = (zlambda1, senc(choice[wtn(k1), wtn(k2)], rand1, (ntf, zlambda1, zntf1, zreview1))) in (
34. let for notf2 = (zlambda2, senc(choice[wtn(k2), wtn(k1)], rand2, (ntf, zlambda2, zntf2, zreview2))) in (
35. out(c, choice[for notf1, for notf2])|out(c, choice[for notf2, for notf1]))))))).

22

